Страница 2 из 2

Испытания и определение мест повреждения кабелей

Испытание кабелей.

Для выявления ослабленных мест в изоляции кабеля и муфт кабельные линии перед вводом в эксплуатацию, а также периодически в течение всего срока службы должны подвергаться профилактическим испытаниям. Кабели с ослабленной изоляцией при этом доводят до пробоя («прожигают»), чтобы предотвратить их аварийный выход из строя. Дефекты, которые трудно или невозможно обнаружить, выявляются при испытании повышенным напряжением выпрямленного тока. Испытательная аппаратура для такого способа имеет сравнительно небольшую мощность; обычно используют аппараты АКИ-50 и АИИ-70 или передвижные лаборатории.
До начала испытаний проводят тщательный внешний осмотр всех доступных участков и присоединений линии. При обнаружении явно неудовлетворительного состояния концевых муфт или заделок (сильно потрескался или вытек заливочный состав, изломаны жилы кабеля или сильно повреждена изоляция, имеются сколы и трещины в изоляторах и т.п.) их ремонтируют до испытаний. Затем измеряют установившееся значение R60h сопротивления изоляции жил кабеля мегаомметром на 2500 В. За величину сопротивления изоляции принимают установившееся значение R60h.
При испытании повышенное напряжете прикладывают поочередно к каждой жиле кабеля, а две другие жилы вместе с оболочкой заземляют. В этом случае надежно испытывается как изоляция жил по отношению к земле, так и междуфазная изоляция.
Плавно увеличивая напряжение со скоростью 1 - 2 кВ/с, повышают его до величины Е/исп, величина которого для кабелей с бумажной изоляцией напряжением до 10 кВ включительно составляет 6 UH, а для кабелей с пластмассовой изоляцией - 5t/H. Напряжение поддерживается неизменным в течение всего испытания: после прокладки или монтажа - 10 мин, во всех остальных случаях - 5 мин. Отсчет времени начинается с момента установления полной величины испытательного напряжения.
Если во время испытаний не произошло пробоя, перекрытий по поверхности концевых муфт, роста тока утечки (особенно в последнюю минуту) или резких бросков тока, то кабель считается выдержавшим испытания. При заметном нарастании тока утечки продолжительность испытания увеличивают до 10 - 20 мин, а при дальнейшем увеличении его ведут до пробоя («прожигания») кабеля.
Необходимая точность измерений обеспечивается пульсацией выпрямленного напряжения в пределах 3 - 5 % от номинального. Чтобы избежать недопустимых погрешностей измерения из-за повышенной пульсации, в испытательную цепь вводят дополнительный балластный конденсатор. Это позволяет одновременно устранить погрешность измерения тока утечки, связанную с неполным выпрямлением.

Рис. 1. Ориентировочная зависимость поправочного коэффициента к от температуры кабеля

Определение места повреждения КЛ

Определение места повреждения КЛ начинают с отключения и отсоединения концов кабеля с обеих сторон. Затем определяют характер повреждения, измеряя мегаомметром сопротивление изоляции каждой токоведущей жилы относительно земли и между всеми жилами кабеля. Кроме того, определяют отсутствие обрыва токоведущих жил.
Если с помощью мегаомметра не удастся обнаружить повреждение изоляции, то его характер определяют дополнительным поочередным испытанием изоляции токоведущих жил между собой и по отношению к оболочке высоким напряжением выпрямленного тока. Возможны следующие варианты повреждений:

  1. повреждение изоляции с замыканием одной фазы на землю;
  2. повреждение изоляции с замыканием двух или трех фаз на землю либо двух или трех фаз между собой;
  3. обрыв одной, двух или трех фаз (с заземлением или без заземления фаз);
  4. заплывающий пробой изоляции;
  5. сложные повреждения, представляющие собой комбинации из различных повреждений.


Рис. 2. Измерение расстояния до места повреждения кабеля с помощью прибора ИКЛ
После выяснения характера повреждения KЛ выбирают метод, наиболее подходящий для определения места повреждения в данном конкретном случае. В первую очередь рекомендуется определить зону, в границах которой расположено повреждение. Для этого используют импульсный и емкостный методы, а также метод колебательного разряда и петли. Затем точное место повреждения выявляют непосредственно на кабельной трассе индукционным или акустическим методом. Иногда можно достаточно точно определить место повреждения одним методом (например, петлевым), в большинстве же случаев приходится применять два, а иногда и несколько методов.

