«Физика - 10 класс»

Электрический ток - направленное движение заряженных частиц. Благодаря электрическому току освещаются квартиры, приводятся в движение станки, нагреваются конфорки на электроплитах, работает радиоприемник и т. д.

Рассмотрим наиболее простой случай направленного движения заряженных частиц - постоянный ток.

Какой электрический заряд называется элементарным?
Чему равен элементарный электрический заряд?
Чем различаются заряды в проводнике и диэлектрике?

При движении заряженных частиц в проводнике происходит перенос электрического заряда из одной точки в другую. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не происходит (рис. 15.1, а). Поперечное сечение проводника в среднем пересекает одинаковое число электронов в двух противоположных направлениях. Электрический заряд переносится через поперечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в направленном движении (рис. 15.1, б). В этом случае говорят, что по проводнику идёт электрический ток .

Электрическим током называют упорядоченное (направленное) движение заряженных частиц.

Электрический ток имеет определённое направление.

За направление тока принимают направление движения положительно заряженных частиц.

Если перемещать нейтральное в целом тело, то, несмотря на упорядоченное движение огромного числа электронов и атомных ядер, электрический ток не возникнет. Полный заряд, переносимый через любое сечение, будет при этом равным нулю, так как заряды разных знаков перемещаются с одинаковой средней скоростью.

Направление тока совпадает с направлением вектора напряжённости электрического поля. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.

Выбор направления тока не очень удачен, так как в большинстве случаев ток представляет собой упорядоченное движение электронов - отрицательно заряженных частиц. Выбор направления тока был сделан в то время, когда о свободных электронах в металлах ещё ничего не знали.

Действие тока.


Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем действиям или явлениям, которые его сопровождают.

Во-первых, проводник, по которому идёт ток, нагревается.

Во-вторых, электрический ток может изменять химический состав проводника: например, выделять его химические составные части (медь из раствора медного купороса и т. д.).

В-третьих, ток оказывает силовое воздействие на соседние токи и намагниченные тела. Это действие тока называется магнитным .

Так, магнитная стрелка вблизи проводника с током поворачивается. Магнитное действие тока в отличие от химического и теплового является основным, так как проявляется у всех без исключения проводников. Химическое действие тока наблюдается лишь у растворов и расплавов электролитов, а нагревание отсутствует у сверхпроводников.

В лампочке накаливания вследствие прохождения электрического тока излучается видимый свет, а электродвигатель совершает механическую работу.


Сила тока.


Если в цепи идёт электрический ток, то это означает, что через поперечное сечение проводника всё время переносится электрический заряд.

Заряд, перенесённый в единицу времени, служит основной количественной характеристикой тока, называемой силой тока .

Если через поперечное сечение проводника за время Δt переносится заряд Δq, то среднее значение силы тока равно

Средняя сила тока равна отношению заряда Δq прошедшего через поперечное сечение проводника за промежуток времени Δt, к этому промежутку времени.

Если сила тока со временем не меняется, то ток называют постоянным .

Сила переменного тока в данный момент времени определяется также по формуле (15.1), но промежуток времени Δt в таком случае должен быть очень мал.

Сила тока, подобно заряду, - величина скалярная. Она может быть как положительной , так и отрицательной . Знак силы тока зависит от того, какое из направлений обхода контура принять за положительное. Сила тока I > 0, если направление тока совпадает с условно выбранным положительным направлением вдоль проводника. В противном случае I < 0.


Связь силы тока со скоростью направленного движения частиц.


Пусть цилиндрический проводник (рис. 15.2) имеет поперечное сечение площадью S.

За положительное направление тока в проводнике примем направление слева направо. Заряд каждой частицы будем считать равным q 0 . В объёме проводника, ограниченном поперечными сечениями 1 и 2 с расстоянием Δl между ними, содержится nSΔl частиц, где n - концентрация частиц (носителей тока). Их общий заряд в выбранном объёме q = q 0 nSΔl. Если частицы движутся слева направо со средней скоростью υ, то за время все частицы, заключенные в рассматриваемом объёме, пройдут через поперечное сечение 2. Поэтому сила тока равна:

В СИ единицей силы тока является ампер (А).

Эта единица установлена на основе магнитного взаимодействия токов.

Измеряют силу тока амперметрами . Принцип устройства этих приборов основан на магнитном действии тока.


