Измерительный трансфомратор тока

В современных электротехнических установках напряжение достигает 750 кВ и выше, а токи измеряются десятками килоампер и более. Для непосредственного их измерения потребовались бы очень громоздкие и дорогостоящие электроизмерительные приборы. В отдельных случаях такие измерения были бы совсем невозможны. Кроме того, при обслуживании приборов, непосредственно подключенных к сети высокого напряжения, обслуживающий персонал подвергался бы большой опасности поражения током. Применение измерительных трансформаторов тока расширяет пределы измерения обычных электроизмерительных приборов и одновременно изолирует их от цепей высокого напряжения.

Измерительные трансформаторы тока применяют для подключения амперметров, вольтметров, ваттметров, приборов релейной защиты и электроавтоматики, счетчиков для учета выработки и расхода электрической энергии. От их работы зависит точность учета электрической энергии и измерения электрических параметров, правильность и надежность действия релейной защиты.

Схема измерительного трансформатора тока


На схеме:

Л1-Л2 первичная обмотка
И1-И2 вторичная обмотка
I 1 - ток линии;
I 2 - ток протекающий во вторичной обмотке;

Основными элементами измерительного трансформатора тока участвующими в преобразовании тока, являются первичная и вторичная обмотки, намотанные на один и тот же магнитопровод. Первичная обмотка измерительного трансформатора тока включается последовательно (в рас-сечку токопровода высокого напряжения). Ко вторичной обмотке подключаются измерительные приборы (амперметр, токовая обмотка счетчика) или реле. При работе измерительного трансформатора тока вторичная обмотка всегда замкнута на нагрузку.

Первичную обмотку совместно с цепью высокого напряжения называют первичной цепью, а внешнюю цепь, получающую измерительную информацию от вторичной обмотки измерительного трансформатора тока (т. е. нагрузку и соединительные провода), называют вторичной цепью. Цепь, образуемую вторичной обмоткой и присоединенной к ней вторичной цепью, называют ветвью вторичнorо тока.

Между первичной и вторичной обмотками измерительного трансформатора тока не имеется электрической связи. Они изолированы друг от друга на полное рабочее напряжение. Это и позволяет осуществить непосредственное присоединение измерительных приборов или реле ко вторичной обмотке и тем самым исключить воздействие высокого напряжения, приложенного к первичной обмотке, на обслуживающий персонал, так как обе обмотки наложены на один и тот же магнитопровод, то они являются магнитно-связанными.

Основные параметры и характеристики измерительного трансформатора тока

Измерительный трансфомратор тока ТНШ

Характеристики:

Номинальное напряжение 0,66 кВ
Номинальный вторичный ток 5А
Номинальный первичный ток 15000А, 25000А

Номинальное напряжение - действующее значение линейного напряжения, при котором предназначен работать измерительный трансформатор тока, указываемое в паспортной таблице измерительного трансформатора тока. Для отечественных измерительных трансформаторов тока принята следующая шкала номинальных напряжений, кВ ;

0,66; 6; 10; 15; 20; 24; 27; 35; 110; 150; 220; 330; 500; 750; 1150

Номинальный первичный ток I 1н - указываемый в паспортной таблице измерительного трансформатора тока, проходящий по первичной обмотке, при котором предусмотрена продолжительная работа измерительного трансформатора тока. Для отечественных измерительных трансформаторов тока принята следующая шкала номинальных первичных токов, А :

1; 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000;
4000; 5000; 6000; 8000; 10000; 12000; 14000; 16000; 18000; 20000; 25000; 28000; 32000; 35000; 40000.

В измерительных трансформаторах тока, предназначенных для комплектования турбо- и гидрогенераторов, значения номинального тока свыше 10 000 А могут отличаться от приведенных в данной шкале значений.

Измерительные трансформаторы тока, рассчитанные на номинальный первичный ток 15; 30; 75; 150; 300; 600; 750; 1200; 1500; 3000 и 6000 А , должны допускать неограниченно длительное время наибольший рабочий первичный ток, равный соответственно 16; 32; 80; 160; 320; 630; 800; 1250; 1600; 3200 и 6300 А . В остальных случаях наибольший первичный ток равен номинальному первичному току.