Импульсный метод основан на измерении времени пробега зондирующего импульса, посылаемого в поврежденную линию от места измерения (с конца кабеля) до места повреждения (где импульс отражается) и обратно. На экране осциллографа одновременно с изображением зондирующего 1 (рис. 2) и отраженного 2 импульсов проектируется
изображение масштабных меток 3, позволяющих вести отсчет непосредственно в метрах, исходя из условия, что скорость распространения электромагнитных колебаний в силовых кабелях составляет V-160 ± 3 м/мкс.
Расстояние до места повреждения 1Х пропорционально измеренному времени пробега определяется по формуле

где t - время пробега зондирующего импульса до места повреждения и обратно.
Метод неприменим при переходных сопротивлениях в месте повреждения более 100 Ом.
Измерения проводят приборами типа ИКЛ-4, ИКЛ-5 или Р5-1 А. Подача импульса в линию происходит с частотой 2,5 кГц, причем развертка по времени идет с той же частотой, благодаря чему кривая на экране выглядит неподвижно.
Погрешности, возникающие при измерении, связаны с определением скорости распространения импульсов. Зная точную длину КЛ, можно определить скорость распространения импульса по здоровой жиле. Чтобы получить отраженный импульс 2, по величине больший, чем другие импульсы 4, возникающие из-за неоднородности волнового сопротивления вдоль линии, требуется, чтобы переходное сопротивление в месте повреждения изоляции было, как сказано выше, не более 100 Ом. Этого добиваются предварительным прожиганием поврежденной изоляции.
Метод колебательного разряда основан на измерении периода собственных электрических колебаний в кабеле, возникающих в нем в момент пробоя (разряда в поврежденном месте). Его применяют для определения места повреждения при заплывающем пробое и во всех случаях, когда в месте повреждения появляются электрические разряды. Для измерения на поврежденную жилу кабеля подают напряжение Uпроб от выпрямительной установки. Расстояние до места повреждения 1Х пропорционально периоду собственных колебаний Г, который соответствует времени четырехкратного пробега волны до места повреждения.

где v - скорость распространения волны колебаний (для кабелей 6 - 10 кВ с бумажной изоляцией v = 160 м/с).
Метод петли используют в тех случаях, когда на испытываемом кабеле есть хотя бы одна неповрежденная жила, а величина переходного сопротивления поврежденной не более 5000 Ом. Для измерений используют мост. Возможно также применение высоковольтного измерительного моста реохордного типа при большом, но устойчивом переходном сопротивлении.
Методом петли надежно определяют однофазные и двухфазные замыкания устойчивого характера. Трехфазные замыкания могут бьггь определены при наличии дополнительной жилы, для чего вдоль трассы прокладывают вспомогательный кабель или провод.
Для определения места повреждения кабеля при однофазном замыкании (рис. 3, а) поврежденную 1 и здоровую 2 жилы соединяют накоротко перемычкой 3 на противоположном (от подключения измерительной схемы) конце схемы, образуя петлю. Чтобы уменьшить переходное сопротивление, соединение жил выполняют непосредственно под болт или специальными зажимами, а при больших сечениях жил перемычкой сечением не менее 50 мм2.

Рис. 3. Схемы определения места повреждения кабеля петлевым методом при однофазном КЗ (а) и с помощью моста при двухфазном КЗ (б)
С другой стороны к концам жил подсоединяют дополнительные (регулируемые) резисторы RR, и RR2 которые вместе с петлей создают схему моста. При равновесии моста расстояние до места повреждения находят из выражения

где L - полная длина KЛ, м;
т | иг2 - сопротивления резисторов RR, hRR2, подсоединенных соответственно к поврежденной и здоровой жилам.
Для линии, состоящей из кабелей разных сечений, длину приводят к одному эквивалентному сечению. Для уменьшения погрешности измерений необходимо повысить плотность и надежность контактов в месте присоединения к измерительному мосту и уменьшить влияние соединительных проводов. Место повреждения трехфазного кабеля при двухфазном замыкании (точка «К» на рис. 4, б) определяют также с помощью моста. Во время измерения зажимы моста, к которым обычно подключают испытуемое сопротивление, остаются свободными, а плечо RR3 не используется. Плечами моста служат резисторы RR2, RR4 и участки кабеля от точки «а» до точки «К» - места повреждения и от точки «К» до точки «Ь». Третью жилу кабеля (среднюю) используют как проводник для присоединения гальванометра к точке «К», являющейся узлом моста. При равновесии моста расстояние до места повреждения