Скорость упорядоченного движения электронов в проводнике.


Найдём скорость упорядоченного перемещения электронов в металлическом проводнике. Согласно формуле (15.2) где е - модуль заряда электрона.

Пусть, например, сила тока I = 1 А, а площадь поперечного сечения проводника S = 10 -6 м 2 . Модуль заряда электрона е = 1,6 10 -19 Кл. Число электронов в 1 м 3 меди равно числу атомов в этом объёме, так как один из валентных электронов каждого атома меди является свободным. Это число есть n ≈ 8,5 10 28 м -3 (это число можно определить, если решить задачу 6 из § 54). Следовательно,

Как видите, скорость упорядоченного перемещения электронов очень мала. Она во много раз меньше скорости теплового движения электронов в металле.


Условия, необходимые для существования электрического тока.


Для возникновения и существования постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц.

Однако этого ещё недостаточно для возникновения тока.

Для создания и поддержания упорядоченного движения заряженных частиц необходима сила, действующая на них в определённом направлении.

Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за столкновений с ионами кристаллической решётки металлов или нейтральными молекулами электролитов и электроны будут двигаться беспорядочно.

На заряженные частицы, как мы знаем, действует электрическое поле с силой:

Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц.
Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между концами проводника в соответствии с формулой (14.21) существует разность потенциалов. Как показал эксперимент, когда разность потенциалов не меняется во времени, в проводнике устанавливается постоянный электрический ток . Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минимального на другом, так как положительный заряд под действием сил поля перемещается в сторону убывания потенциала.

Эти заряженные частицы в теории часто называют носителями тока. В проводниках и полупроводниках носителями тока являются электроны, в электролитах заряженные ионы. В газах носителями заряда могут быть и электроны и ионы. В металлах, например, могут перемещаться только электроны. Следовательно, электрический ток в них -- есть движение электронов проводимости. Надо отметить, что результат прохождения электрического тока в металлах и электропроводящих растворах существенно отличается. В металлах не происходит химических процессов при прохождении тока. Тогда как в электролитах под воздействием тока идет выделение ионов вещества на электродах (явление электролиза). Различие в результатах действия тока объясняется тем, что носители зарядов в металле и электролите принципиально различны. В металлах -- это свободные электроны, которые отделились от атомов, в растворах -- это ионы, то есть атомы или их группы, которые имею заряд.

Так, первым необходимым условием существования электрического тока, в каком -- либо веществе является наличие носителей тока.

Для того чтобы заряды находились в равновесии необходимо, чтобы разность потенциалов между любыми точками проводника была равна нулю. В том случае, если это условие нарушается, то равновесия нет, тогда заряд перемещается. Следовательно, вторым необходимым условием существования электрического тока в проводнике является создание напряжения между некоторыми точками.

Упорядоченное движение свободных зарядов, которое возникает в проводнике как результат воздействия электрического поля, называют током проводимости.

Однако отметим, что упорядоченное движение заряженных частиц возможно в том случае, если заряженный проводник или диэлектрик перемещать в пространстве. Подобный электрический ток называют конвекционным.

Механизм осуществления постоянного тока

Для того чтобы ток в проводнике шел постоянно, необходимо, чтобы к проводнику (или совокупности проводников -- цепь проводников) было присоединено какое -- либо устройство, в котором постоянно происходил процесс разделения электрических зарядов и тем самым поддерживалось напряжение в цепи. Это устройство называют источником тока (генератором). Силы, которые разделяют заряды, называют сторонними силами. Они носят неэлектрическое происхождение и действуют только внутри источника. При разделении зарядов сторонние силы создают разность потенциалов между концами цепи.

В том случае, если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равна нулю. Значит, суммарная работа сил ($A$), которые действуют на заряд равна работе сторонних сил ($A_{st}$). Физическая величина, которая характеризует источник тока - это ЭДС источника (${\mathcal E}$), она определена как:

\[{\mathcal E}=\frac{A}{q}\left(1\right),\]

где $q$ -- положительный заряд. Движение заряда идет по замкнутому контуру. ЭДС -- не является силой в буквальном смысле. Единица измерения $\left[{\mathcal E}\right]=В$.

Природа сторонних сил может быть различна, так например, в гальваническом элементе сторонние силы являются результатом электрохимических процессов. В машине постоянного тока такой силой является сила Лоренца.