Номинальный вторичный ток I 2н - указываемый в паспортной таблице измерительного трансформатора тока ток, проходящий по вторичной обмотке. Номинальный вторичный ток принимается равным 1 или 5 А , причем ток 1 А допускается только для измерительных трансформаторов тока с номинальным первичным током до 4000 А . По согласованию с заказчиком допускается изготовление измерительных трансформаторов тока с номинальным вторичным током 2 или 2,5 А

Коэффициент трансформации измерительного трансформатора тока равен отношению первичного тока ко вторичному току.

В расчетах измерительных трансформаторах тока применяются две величины: действительный коэффициент трансформации n и номинальный коэффициент трансформации n н . Под действительным коэффициентом трансформации n понимается отношение действительного первичного тока к действительному вторичному току. Под номинальным коэффициентом трансформации nн понимается отношение номинального первичного тока к номинальному вторичному току.

Стойкость измерительного трансформатора тока к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.

Значения номинальных напряжений на выводах электрически соединенных между собой изделий, в том числе электрических машин, установлены ГОСТ 23366-78. Требования данного ГОСТ не распространяются на цепи, замкнутые внутри электрических машин; на цепи, для которых не характерны фиксированные значения напряжений, например на внутренние цепи питания электроприводов с регулированием скорости двигателя, и на цепи устройств компенсации реактивной мощности, защиты, контроля, измерений, на электродах элементов и аккумуляторов. Номера ГОСТ (СТ СЭВ)

ГОСТ 12.1.009-76 ГОСТ 721-77 (СТ СЭВ 779-77)

ГОСТ 1494-77 (СТ СЭВ 3231-81) ГОСТ 6697-83 (СТ СЭВ 3687-82)

ГОСТ 6962-75

ГОСТ 8865-70 (СТ СЭВ 782-77)

ГОСТ 13109-67 ГОСТ 15543-70

ГОСТ 15963-79 ГОСТ 17412-72 ГОСТ 17516-72 ГОСТ 18311-80 ГОСТ 19348-82

ГОСТ 19880-74 ГОСТ 21128-83

ГОСТ 22782.0-81 (СТ СЭВ 3141-81) ГОСТ 23216-78

ГОСТ 23366-78 ГОСТ 24682-81 ГОСТ 24683-81

ГОСТ 24754-81 (СТ СЭВ 2310-80)

Стандарты на конкретные группы и виды изделий, содержащие ряды напряжений, в том числе ГОСТ 21128-83, ГОСТ 721-77, устанавливающие номинальные напряжения для систем электроснабжения, сетей источников, преобразователей и приемников электрической энергии, являются по отношению к ГОСТ 23366-78 ограничительными и составляют с ним единый комплекс стандартов.

ГОСТ 23366-78 устанавливает следующие номинальные значения напряжений для изделий - потребителей, источников и преобразователей электрической энергии.

Номинальные напряжения потребителей:

основной ряд напряжений постоянного и переменного тока, В: 0,6; 1,2; 2,4; 6; 9; 12; 27; 40; 60; 110; 220; 380; 660; 1140; 3000; 6000; 10000; 20000; 35000;

вспомогательный ряд напряжений переменного тока, В:

1,5; 5; 15; 24; 80; 2000; 3500; 15000; 25000;

вспомогательный ряд напряжений постоянного тока, В:

0,25; 0,4; 1,5; 2; 3; 4; 5; 15; 20; 24; 48; 54; 80; 100; 150; 200; 250; 300; 400; 440; 600; 800; 1000; 1500; 2000; 2500; 4000; 5000; 8000; 12000; 25000; 30000; 40000.

Номинальные напряжения источников и преобразователей электрической энергии переменного тока , В:

6, 12; 28,5; 42; 62; 115; 120; 208; 230; 400; 690; 1200; 3150; 6300; 10500; 13 800; 15 750; 18000; 20000; 24000; 27000; 38 500; 121000; 242000; 347000; 525000; 787000.

Номинальные напряжения источников и преобразователей электрической энергии постоянного тока, В:

6; 9; 12; 28,5; 48; 62; 115; 230; 460; 690; 1200; 3300; 6600.