где г2 и г4 - сопротивления резисторов RR2 и RR4соответственно, Ом.
Одним из современных приборов, использующих новые методы измерения с программным обеспечением и блоками памяти для ускорения и упрощения определения мест повреждений кабелей, с большим переходным сопротивлением (до 10 МОм), является полностью автоматизированный измерительный мост В ARTEC 10 Т. Выбор разных режимов измерений проводится на нем с помощью меню пользователя, в режиме самодиагностики прибор выдает информацию о плохих контактах измерительных проводов или клемм. После ввода всех необходимых параметров прибор автоматически выдает результат в метрах.
Емкостный метод основан на сравнении емкостей оборванной и целой (неповрежденной) жил кабелей; его применяют для определения мест повреждения с обрывом одной или двух жил с глухим заземлением их концов, обрывом одной или нескольких жил с переходным сопротивлением на землю не менее 5000 Ом или просто обрывом жил.
Емкостный метод менее точен, чем импульсный, поэтому его применяют только в случае отсутствия приборов для измерения импульсным методом.
В зависимости от характера повреждения емкость измеряют на постоянном (при обрыве без заземления) или на переменном (обрыв с заземлением) токе.
Емкость кабеля на постоянном токе измеряют баллистическим гальванометром (рис. 5, а). Жилу кабеля 4, имеющую обрыв, подключают к переключателю S1, а эталонный конденсатор Сэт - к переключателю S2. Для измерения емкости Сх оборванной жилы шунтом RR устанавливают наименьшую чувствительность гальванометра рА. Ключ S2 ставят в положение 1 (в положение 2 ключ возвращается пружиной), тогда зарядный ток от батареи GB в жилу кабеля пройдет через гальванометр рА и отклонит его стрелку на какой-то угол ах. Меняя положение шунта, увеличивают чувствительность гальванометра и находят наибольшее допустимое отклонение стрелки для данной емкости. Чтобы повысить точность измерения, жилу 4 включают на заряд 3 - 4 раза и находят среднее значение отклонения стрелки гальванометра ахср. Далее при этом же положении шунта гальванометра и напряжения батареи нажимают ключ S1 эталонного конденсатора, наблюдают отклонение



Рис. 5. Схемы определения места повреждения кабеля емкостным методом на постоянном (а) и переменном (б) токе
стрелки гальванометра аэт, соответствующее заряду известной нам емкости Сэт, и вычисляют Сх по формуле

Таким же образом определяют и емкость здоровой жилы:

где - среднее (от нескольких замеров) отклонение гальванометра при измерении емкости здоровой жилы.
По данным измерений находят расстояние до места повреждения кабеля:
, км (если известна его длина L) и
км, (если его длина неизвестна),
где С0 - удельная емкость одной жилы для данных напряжения и сечения кабеля при заземленных двух других жилах (по заводским или паспортным данным).
Для измерения емкостей на переменном токе используют схему, приведенную на рис. 5, б. Источником питания является ламповый генератор с частотой 800 - 1000 Гц, который включают в диагональ моста 1 - 3, одновременно в диагональ 2 - 4 включают телефонную трубку Т. Поврежденную жилу включают в плечо моста 2 - 3 (она представляет собой емкость Сх) и заземляют ее через резистор R3. Плечи моста 1 - 2 и 1 - 4 должны быть равными, а в плечо 3 - 4 параллельно подключают магазины сопротивлений R (0 - 10 000 Ом) и емкостей С (0,001 - 2,0 мкФ) и подбирают в них такие значения Яэт и Сэт, чтобы в диагонали моста 2 - 4 не было тока, т.е. уравнивают плечи моста. Это подтверждается отсутствием сигнала в телефонной трубке. Тогда Сэт = Сх, a R3T = R3 Формулы для расчета расстояния до места повреждения приведены выше.
Индукционный метод основан на принципе прослушивания с поверхности земли с помощью телефонных трубок звука, порождаемого магнитным полем, которое создается в результате прохождения по жилам кабеля тока звуковой частоты от генератора G.

Рис. 6. Схема включения генератора звуковой частоты для определения места замыкания между жилами кабеля (а) и кривая звучания по трассе (б)
Следуя по трассе КЛ с трассоискателем, улавливают создаваемые кабелем электромагнитные колебания до тех пор, пока не достигнут места повреждения «К»
(рис. 6), за которым резко снижается слышимость пропадают ее периодические усиления, связанные с шагом скрутки жил кабеля (1 - 1,5 м), причем увеличение шага скрутки повышает слышимость, поэтому кабели больших сечений, имеющие увеличенный шаг скрутки, прослушиваются лучше, чем кабели малых сечений.
Индукционный метод дает большие возможности в определении трассы кабеля, глубины его залегания, мест нахождения муфт и поиске кабеля в пучке работающих кабелей.
Чтобы определить трассу КЛ, один вывод генератора присоединяют к здоровой жиле, а другой - к заземленной оболочке кабеля. Противоположный конец здоровой жилы также заземляют. Величину тока устанавливают в пределах 0,5 - 20 А в зависимости от глубины прокладки и наличия помех. Для определения трассы КЛ при значительных помехах посылают в линию серии импульсов тока, что позволяет выделить сигнал при прослушивании.