Основные характеристики тока

Направлением тока условно считают направление движения положительных частиц. Значит, направление тока в металлах имеет противоположное направление по отношению к направлению движения частиц.

Электрический ток характеризуют силой тока. Сила тока ($I$) -- скалярная величина, которая равна производной от заряда ($q$) по времени для тока, который течет через поверхность S:

Ток может быть постоянным и переменным. В том случае, если сила тока и его направление не изменяется во времени, то такой ток называют постоянным и для него выражение для силы тока можно записать в виде:

где сила тока определена, как заряд, который проходит через поверхность S в единицу времени.

В системе СИ основной единицей измерения силы тока является Ампер (А).

Векторной локальной характеристикой тока является его плотность. Вектор плотности тока ($\overrightarrow{j}$)- характеризует каким образом распределен ток по сечению S. Этот вектор направлен в сторону, в которую движутся положительные заряды. По модулю вектор плотности тока равен:

где $dS"$ - проекция элементарной поверхности $dS$ на плоскость, которая перпендикулярна вектору плотности тока, $dI$ -- элемент силы тока, который течет через поверхности $dS\ и\ dS"$.

Плотность тока в металле может быть представлена как:

\[\overrightarrow{j}=-n_0q_e\left\langle \overrightarrow{v}\right\rangle \ \left(5\right),\]

где $n_0$ -- концентрация электронов проводимости, $q_e=1,6{\cdot 10}^{-19}Кл$ -- заряд электрона, $\left\langle \overrightarrow{v}\right\rangle $ -- средняя скорость упорядоченного движения электронов. При максимальных плотностях токов $\left\langle \overrightarrow{v}\right\rangle ={10}^{-4}\frac{м}{с}$.

Фундаментальным физическим законом является закон сохранения электрического заряда. Если выбрать произвольную замкнутую неподвижную поверхность S (рис.1), которая ограничивает объем V, то количество электричества, которое вытекает за секунду из объема V, определяется как $\oint\limits_S{j_ndS.}$ То же количество электричества можно выразить через заряд: $-\frac{\partial q}{\partial t}$, то есть мы имеем:

\[\frac{\partial q}{\partial t}=-\oint\limits_S{j_ndS\left(6\right),}\]

где $j_n$ -- проекция вектора плотности тока на направление нормали к элементу поверхности $dS$, при этом:

где $\alpha $ -- угол между направлением нормали к dS и вектором плотности тока. В уравнении (6) употребляется частная производная для того, чтобы подчеркнуть, что поверхность S неподвижна.

Уравнение (6) -- есть закон сохранения заряда в макроскопической электродинамике. В том случае, если ток постоянен во времени, то закон сохранения заряда запишем в виде:

\[\oint\limits_S{j_ndS=0\left(8\right).}\]

Полнотекстовый поиск:

Где искать:

везде
только в названии
только в тексте

Выводить:

описание
слова в тексте
только заголовок

Главная > Реферат >Физика


Лекция №12

Тема: “Электрический ток” .

Цель лекции :

План лекции.

1. Понятие о токе проводимости. Вектор тока и сила тока.

2. Дифференциальная форма закона Ома.

3. Последовательное и параллельное соединение проводников.

4. Причина появления электрического поля в проводнике, физический
смысл понятия сторонних сил.

5. Вывод закона Ома для всей цепи.

6. Первое и второе правила Кирхгофа.

7. Контактная разность потенциалов. Термоэлектрические явления.

8. Электрический ток в различных средах.

9. Ток в жидкостях. Электролиз. Законы Фарадея.

1. Понятие о токе проводимости. Вектор тока и сила тока.

Электрическим током называется упорядоченное движение электрических зарядов. Носителями тока могут быть электроны, ионы, заряженные частицы.

Если в проводнике создать электрическое поле, то в нем свободные электрические заряды придут в движение – возникает ток, называемый током проводимости. Если в пространстве перемещается заряженное тело, то ток называется конвекционным .

Ток может течь в твердых телах (металлах), жидкостях (электролитах) и газах (газовый разряд обусловлен движением как положительных, так и отрицательных зарядов).

Носителями тока являются :

В металлах – направленное движение электронов;

В жидкостях – ионов;

В газах – электронов и ионов.