Для источников электроэнергии автотракторной техники стандарт допускает применение номинальных напряжений 7В и 14В переменного тока и 7В, 14В, 28В постоянного тока, а также 36В переменного тока с частотой 400 и 1000 Гц и 57В постоянного тока для источников электроэнергии летательных аппаратов.


При коротких питающих линиях стандарт допускает номинальное напряжение источников и преобразователей, равное напряжению приемников.

Номинальные значения и допустимые отклонения частот систем электроснабжения, источников, преобразователей и непосредственно присоединяемых к ним приемников электрической энергии, работающих в установившемся режиме на фиксированных частотах в диапазоне от 0,1 до 10000 Гц, установлены ГОСТ 6697-83. Указанный ГОСТ устанавливает следующий основной ряд номинальных частот источников электрической энергии, Гц:

0,1; 0,25; 0,5; 1,0; 2,5; 5,0; 10; 25; 50; 400; 1000; 10000.

Для преобразователей и приемников электрической энергии номинальные частоты, Гц, выбираются из ряда 0,1; 0,25; 0,5; 1,0; 2,5; 5,0; 10; 12,5; 16|; 50; 400; 1000; 2000; 4000; 10000.

Для ряда специальных приводов и источников их питания, в частности для центрифуг, сепараторов, деревообрабатывающих станков, электроинструмента, безредукторных электрошпинделей, электротермического оборудования, стандарт допускает применение дополнительных частот, Гц, из ряда 100, 150, 200, 250, 300, 500, 600, 800, 1200, 1600, 2400, 8000.

Для авиационной техники, летательных аппаратов и средств их обслуживания разрешена частота 6000 Гц.

Допустимые отклонения частот, % номинальной частоты, выбираются из ряда 0,0002; 0,0005; 0,001; 0,002; 0,005; 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,0; 2,5; 5,0; 10 и устанавливаются в стандартах на конкретные виды источников, преобразователей или системы энергоснабжения.

Для сетей общего назначения нормы качества электрической энергии у ее приемников установлены ГОСТ 13109-67. Стандартом установлены следующие показатели качества электроэнергии:

  • при питании от электрических сетей однофазного тока - отклонение частоты, отклонение напряжения, размах колебаний частоты, размах изменений напряжений, коэффициент несинусоидальности напряжения;
  • при питании от электрических сетей трехфазного тока - отклонение частоты, отклонение напряжения, размах колебаний частоты, размах изменения напряжения, коэффициент несинусоидальности, коэффициенты несимметрии и неуравновешенности напряжения;
  • при питании от электрических сетей постоянного тока - отклонение напряжения, размах изменения напряжения, коэффициент пульсации напряжения.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ "СТАНДАРТНЫЕ НАПРЯЖЕНИЯ"

Standard voltages

Дата введения 01.01.93

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ПОДГОТОВЛЕН И ВНЕСЕН Техническим комитетом по стандартизации ТК 117 «Энергоснабжение»

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта от 26.03.92 № 265

3. Настоящий стандарт подготовлен методом прямого применения международного стандарта МЭК 38-83 «Стандартные напряжения, рекомендуемые МЭК» с дополнительными требованиями, отражающими потребности народного хозяйства

4. ВВЕДЕН ВПЕРВЫЕ

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

6. ПЕРЕИЗДАНИЕ. Май 2004 г.

Настоящий стандарт распространяется на:

Системы электропередачи, распределительные сети и системы электроснабжения потребителей переменного тока, в которых используют стандартные частоты 50 или 60 Гц при номинальном напряжении, превышающем 100 В, а также оборудование, работающее в этих системах;

Тяговые сети переменного и постоянного тока;

Оборудование постоянного тока номинальным напряжением ниже 750 В и переменного тока номинальным напряжением ниже 120 В и частотой (как правило, но не только) 50 или 60 Гц. К такому оборудованию относятся батареи первичных или вторичных элементов питания, другие источники электропитания переменного или постоянного тока, электрооборудование (включая промышленные установки и средства телекоммуникации), различные электроприборы и устройства.

Стандарт не распространяется на напряжения измерительных цепей, систем передачи сигналов, а также на напряжения отдельных узлов и элементов, входящих в состав электрооборудования.

Значения напряжений переменного тока, приведенные в настоящем стандарте, являются эффективными значениями.