Акустическим методом можно определить повреждения различного характера: однофазные и междуфазные замыкания с различными переходными сопротивлениями, обрыв одной, двух или всех жил. В отдельных случаях можно выявить несколько повреждений на одной КЛ. Метод неприменим при металлическом соединении жилы с оболочкой и отсутствии искровых разрядов в месте повреждения. Сущность метода заключается в прослушивании над местом повреждения звуковых ударов, вызванных искровым разрядом в канале повреждения.
Примените импульсного, индукционного или акустического методов отыскания повреждений требует значительного снижения переходного сопротивления в месте прожигания до 10 - 100 Ом. Это достигается путем прожигания изоляции в поврежденном месте специальными установками. Эффективный прожиг наблюдается до тех пор, пока сопротивление в месте повреждения имеет тот же порядок величины, что и внутреннее сопротивление прожигательной установки, поэтому наиболее целесообразным методом прожигания является «ступенчатый способ». Сущность его состоит в перемене источников питания по мере снижения напряжения пробоя и сопротивления в месте повреждения, для чего применяют комбинированные установки: вначале кенотронную с большим напряжением (до 50 - 60 кВ) и малым током (до 0,3 А); затем - газотронную, а на заключительной стадии - трехфазный трансформатор, регулируя его работу дроссельными катушками, подключенными в первичную цепь, или обычным силовым трансформатором. Доведением тока прожигания до 3 - 4 А можно понизить переходное сопротивление до требуемых пределов. При использовании передвижной лаборатории ЛИК-1 ОМ дожигание можно осуществлять высокочастотным генератором 48ГПС2.
Для прожигания кабелей можно применять также резонансный метод. Для этого к параллельно прожигаемому кабелю, имеющему емкость Ск, подключают высоковольтную катушку L2, которая при настройке образует с кабелем резонансный контур 50 Гц. Колебания в этом контуре возбуждаются благодаря связи с другой катушкой L1, получающей питание от сети НН. В резонансном контуре может развиваться импульсная реактивная мощность до нескольких сотен кВА, в то время как из сети НН потребляется мощность порядка нескольких киловатт, идущая на покрытие потерь. Прожигательная установка получается легкой и портативной.
При влажной изоляции процесс прожигания кабеля проходит спокойно, но переходное сопротивление обычно не удается снизить до 1000 Ом. Применение мощных прожигательных установок также не дает эффекта (характерная величина переходного сопротивления влажной кабельной изоляции в месте повреждения 1000 - 5000 Ом). В таких случаях д ля определения места повреждения рекомендуется использовать метод петли.
При прожигании мест повреждений на KЛ возможны пробои и воспламенение кабельных концевых муфт на противоположной стороне линии, поэтому во время работ необходимо выставлять наблюдающего у концевых муфт.
В современных условиях для поиска мест повреждений KЛ обычно используют специальные передвижные электротехнические лаборатории, предназначенные для проведения профилактических испытаний электрооборудования до 35 кВ, а также для определения дефектов силовых кабелей напряжением до 10 кВ. Весь необходимый комплект оборудования такой лаборатории смонтирован в кузове автомобиля и конструктивно разделен на два отсека: оператора и высоковольтного оборудования. В отсеке оператора расположена приборная стойка с сетевым пультом управления, с помощью которого к выходному измерительному кабелю можно подключать отдельные системы не выходя из отсека. При этом неиспользуемые фазы выходного кабеля, а также системы приборов автоматически заземляются и блокируются друг от друга. Кроме того, в отсеке оператора расположен шкаф с ящиками для малогабаритных приборов и документации, шкаф для рабочей одежды, вращающийся стул с креплением для транспортировки и столик. В отсеке высоковольтного оборудования расположены: модуль кабельных барабанов, высоковольтный блок испытательной установки, устройство разрядки и заземления, устройство стабилизации электрической дуги и др.
Лаборатория снабжена принудительной защитой от поражения персонала электрическим током при касании. Незаземленная часть корпуса (отсек оператора) отделена от опасной высоковольтной зоны жесткой прозрачной перегородкой и дополнительной изоляцией. Включение установки возможно лишь после закрытия дверей высоковольтного отсека лаборатории. Отключение защиты вызывает автоматическое отключение всего высоковольтного оборудования, а также его разрядку.

При схожести конструкции подход к измерениям и поиску повреждений силовых кабелей сильно отличается от тех же работ с кабелями связными. Обусловлено это тем, что силовые кабели способны провести большой ток и распределительные устройства этот ток ограничивают не мгновенно. То есть в случае пробоя кабельной линии произойдёт не тихое умирание системы, а взрыв с дополнительными повреждениями. Способность проводить приличный ток даёт возможность использовать более простые и наглядные способы поиска места пробоя.

Высоковольтные испытания

Кабельная линия, включающаяся в электрическую сеть, должна быть испытана повышенным напряжением постоянного тока. Низковольтные кабели (до 1000 В) испытываются мегаомметром с напряжением 2500 В. Для высоковольтных (выше 1000 в) всё сложнее – испытательное напряжение зависит от вида изоляции кабеля и номинального напряжения кабельной линии.