За направление тока принято принимать направление движения положительных зарядов.

Для возникновения и существования тока необходимо :

    наличие свободных заряженных частиц;

    наличие электрического поля в проводнике.

Основной характеристикой тока является сила тока , которая равна величине заряда, прошедшего за 1 секунду через поперечное сечение проводника.


где q – величина заряда;

t – время прохождения заряда.

Сила тока величина скалярная.

Ток, сила и направление которого не изменяются с течением времени, называются постоянным , в противном случае – переменным .

Электрический ток по поверхности проводника может быть распределен неравномерно, поэтому в некоторых случаях пользуются понятием плотность тока i .

Средняя плотность тока равна отношению силы тока к площади поперечного сечения проводника.


,



, (2)

где J – изменение тока;

S – изменение площади.

2. Дифференциальная форма закона Ома.

В 1826 г. немецкий физик Ом опытным путем установил, что сила тока J в проводнике прямо пропорциональна напряжению U между его концами


, (3)

где k – коэффициент пропорциональности, называемый
электропроводностью или проводимостью; [k] = [См] (сименс).

Величина

(4)

называется электрическим сопротивлением проводника .

Получим выражение


. (5)

закон Ома для участка электрической цепи, не содержащей источника тока

Выражаем из этой формулы R


.

(6)

Электрическое сопротивление зависит от формы, размеров и вещества проводника.

Сопротивление проводника прямо пропорционально его длине l и обратно пропорционально площади поперечного сечения S .


, (7)

где  – характеризует материал, из которого изготовлен проводник и
называется удельным сопротивлением проводника .

Выразим :




. (8)

Сопротивление проводника зависит от температуры. С увеличением температуры сопротивление увеличивается

где R 0 – сопротивление проводника при 0С;

t – температура;

 – температурный коэффициент сопротивления
(для металла   0,04 град -1).

Формула справедлива и для удельного сопротивления


, (10)

где  0 – удельное сопротивление проводника при 0С.

При низких температурах (<8К) сопротивление некоторых металлов (алюминий, свинец, цинк и др.) скачкообразно уменьшается до нуля: металл становится абсолютным проводником .

Это явление называется сверхпроводимостью .

Подставим выражение (7) в (5)


. (11)

Перегруппируем члены выражения


, (12)

где J/S=i – плотность тока;

1/= – удельная проводимость вещества проводника;

u/е=Е – напряженность электрического поля в проводнике.


(13)

закон Ома в дифференциальной форме.

3. Причина появления электрического тока в проводнике.
Физический смысл понятия сторонних сил. Работа сторонних сил.

Закон Ома показывает, что плотность тока прямо пропорциональна напряженности Е электрического поля, действующего на свободные заряды и вызывающие их упорядоченное движение.

Что же представляет из себя электрическое поле в проводнике? Это электростатическое поле, создаваемое электронами и положительными ионами (поле кулоновских сил).

Кулоновские силы приводят к такому перераспределению свободных зарядов, при котором электрическое поле в проводнике исчезает, а потенциалы во всех точках выравниваются. Поэтому кулоновские силы не могут явиться причиной возникновения постоянного электрического тока.

Для поддержания постоянного тока в цепи на свободные заряды должны действовать силы неэлектрического происхождения, называемые сторонними силами . Сторонние силы вызывают разделение разноименных зарядов и поддерживают разность потенциалов на концах проводника. Добавочное электрическое поле сторонних сил в проводнике создается источниками тока (гальваническими элементами, аккумуляторами, электрическими генераторами). Источник сторонних сил в цепи постоянного тока так же необходим, как насос в гидравлической системе.

За счет создаваемого сторонними силами поля электрические заряды движутся внутри источника тока против сил электростатического поля. Благодаря этому на концах внешней цепи поддерживается разность потенциалов и в цепи идет постоянный электрический ток.

Сторонние силы совершают работу за счет энергии, затрачиваемой в источнике тока (механической, химической и т. д.).

Работа сторонних сил над единичным положительным зарядом называется электродвижущей силой


. (14)

4. Вывод закона Ома для всей электрической цепи.

Пусть замкнутая электрическая цепь состоит из источника тока с , с внутренним сопротивлением r и внешней части, имеющей сопротивление R .

R – внешнее сопротивление;

r – внутреннее сопротивление.