Настоящий стандарт применяется в комплексе с ГОСТ 721, ГОСТ 21128, ГОСТ 23366 и ГОСТ 6962.

Термины, используемые в стандарте, и их пояснения приведены в приложении.

Полужирным шрифтом выделены требования, отражающие потребности народного хозяйства.

1. СТАНДАРТНЫЕ НАПРЯЖЕНИЯ СЕТЕЙ И ОБОРУДОВАНИЯ ПЕРЕМЕННОГО

ТОКА В ДИАПАЗОНЕ ОТ 100 ДО 1000 В ВКЛЮЧИТЕЛЬНО

Стандартные напряжения в указанном диапазоне приведены в табл. 1. Они относятся к трехфазным четырехпроводным и однофазным трехпроводным сетям, включая однофазные ответвления от них.

Таблица 1

* Номинальные напряжения уже существующих сетей напряжением 220/380 и 240/415 В должны быть приведены к рекомендуемому значению 230/400 В. До 2003 г. в качестве первого этапа электроснабжающие организации в странах, имеющих сеть 220/380 В, должны привести напряжения к значению 230/400 В ( %).

Электроснабжающие организации в странах с сетью 240/415 В также должны привести это напряжение к значению 230/400 В ( %). После 2003 г. должен быть достигнут диапазон 230/400 В ± 10 %. Затем будет рассмотрен вопрос снижения пределов. Все эти требования касаются также напряжения 380/660 В. Оно должно быть приведено к рекомендуемому значению 400/690 В.

** Не применять совместно со значениями 230/400 и 400/690 В.

В табл. 1 для трехфазных трехпроводных или четырехпроводных сетей числитель соответствует напряжению между фазой и нулем, знаменатель - напряжению между фазами. Если указано одно значение, оно соответствует междуфазному напряжению трехпроводной сети.

Для однофазных трехпроводных сетей числитель соответствует напряжению между фазой и нулем, знаменатель - напряжению между линиями.

Напряжения, превышающие 230/400 В, применяются в основном в тяжелой промышленности и в больших зданиях коммерческого назначения.

2. СТАНДАРТНЫЕ НАПРЯЖЕНИЯ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ

ЭЛЕКТРИФИЦИРОВАННОГО ТРАНСПОРТА С ПИТАНИЕМ ОТ КОНТАКТНОЙ

СЕТИ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА

Стандартные напряжения приведены в табл. 2.

Таблица 2

Вид напряжения контактной сети Напряжение, В Номинальная частота в сети переменного тока, Гц
минимальное номинальное максимальное
Постоянное (400)* (600) (720)
3600**
Переменное (4750) (6250) (6900) 50 или 60
50 или 60

* В частности, в системах однофазного переменного тока номинальное напряжение 6250 В должно использоваться только тогда, когда местные условия не позволяют применять номинальное напряжение 25000 В.

Значения напряжений, приведенных в таблице, приняты Международным комитетом по оборудованию электрической тяги и Техническим комитетом 9 МЭК «Оборудование электрической тяги».

** В некоторых европейских странах это напряжение достигает 4000 В. Электрооборудование транспортных средств, участвующих в международном сообщении с этими странами, должно выдерживать это максимальное значение в течение коротких промежутков до 5 мин.

3. СТАНДАРТНЫЕ НАПРЯЖЕНИЯ СЕТЕЙ И ОБОРУДОВАНИЯ ПЕРЕМЕННОГО

ТОКА В ДИАПАЗОНЕ СВЫШЕ 1 ДО 35 кВ ВКЛЮЧИТЕЛЬНО

Стандартные напряжения приведены в табл. 3.

Серия 1 - напряжения частотой 50 Гц, серия 2 - напряжения частотой 60 Гц. В одной стране рекомендуется применять напряжения только одной из серий.

Указанные в таблице значения соответствуют междуфазным напряжениям.

Значения в скобках непредпочтительны. Эти значения не рекомендуется использовать при создании новых сетей.

Таблица 3

Серия 1 Серия 2
Наибольшее напряжение для оборудования, кВ Номинальное напряжение сети, кВ
3,6* 3,3* 3* 4,40* 4,16*
7,2* 6,6* 6* - -
- -
- - - 13,2** 12,47**
- - - 13,97** 13,2**
- - - 14,52* 13,8*
(17,5) - (15) - -
- -
- - - 26,4** 24,94**
36*** 35*** - - -
- - - 36,5** 34,5**
40,5*** - 35*** - -

* Данное напряжение не должно применяться в электрических сетях общего назначения.