Нормы на испытательные напряжения отражены в ПУЭ и прочих нормативных документах. Протоколы на эти испытания содержат ссылки на пункты нормативных документов, величину испытательного напряжения и токи утечки, сопротивление изоляции.

Причина такого серьёзного подхода для новичков не всегда очевидна, поэтому далее небольшое отступление.

Мощность, передаваемая по силовым, а особенно высоковольтным кабелям очень велика. Средний по номинальному току высоковольтный выключатель имеет Iном. = 630 А. Если напряжение высоковольтной сети 6 кВ, то такой выключатель передаёт в нормальном режиме 630 * 6000 = 3 780 000 Вт = 3,78 МВт мощности. Это номинал, но отключится он при гораздо большем токе и не сразу. В случае пробоя эта мощность выделится на небольшом участке, металл и пластик быстро переходят в газообразное состояние - происходит серьёзный взрыв. Если рядом оказываются люди, то даже без поражения электрическим током возможны возгорания одежды и кожи открытых частей тела.

Зачастую такие аварии имеют цепную реакцию из-за того, что автоматика не всегда сразу отсекает повреждённый участок или токоведущие шины подстанций не выдерживают превышающий номинал ток – загореться может что-то ещё, и обесточится большой и важный участок энергохозяйства.

В электросетях любят показывать молодым обгоревшие остовы высоковольтных ячеек. Представьте себе стальной шкаф метр на метр на полтора сквозными дырками и весь покрытый сажей и окалиной.

Поэтому у электриков-высоковольтников ни одна кабельная линия не должна включаться в сеть без испытаний повышенным напряжением. Установки для испытаний подают в кабельную линию напряжение превышающее номинальное в несколько раз, тем самым испытывая её изоляцию. При этом они способны быстро отключиться в случае пробоя без тяжёлых последствий.

Установки для высоковольтных испытаний

Аппарат для высоковольтных
испытаний АИИ-70

Аппараты для высоковольтных испытаний можно условно разделить на переносные и используемые в составе передвижной лаборатории высоковольтных испытаний (далее ЛВИ).

Наиболее распространённые переносные приборы на следующих фотографиях: это старичок АИИ-70 и более новый АИД-70. (70 - максимальное напряжение в киловольтах). Плюс сейчас в эксплуатации всё чаще появляются приборы импортного происхождения.


АИД-70

То, что устанавливается в передвижные лаборатории высоковольтных испытаний (ЛВИ) более разнообразно и, как правило, выполнено в виде стоечного блока и отдельного трансформатора. Испытательный блок завязывается на общую для всей машины систему кабелей и заземления. Тем не менее, поверяются эти блоки отдельно от всей ЛВИ, и даже в протоколе указывается испытательный блок, а не весь комплекс.

Говоря о передвижных лабораториях стоит заметить, что собираются они блочно. То есть у вас желание иметь в составе дополнительный блок – ставьте, не хватает денег - не ставьте. Имея автомобиль с просторным салоном можно собрать высоковольтную лабораторию в хорошо оборудованном гараже. Привинтить трансформатор, закрепить катушки с испытательным кабелем, придумать безопасный переключатель, блокировку и заземление. То есть выполнить требования ПУЭ, а они в свою очередь не так уж и сложны, то есть под силу некоторым "Кулибиным".

Переменный, постоянный и сверхнизкий

Оборудование высоковольтных подстанций испытывается разными типами тока. Шины, секции, трансформаторы и тому подобные устройства испытываются повышенным напряжением переменного тока.

Испытать же кабели переменным напряжением не получится из-за большой электрической ёмкости кабельных жил. Для подобного испытания пришлось бы делать установку довольно большой мощности и именно поэтому кабели испытывают постоянным током. Соответственно с возможностью переключения "постоянный ток – переменный ток" производятся и испытательные установки. То есть в них либо предусмотрен переключатель, либо может быть подключен выпрямляющий блок. Электрическая схема выпрямителя для таких испытаний, как правило, состоит из одного высоковольтного диода.

В связи с распространением кабелей с изоляцией из сшитого полиэтилена (буквы "Пв" в маркировке) всё больше появляется испытательных установок способных выдавать напряжение со сверхнизкой частотой – 0,1 Гц. Такой аппарат меняет полярность выдаваемого напряжения с периодом в 10 секунд. Из-за такой медленной смены полярности электрическая ёмкость кабеля уже не создаёт больших токов при испытании повышенным напряжением. В то же время это уже не постоянный ток и поляризации в сшитом полиэтилене не происходит.