, (15)

где

– напряжение на внешнем сопротивлении; (16)

А – работа по перемещению заряда q внутри источника тока,
т. е. работа на внутреннем сопротивлении. Тогда


, (17)

так как

, то


, (18)

перепишем выражение для


,


. (19)

Так как согласно закона Ома для замкнутой электрической цепи (=IR)

IR и Ir – падение напряжения на внешнем и внутреннем участках цепи, то


. (20)

закон Ома для замкнутой электрической цепи

В замкнутой электрической цепи электродвижущая сила источника тока равна сумме падений напряжения на всех участках цепи.

5. Первое и второе правила Кирхгофа.

На практике часто приходится рассчитывать сложные электрические цепи постоянного тока. Сложная электрическая цепь состоит из нескольких замкнутых проводящих контуров, имеющих общие участки. В каждом контуре может быть несколько источников тока. Силы тока на отдельных участках могут быть различны по величине и направлению.

Первое правило Кирхгофа является условием постоянства тока в цепи.

Назовем узлом разветвления любую точку, в которой сходятся более двух проводников, тогда первое правило Кирхгофа : Алгебраическая сумма сил тока в узле разветвления равна нулю


, (21)

где n – число проводников;

I i – токи в проводниках.

Токи, подходящие к узлу, считаются положительными, выходящие из узла – отрицательными.

Для узла А первое правило Кирхгофа запишется:


. (22)

Второе правило Кирхгофа является обобщением закона Ома на разветвленные электрические цепи. Оно звучит так: В любом замкнутом контуре разветвленной электрической цепи алгебраическая сумма I i на сопротивления R i соответствующих участков этого контура равна сумме приложенных в нем ЭДС i

Для составления уравнения необходимо выбрать направление обхода (по часовой стрелке или против нее). Все токи, совпадающие по направлению с обходом контура, считаются положительными. ЭДС источников тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Так, например, правило Кирхгофа для I, II, III к.

I –  1 +  2 = –I 1 r 1 – I 1 R 1 + I 2 r 2 + I 2 R 2 .

II –  2 +  3 = –I 2 r 2 – I 2 R 2 – I 3 r 3 – I 3 R 3 .

III –  1 +  3 = –I 1 r 1 – I 1 R 1 – I 3 r 3 – I 3 R 3 .

На основании этих уравнений производится расчет цепей.

6. Контактная разность потенциалов. Термоэлектрические явления.

Электроны в металле находятся в беспорядочном тепловом движении. Электроны, обладающие наибольшей кинетической энергией, могут вылететь из металла в окружающее пространство. При этом они совершают работу против сил притяжения со стороны избыточного положительного заряда, возникающего в результате вылета электронов, образующих вокруг проводника “электронное облако ”. Между электронным газом в металле и “электронным облаком” существует динамическое равновесие.

Работа выхода электрона – это работа, которую нужно совершить для удаления электрона из металла в безвоздушное пространство.

Недостаток электронов в проводнике и избыток в окружающем его пространстве проявляется в очень тонком слое по обе стороны поверхности проводника (несколько межатомных расстояний в металле). Следовательно, поверхность металла представляет собой двойной электрический слой, подобный очень тонкому конденсатору.

Разность потенциалов между обкладками конденсатора зависит от работы выхода электрона.


, (24)

где е – заряд электрона;

 – контактная разность потенциалов между металлом и
окружающей средой;

А – работа выхода (электрон-вольт – Э-В).

Работа выхода зависит от химической природы металла и состояния его поверхности (загрязнение, влага).

Возникновение контактной разности потенциалов между соприкасающимися металлическими проводниками было открыто в конце XVIII в. итальянским физиком Вольтом. Он экспериментально установил два закона Вольта :

1. При соединении двух проводников, изготовленных из различных металлов, между ними возникает контактная разность потенциалов, которая зависит только от химического состава и температуры.

2. Разность потенциалов между концами цепи, состоящей из последовательно соединенных металлических проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников. Она равна контактной разности потенциалов, возникающих при непосредственном соединении крайних проводников.

Термоэлектрические явления.

Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 . ЭДС, приложенная к этой цепи равна алгебраической сумме всех скачков потенциала

Если температуры слоев равны,


, то =0.

Если температуры слоев различны, например,

, тогда


, (26)

где  – постоянная, характеризующая свойства контакта двух металлов.