** Данные напряжения обычно соответствуют четырехпроводным сетям, остальные - трехпроводным.

*** Рассматриваются вопросы унификации данных значений.

В сети серии 1 наибольшее и наименьшее напряжения не должны отличаться более чем на ±10 % от номинального напряжения сети.

В сети серии 2 максимальное напряжение не должно отличаться более чем на плюс 5 %, а минимальное - более чем на минус 10 % от номинального напряжения сети.

4. СТАНДАРТНЫЕ НАПРЯЖЕНИЯ СЕТЕЙ И ОБОРУДОВАНИЯ ПЕРЕМЕННОГО

ТОКА В ДИАПАЗОНЕ СВЫШЕ 35 ДО 230 кВ ВКЛЮЧИТЕЛЬНО

Стандартные напряжения указаны в табл. 4. В одной стране рекомендуется использовать только одну из указанных в табл. 4 серий и только одно напряжение из следующих групп:

Группа 1 - 123 ... 145 кВ;

Группа 2 - 245, 300 (см. разд. 5), 363 кВ (см. разд. 5).

Значения в скобках непредпочтительны. Эти значения не рекомендуется использовать при создании новых сетей. Значения, приведенные в табл. 4, соответствуют междуфазному напряжению.

Таблица 4

В киловольтах

5. СТАНДАРТНЫЕ НАПРЯЖЕНИЯ ТРЕХФАЗНЫХ СЕТЕЙ ПЕРЕМЕННОГО ТОКА

С НАИБОЛЬШИМ НАПРЯЖЕНИЕМ ОБОРУДОВАНИЯ, ПРЕВЫШАЮЩИМ 245 кВ

Наибольшее рабочее напряжение оборудования выбирают из ряда: (300), (363), 420, 525*, 765**, 1200*** кВ.

_________________

* Также используется напряжение 550 кВ.

** Допускается использовать напряжения, значения которых лежат между 765 и 800 кВ при условии, что испытательные значения для оборудования будут такими, как и значения, определенные МЭК для 765 кВ.

*** Промежуточное значение между 765 и 1200 кВ, соответственно отличающееся от этих двух значений, будет включено дополнительно, если в каком-либо районе мира возникнет необходимость в таком напряжении. В этом случае в том географическом районе, где будет принято это промежуточное значение, не должны применяться напряжения 765 и 1200 кВ.

Значения ряда соответствуют междуфазному напряжению.

Значения в скобках непредпочтительны. Эти значения не рекомендуется использовать при создании новых сетей.

Группа 2 - 245 (см. табл. 4), 300, 363 кВ;

Группа 3 - 363, 420 кВ;

Группа 4 - 420, 525 кВ.

Примечание. Термины «район мира» и «географический район» могут соответствовать одной стране, группе стран или части крупной страны, где выбран один и тот же уровень напряжения.

6. СТАНДАРТНЫЕ НАПРЯЖЕНИЯ ДЛЯ ОБОРУДОВАНИЯ С НОМИНАЛЬНЫМ

НАПРЯЖЕНИЕМ МЕНЬШЕ 120 В ПЕРЕМЕННОГО ТОКА И МЕНЬШЕ 750 В

ПОСТОЯННОГО ТОКА

Стандартные напряжения приведены в табл. 5.

Таблица 5

Номинальные значения, В
напряжения постоянного тока напряжения переменного тока
предпочтительные дополнительные предпочтительные дополнительные
- 2,4 - -
- - -
- - -
- 4,5 - -
- -
- -
- 7,5 - -
- - -
- -
- -
- -
- - -
- -
- - -
- - -
- -
- -
- - -
- - -
- - -
- -
- - -
- - -
- - -
- - -
- - -

Примечания: 1. Так как напряжение первичных и вторичных элементов питания (батарей) ниже 2,4 В и выбор типа применяемого элемента для различных областей использования зависит не от напряжения, а от других критериев, эти напряжения не указаны в таблице. Соответствующие технические комитеты МЭК могут устанавливать типы элементов и соответствующие напряжения для конкретного применения.