Стоит заметить, что в нормативных документах предусмотрено много исключений типа "если отсутствует установка переменного тока, то допускается испытание постоянным…" или "допускается испытание оборудование секций совместно с кабельными линиями по напряжению для …"

Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока. Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 1.8.39 (ПУЭ п. 1.8.40)

Токи утечки и коэффициенты асимметрии для силовых кабелей

При испытаниях отмечают характер изменения тока утечки. Кабель считается прошедшим испытания при отсутствии пробоя изоляции, скользящих разрядов и толчков (или нарастания) тока утечки после того, как испытательное напряжение достигнет нормативного значения. (Табл 1.8.40 ПУЭ п. 1.8.40) После испытания исправный кабель необходимо разрядить.

Кабельные линии непосредственно после их сооружения и в процессе эксплуатации подвергаются испытаниям, с помощью которых выявляются ослабленные места или дефекты в изоляции и защитных оболочках кабелей, соединительной и концевой арматуре.
Причины возникновения таких ослабленных мест весьма различны. Они могут возникать при изготовлении кабеля на заводе-изготовителе, при прокладке кабелей и изготовлении кабельной арматуры в процессе монтажа кабельной линии. Ослабленные места в кабельных линиях возникают и в процессе эксплуатации из-за старения изоляции кабелей, коррозии оболочек кабелей, механических повреждений и др. Ослабленные места и дефекты имеют скрытый характер и под воздействием рабочего напряжения постепенно могут привести к аварийному выходу из строя кабельную линию.
Избежать аварийное нарушение электроснабжения потребителей из-за наличия ослабленных мест и дефектов можно за счет проведения испытаний кабельных линий повышенным напряжением выпрямленного тока. Кабельные линии напряжением выше 1000 В после их монтажа испытывают в соответствии с требованиями ПУЭ повышенным напряжением выпрямленного тока в соответствии с таблицей 3

Таблица 3 – Испытательные напряжения для силовых кабелей

В процессе испытания обращают внимание на характер изменения тока утечки. Кабельные линии считаются выдержавшими испытания, если не про-изошло пробоя и толчков тока утечки или его нарастания, после того как ток достиг установившегося значения. До и после испытаний повышенным напряжением измеряют сопротивление изоляции кабелей, которое не нормируется.
Сопротивление изоляции кабелей измеряют мегаомметром на напряже-ние 2500 В включенным по схеме между каждой жилой и жилами, соединен-ными с металлической оболочкой и броней кабеля. Для силовых кабелей на-пряжением до 1000 В сопротивление изоляции нормируется и должно быть не менее 0,5 МОм. Испытания кабелей повышенным напряжением не выявляют все слабые места изоляции новой кабельной линии. Некоторые дефекты монтажа и изготовления кабелей и муфт постепенно приводят к ослаблению изоляции и пробою.
Эти и другие дефекты кабельных линий, возникающие в процессе экс-плуатации, выявляют при проведении профилактических испытаний. Профи-лактические испытания кабельных линий должны проводиться не реже 1 раза в год. Более частую периодичность испытаний устанавливают для кабелей, работающих в тяжелых условиях (вибрация, высокая наружная температура и т.п.), а также при дефектах линий. Кабели, проложенные в земле и не имеющие электрических пробоев при работе и испытаниях в течение пяти лет, могут испытываться не реже 1 раза в три года. Этот же срок установлен для кабелей, проложенных в кабельных сооружениях, при условии, что они не подвержены воздействию коррозии и механическим повреждениям и не имеют соединительных муфт.
Если на трассах линий производились земляные работы или наблюдались осадки почвы, размывы или оползни, необходимы дополнительные (внеочередные) испытания этих линий. Внеочередные испытания проводят также после окончания ремонтных работ на линии. Кабели, присоединенные к токоприемникам, испытывают, как правило, во время ремонта токоприемников. При испытаниях кабелей в РУ их отсоединяют разъединителями. Поэтому вместе с кабелем испытывают концевые муфты и опорные изоляторы.
Так как основным назначением испытаний является выявление слабых мест кабелей путем доведения их до пробоя, то в некоторых случаях в целях сокращения времени целесообразно испытывать одновременно по нескольку распределительных кабельных линий, соединенных последовательно в цепочку. В этом случае одновременно с кабелями подвергают испытанию попадающие в цепочку распределительные устройства трансформаторных подстанций. Все силовые трансформаторы и трансформаторы напряжения, установленные в подстанциях, отключают. Разрешается также производить одновременное испытание параллельно проложенных кабельных линий, присоединенных к отдельным агрегатам. Эти кабели обычно имеют большое сечение токопроводящих жил (150, 180, 240 мм2) и присоединены к шинам кабельной сборки наглухо по нескольку линий.
Различная величина токов утечки каждой кабельной линии, испытывае-мых «цепочкой» или с параллельным присоединением к сборкам, не имеет значения, так как абсолютная величина этих токов не является браковочным признаком во время испытаний.
Испытательное напряжение для кабелей 3-10 кВ установлено в пределах пятикратного номинального значения, время приложения - 5 мин для каждой фазы. Этого достаточно для выявления ослабленных мест в кабеле и муфтах.
Более высокое испытательное напряжение, хотя и не опасно непосредственно для кабеля, но является предельным для соединительных и главным образом концевых муфт.
При испытаниях повышенным напряжением необходимо учитывать ха-рактер изменения токов утечки, которые для кабельных линий с удовлетворительной изоляцией, как правило, весьма стабильны. Для кабелей с бумажной изоляцией напряжением до 10 кВ ток утечки находится в пределах до 300 мкА при относительной влажности воздуха до 80 % и 500 мкА при относительной влажности более 80%, для кабелей 35 кВ ток утечки около 800 мкА. Если величина токов утечки превышает указанные величины, то сроки проведения профилактических испытаний сокращают с учетом местных условий.
Профилактические испытания кабельных линий могут производиться двумя методами: с выводом из работы линий и их всесторонним отключением на время проведения испытания; без вывода из работы линий с наложением испытательного напряжения на участок сети, находящийся под рабочим напряжением и под нагрузкой нормального режима (испытания «под нагрузкой»).
Способ испытания, при котором полностью отключается кабельная ли-ния, высоко эффективен и нашел наибольшее применение.
После присоединения испытательной установки к линии напряжение увеличивают плавно со скоростью не более 1-2 кВ в секунду до необходимого значения, а затем поддерживают в течение установленного времени.
Изоляцию кабельных линий испытывают постоянным током с помощью кенотронной установки АИИ-70, схема включения которой приведена на рисунке 7. При испытании трехжильного кабеля с поясной изоляцией напряжение от испытательной установки прикладывают поочередно к каждой жиле, а две другие жилы и металлическую оболочку заземляют (рисунок 7,а). Кабель, испытанный постоянным током, длительное время сохраняет заряд. Поэтому по окончании испытаний каждой фазы кабельной линии все жилы кабеля должны быть разряжены через ограничительное сопротивление, которое имеется в кенотронной установке.
При испытании кабеля с отдельно освинцованными жилами напряжение прикладывают поочередно к каждой жиле, при этом металлическую оболочку жилы заземляют (рисунок 7,6). Для испытания кабелей напряжением 3-10 кВ применяют стационарные и передвижные кенотронные установки. Стационарные установки в основном предназначены для электростанций и подстанций, где имеются РУ с большим количеством присоединяемых кабельных линий. В монтажных организациях и городских кабельных сетях широкое применение нашли кенотронные установки, смонтированные на автомашинах с крытым кузовом.