В этом случае в замкнутой цепи появляется термоэлектродвижущая сила , прямо пропорциональная разности температур обоих слоев.

Термоэлектрические явления в металлах широко используются для измерения температуры. Для этого используются термоэлементы или термопары , представляющие собой две проволоки, изготовленные из различных металлов и сплавов. Концы этих проволок спаяны. Один спай помещается в среду, температуру Т 1 которой нужно измерить, а второй – в среду с постоянной известной температурой.

Термопары имеют ряд преимуществ перед обычными термометрами: позволяют измерять температуры в широком диапазоне от десятков до тысяч градусов абсолютной шкалы. Термопары обладают большой чувствительностью и поэтому дают возможность измерять очень малые разности температур (до 10 -6 град.). Например: железо-константан измеряют температуру до 500 С и имеют чувствительность 5,3  10 -5 в/град; платина-платинородий (90% платины и 10% родия) имеют чувствительность 6  10 -6 в/град и применяется для измерения температур от самых низких до тысяч градусов.

С помощью термопары можно следить за изменением температуры во времени. Возможность установить гальванометр на значительном расстоянии позволяет применять термопары в автоматических устройствах. Для увеличения чувствительности термопар применяются их последовательные соединения, называемые термобатареями.

7. Электрический ток в различных средах.

Электрический ток в газах .

Газы в нормальных условиях являются диэлектриками , состоят их электрически нейтральных атомов и молекул.

При ионизации газов возникают носители электрического тока (положительные заряды).

Электрический ток в газах называется газовым разрядом . Для осуществления газового разряда к трубке с ионизированным газом должно быть электрическое или магнитное поле.

Ионизация газа может происходить под влиянием внешних воздействий – сильного нагревания, ультрафиолетовых и рентгеновских лучей, радиоактивных излучений, при бомбардировке атомов (молекул) газов быстрыми электронами или ионами.

Мерой процесса ионизации является интенсивность ионизации , измеряемая числом пар противоположно заряженных частиц, возникающих в единичном объеме газа за единичный промежуток времени.

Ударной ионизацией называется отрыв от атома (молекулы) одного или нескольких электронов, вызванный соударением с атомами или молекулами газа электронов или ионов, разогнанных электрическим полем в разряде.

1. Несамостоятельный газовый разряд – это электропроводность газов, вызванная внешними ионизаторами.

Вольтамперная характеристика газового разряда : по мере увеличения U растет число заряженных частиц, достигающих электрода и возрастает ток до I=I к , при котором все заряженные частицы достигают электродов . При этом U=Uк


, (27)

ток насыщения

где е – элементарный заряд;

N 0 – максимальное число пар одновалентных ионов, образующихся
в объеме газа за 1 с.

Крутое возрастание тока на участке АВ связано с возникновением ударной ионизации.

2. Самостоятельный газовый разряд – разряд, который продолжается после прекращения действия внешнего ионизатора. Поддерживается и развивается за счет ударной ионизации.

Несамостоятельный газовый разряд переходит в самостоятельный при U з – напряжении зажигания. Процесс такого перехода называется электрическим пробоем газа .

В зависимости от давления газа и от напряжения различают:

1) тлеющий разряд;

2) коронный разряд;

3) искровой разряд;

4) дуговой разряд.

Тлеющий разряд используется в газосветных трубках, газовых лазерах.

Коронный разряд – применяется при обеззараживании семян сельскохозяйственных культур.

Искровой разряд – молния (токи до нескольких тысяч Ампер, длина – несколько километров).

Дуговой разряд (Т=3000 °С – при атмосферном давлении, температура газа равна 5000…6000 °С). Используется как источник света в мощных прожекторах, в проекционной аппаратуре.

Плазма – особое агрегатное состояние вещества, характеризующееся высокой степенью ионизации его частиц.

Плазма подразделяется на

слабо ионизированную ( – доли процента – верхние слои атмосферы, ионосфера);

частично ионизированную (несколько %);

полностью ионизированную (солнце, горячие звезды, некоторые межзвездные облака).

Искусственно созданная плазма используется в газоразрядных лампах, плазменных источниках электрической энергии, магнитодинамических генераторах.

Эмиссионные явления :

1. Фотоэлектронная эмиссия – вырывание под действием света электронов с поверхности металлов в вакууме.