2. При наличии технических и экономических обоснований в специфических областях применения возможно использование других напряжений дополнительно к указанным в таблице. Напряжения, применяемые в СНГ, установлены ГОСТ 21128.

ПРИЛОЖЕНИЕ 1

Справочное

ТЕРМИНЫ И ПОЯСНЕНИЯ

Термин Пояснение
Номинальное напряжение Напряжение, на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики
Наибольшее (наименьшее) напряжение сети Наибольшее (наименьшее) значение напряжения, которое может наблюдаться в нормальном режиме работы сети в любой ее точке в любой момент времени. Этот термин не относится к напряжению в переходных процессах (например, при коммутациях) и кратковременным повышениям (понижениям) напряжения
Наибольшее рабочее напряжение оборудования Наибольшее значение напряжения, при котором оборудование может нормально функционировать неограниченное время. Это напряжение устанавливают исходя из его воздействия на изоляцию и характеристики оборудования, зависящие от него. Наибольшее напряжение для оборудования есть максимальное значение из наибольших напряжений сетей, в которых данное оборудование может быть использовано.
Наибольшее напряжение указывается только для оборудования, присоединяемого к сетям с номинальным напряжением свыше 1000 В. Однако следует иметь в виду, что для некоторых номинальных напряжений еще до достижения этого наибольшего напряжения уже не представляется возможным осуществлять нормальную работу оборудования с точки зрения таких, зависящих от напряжения характеристик, как например, потери в конденсаторах, намагничивающий ток в трансформаторах и т. д. В этих случаях в соответствующих стандартах должны быть установлены ограничения, при которых может быть обеспечена нормальная работа устройств.
Очевидно, что оборудование, предназначенное для сетей с номинальным напряжением, не превышающим 1000 В, целесообразно характеризовать только номинальным напряжением как с точки зрения рабочих характеристик, так и изоляции
Точка питания потребителя Точка распределительной сети электроснабжающей организации, от которой осуществляется подача энергии потребителю
Потребитель (электроэнергии) Предприятие, организация, учреждение, территориально обособленный цех и т. п., присоединенные к электрическим сетям энергоснабжающей организации и использующие энергию с помощью электроприемников

Как известно, шкала номинальных напряжений электрических сетей свыше 1000 В общего назначения переменного тока определяется по ГОСТ 721-77 и рекомендует для вновь проектируемых сетей следующие напряжения:

6, 10, 35, 110, 220, 330, 500, 750, 1150 кВ.

При выборе напряжения необходимо учитывать сложившиеся системы напряжений в Европейской части России 110(150)/330/750 кВ и на Урале и в Сибири – 110/220/500/1150 кВ.

Предварительно выбор напряжения может быть произведен по эмпирической формуле Г.А. Илларионова:

где – длина линии, км; – передаваемая по цепи мощность, МВт.

Данная формула дает удовлетворительные результаты для всей шкалы номинальных напряжений переменного тока в диапазоне 35–1150 кВ.

Существуют и другие эмпирические формулы для выбора номинального напряжения. Область их применения ограничивается некоторыми условиями, представленными ниже (табл. 2.4).

Таблица 2.4

Формулы для выбора номинального напряжения передачи

Области применения стандартных номинальных напряжений в зависимости от мощности и дальности электропередачи приведены на рисунке 2.16 и в таблице 2.5.

Таблица 2.5

Пропускная способность электропередачи 110–1150 кВ

U ном , кВ F , мм 2 Натуральная мощность, МВт, при волновом сопротивлении, Ом Наибольшая передаваемая мощность на одну цепь, МВт Наибольшая длина передачи, км
400 300–314 250–275
70-240 25-50 50-150
240-400 100-200 150-250
2×240-2×400 300-400 200-300
3×330-3×500 700-900 800-1200
5×240-5×400 1800-2200 1200-2000
8×300-8×500 4000-6000 2500-3000

Сегодня две сложившиеся в России системы имеют шаг по номинальному напряжению внутри каждой примерно равный 2 и разницу по передаваемой мощности для смежных напряжений в 4÷6 раз. Это приводит к тому, что при передаче определённой мощности, на низком напряжении потребуется несколько цепей, а при высоком напряжении линия будет недогружена. В связи с этим при выборе напряжения можно использовать соседние по ПУЭ U ном, но с увеличенным радиусом расщепления.