Рисунок 7. Схемы испытания трехжильного силового кабеля с поясной изоляцией (а) и отдельно освинцованными жилами (б)

Подчас возникают различные типы повреждений, основные из которых:

Обрыв одной из жил;

Между жилами либо на землю вследствие старения изоляции, по причине коррозии металлических оболочек и пр.;

Утечки масла в результате обрывов маслонаполненных кабелей;

Механические воздействия - эти повреждения относятся к линиям, проложенным в земле, пр.

Также при эксплуатации могут возникнуть «слабые» места в изоляции кабельных линий, вследствие ошибок, связанных с человеческим фактором, могут наблюдаться дефекты заделок, монтажа соединительных либо концевых муфт.

Для того, чтобы предварительно выявить и устранить любые вышеперечисленные повреждения кабелей и проводятся испытания. Методика их проведения регламентируется нормативно-техническими документами, СНиП, ПУЭ , ПТЭЭП и пр. Поэтапная очередность испытаний кабельных линий изложена в ПУЭ (гл. 1.8, п. 1.8.40), ПТЭЭП (прил. 3, п. 6). Их основная задача - доведение дефектных или слабых мест до пробоя, что тем самым способствует преждевременному аварийному выхода из строя кабеля.

Подвергаться испытаниям должны вновь вводимые в работу, после кап. ремонта, а также периодически в ходе работы все кабельные линии. Производить испытания рекомендовано в благоприятных погодных условиях.

Кабель-проводниковая продукция импортного производства должна испытываться согласно инструкциями и указаниями производителя.

Результаты замеров необходимо сравнивать с данными, полученными в ходе предыдущих испытаний, включая и первоначальные испытания, проеденные на заводе-изготовителе.

Результаты испытаний оформляются в виде «Протокола», установленной нормативами формы.

Объемы испытаний кабельных линий от 1000 В и более 1000 В

Силовые кабели номинальным до 1000 В испытываются в соответствии с разделами: 1, 2, 4.

Силовые кабели номинальным более 1000 В испытываются в соответствии с разделами: 1, 2, 3, 4.

Раздел 1 - Проверка на целостность и правильность фазировки жил кабеля

Раздел 2 - Замеры сопротивления изоляции

Измерения сопротивления изоляции проводят специальным прибором - мегомметром. Воздействие необходимо проводить в течении минуты напряжением 2,5 кВ. Сопротивление изоляции кабельной продукции до 1 кВ должно составлять 0,5 мОм и более.