2. Термоэлектронная эмиссия – испускание электронов твердыми или жидкими телами при их нагревании.

3. Вторичная электронная эмиссия – встречный поток электронов с поверхности, бомбардируемой электронами в вакууме.

Приборы, основанные на явлении термоэлектронной эмиссии, называются электронными лампами .

Диод, триод рассмотреть самостоятельно.

Электрический ток в твердых телах .

Металл представляет собой кристаллическую решетку. Положительно заряженные ионы-узлы создают внутри металла электрическое поле. Узлы решетки расположены в строгом порядке, поэтому создаваемое ими поле является периодической функцией координат. Поэтому электроны могут находиться только в определенных состояниях, соответствующих дискретным значениям их энергии.

Так как в твердых телах электрон взаимодействует не только со своим атомом, но и с другими атомами кристаллической решетки, происходит расщепление энергетических уровней атомов с образованием энергетической полосы .

На рис. показано расщепление уровней энергии изолированных атомов при их сближении и образовании энергетических полос.

Энергия этих электронов может находиться в пределах заштрихованных областей, называемых разрешенными энергетическими зонами . Дискретные уровни разделены областями недозволенных значений энергии – запрещенными зонами (ширина их соизмерима с шириной запретных зон).

Различия в электрических свойствах различных типов твердых тел объясняется:

1) шириной запрещенных энергетических зон;

2) различным заполнением электронами разрешенных энергетических зон
(пров. диэлектр.).

8. Ток в жидкостях. Электролиз. Законы Фарадея.

Наблюдения показали, что многие жидкости очень плохо проводят электрический ток (дистиллированная вода, глицерин, керосин и т. д.). Водные растворы солей, кислот и щелочей хорошо проводят электрический ток.

Электролиз – прохождение тока через жидкость, вызывающее выделение на электродах веществ, входящих в состав электролита.

Электролиты – вещества, обладающие ионной проводимостью. Ионная проводимость – упорядоченное движение ионов под действием электрического поля. Ионы – атомы или молекулы, потерявшие или присоединившие к себе один или несколько электронов. Положительные ионы – катионы , отрицательные – анионы .

Электрическое поле создается в жидкости электродами (“+” – анод, “–” – катод). Положительные ионы (катионы) движутся к катоду, отрицательные – к аноду.

Возникновение ионов в электролитах объясняется электрической диссоциацией – распадом молекул растворимого вещества на положительные и отрицательные ионы в результате взаимодействия с растворителем (Na + Cl - ; H + Cl - ; K + I - …).

Степенью диссоциации называется число молекул n 0 , диссоциировавших на ионы, к общему числу молекул n 0


. (28)

При тепловом движении ионов происходит и обратный процесс воссоединения ионов, называемый рекомбинацией .

Законы М. Фарадея (1834 г.).

    Масса вещества, выделяющегося на электроде, прямо пропорциональна электрическому заряду q , прошедшему через электролит


или

, (29)

где k – электрохомический эквивалент вещества; равен массе вещества,
выделившегося при прохождении через электролит единицы
количества электричества.


, (30)

где I – постоянный ток, проходящий через электролит.

    Электрохимические эквиваленты веществ прямо пропорциональны отношениям их атомных (молярных) масс к валентности n


, (31)

где А – атомная масса;

n – валентность.

постоянная Фарадея

где С – универсальная постоянная для всех элеменов.

F = 9,648  10 4 Кл/моль

физический смысл следует из объединенного закона электролиза Фарадея

Поля, создаваемое одной заряженной... конденсатор заряд сопротивление ток В цепи известны сопротивления и ток . Определить... Решение - напряжения в цепи. . - ток в цепи. - эквивалентное сопротивление цепи. - ...

  • Электрический ток в различных средах (2)

    Реферат >> Физика

    ... Электрический Ток в Газах В газах существуют несамостоятельные и самостояг тельные электрические разряды. Явление протекания электрического тока ... воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока . Американский ученый...

  • Электрический ток в жидких проводниках

    Отчет по практике >> Физика

    1 Процесс электролиза в растворах и расплавах электролитов Электрический ток в металлах никакими химическими процессами не... существует такой класс проводников, в которых электрический ток всегда сопровождается определенными химическими изменениями...



  • Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png