Регламентированной величины сопротивления кабельной линии напряжением более 1 кВ не существует, но рекомендованной величиной является значение 10 МОм.

Раздел 3 - Испытание повышенным напряжением

Следующим этапом является испытание повышенным напряжением выпрямленного . Любые силовые линии с рабочим напряжение выше 1 кВ должны обязательно подвергаться этому испытанию. Эти испытания для кабельных линий с номинальным напряжением более 1 кВ выполняют в сроки, установленные очередностью, установленной таблицей планово-предупредительных ремонтов, однако не реже чем раз в 3 г. После ввода в работу либо капитального ремонта кабели подвергаться испытаниям рабочим напряжением до 10 кВ при Uном, а в ходе профилактических испытаниях - (5-6) Uном. Длительность испытания для фазы - 10 мин.

Итог испытания является удовлетворительным, если в ходе него не происходит пробоев, не наблюдаются скользящие разряды, толчки токов утечки либо нарастание его установившегося значения, сопротивление изоляции резко не изменяется.

Раздел 4 - Замеры токораспределения одножильных кабелей

Неравномерность распределения токов по кабельным линиям не должна составлять более 10%, поскольку такие режимы работы могут привести к перегрузкам, выходу из строя жил.

Перед сдачей в эксплуатацию производят испытание кабельных линий повышенным напряжением с оформлением протокола установленной формы. Смонтированные соединения кабелей отдельному испытанию не подвергают, их испытывают одновременно с кабельными линиями.

Электрическая прочность — важнейшая характеристика силовых кабелей. Для ее определения силовые кабели испытывают повышенным напряжением. Электрическая прочность зависит от скорости подъема напряжения, длительности его приложения, а также от тепловых и механических воздействий, которым подвергался кабель до испытания напряжением. С увеличением длительности воздействия напряжения электрическая прочность уменьшается.

Пробивное напряжение измеряют обычно в кВ, электрическую прочность выражают в кВ/мм или кВ/см, а в системе СИ—в В/м.

Методы испытания кабельных линий, требования к испытательной установке по технике безопасности при испытании кабелей изложены в ГОСТ 2990-67. Далее приведены только основные положения.

Испытание кабельных линий на напряжение до 1000 В достаточно проводить мегомметром на напряжение 1000—2500 В в течение 1 мин. С помощью мегомметра измеряют сопротивление изоляции между каждой жилой и заземленной оболочкой кабеля, а также между отдельными жилами кабеля. Для линий напряжением 6 и 10 кВ испытание мегомметром является вспомогательным, позволяющим выявить лишь явные дефекты изоляции (заземление отдельных жил, резкое снижение изоляции жилы и др.), проверить целость жил (обрывы), а также правильность присоединения одноименных фаз с обоих концов кабельной линии (совпадение фаз). Для кабелей напряжением выше 1 000 В основным является испытание повышенным напряжением, так как только по результатам испытания высоким напряжением можно окончательно судить о состоянии изоляции кабелей. Испытание производят выпрямленным напряжением, получаемым от переносных кенотронных аппаратов. Возможно испытание повышенным напряжением переменного тока, но для этого требуются громоздкие и тяжелые источники питания (более мощные), применение которых в монтажных условиях затруднительно.

Величину испытательного напряжения выпрямленного тока определяют по установленным ПУЭ нормам в зависимости от вида изоляции и номинального напряжения кабеля. Так, например, величина испытательного напряжения для кабелей на номинальное напряжение 6 и 10 кВ с бумажной изоляцией составляет соответственно 36 и 160 кВ, с пластмассовой изоляцией — 14 и 23 кВ, с резиновой изоляцией — 12 и 20 кВ.
Продолжительность испытания для кабелей с бумажной и пластмассовой изоляцией на напряжение до 35 кВ составляет 10 мин, для кабелей с резиновой изоляцией — 5 мин.

В процессе испытания повышенным напряжением производят измерение токов утечки. Важным для характеристики качества изоляции является не величина тока утечки (которая ПУЭ не нормируется), а характер нарастания величины тока утечки, изменение ее в течение всего времени испытания, а также сравнение величин токов утечки в отдельных фазах.

Кабели считаются выдержавшими испытание повышенным напряжением, если во время испытания кабельных линий не произошло пробоя изоляции, не было скользящих разрядов и толчков тока утечки или нарастания тока утечки, после того как величина испытательного напряжения достигла установившейся величины. Наличие разрядов, искрения на концевых заделках, а также большие значения тока утечки нередко объясняются плохим состоянием внешней поверхности муфт и заделок. Поэтому перед испытанием необходимо тщательно очистить поверхность жил, воронок, изоляторов и т. п.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png