Рис. 2.16. Области применения электрических сетей разных номинальных напряжений. Указаны границы равноэкономичности: 1 –1150 и 500 кВ; 2 – 500 и 220 кВ; 3 – 220 и 110 кВ; 4 – 110 и 35 кВ; 5 – 750 и 330 кВ; 6 – 330 и 150 кВ; 7 – 150 и 35 кВ

Конфигурация

При выборе схем развития электрических сетей могут использоваться следующие приемы:

а) реконструкция магистральной передачи путем добавления второй цепи, иногда на более высоком напряжении;

б) появление новых кольцевых линий;

в) глубокий ввод на более высоком напряжении.

Безусловно, окончательный выбор напряжения и конфигурации должен проводиться на основе технико-экономических расчетов.

Выбор сечения

При выборе сечения необходимо учитывать явление короны, по которому определяется минимальное допустимое сечение для каждого номинального напряжения.

Максимально допустимое сечение для ЛЭП зависит от номинального напряжения и определяется рациональным соотношением расходов цветного и черного металла в конструкцию линии.

Выбор сечения осуществляется по экономической плотности тока или экономическим интервалам. Экономическая плотность определяется по минимуму затрат в ЛЭП и зависит от типа линии, материала провода, графика нагрузки.

2.8.2. Экономические интервалы

Использование экономических интервалов позволяет исключить из числа переменных дискретные сечения и номинальные мощности трансформаторов. С помощью экономических интервалов удается представить затраты в виде функции только от передаваемой мощности. При выборе структуры генерирующих мощностей затраты в ЛЭП можно представить в виде . При планировании развития сети можно использовать более точную аппроксимацию в виде или , но все они имеют разрыв при . В качестве непрерывной функции может использоваться аппроксимация вида , по которой при затраты могут быть уменьшены подбором ε.

При выборе экономических интервалов для трансформаторов затраты учитываются следующей формулой:

где – стоимость -ого трансформатора; – время работы трансформатора;

– стоимость потерянной энергии, определяемая затратами на базисных ЭС;

– стоимость, определяемая затратами в пиковых станциях.

Обычно , но часто принимают .

Из условия определяется верхняя граница экономического интервала трансформатора с номинальной мощностью .

2.8.3. Математическая модель планирования развития сети

Формирование модели начинают с составления расчетной схемы, где показываются существующие узлы и ветви, новые узлы и возможные дополнительные трассы линий, связывающих объекты в систему. Здесь должны учитываться и те линии, которые были найдены в результате анализа модели по выбору структуры генерирующих мощностей. Расчетная схема должна быть разумно избыточной и включать дополнительные линии, так чтобы не пропустить возможные оптимальные связи.

Для узлов должны быть заданы прогнозируемые нагрузки и мощности вводимых блоков. Таким образом, расчетная схема будет иметь расчетных узлов, из них – существующих; т.е. индекс узлов . Число ветвей в расчетной схеме , из которых – существующих.

В качестве неизвестных можно принять потоки активной мощности по ветвям .

В качестве целевой функции рассмотрим затраты в существующие линии, пропорциональные потерям энергии, и в новые линии, определяемые в соответствии с принятыми аппроксимирующими выражениями для затрат:

, (2.35)

где .

На неизвестные потоки мощности по ветвям накладывается условие баланса мощностей в узлах, которое может быть записано в матричной форме:

.

– прямоугольная матрица соединений узлы-ветви, причем ее элементы для узла и ветви s обозначаются и могут принимать значения, равные 1, если ветвь выходит из узла; +1, если ветвь входит в узел и 0, если она не связана с узлом.

Составим уравнение баланса для узла (рис. 2.19):

В общем виде уравнение баланса для любого -ого узла можно записать:

.

Таким образом, задача выбора оптимальной схемы сети заключается в поиске минимума некоторой нелинейной функции при соблюдении линейного ограничения в форме равенства .

Сформулированная таким образом задача планирования развития сети сводится к задаче нелинейного программирования. Эта задача, как правило, имеет один экстремум. Для решения её могут использоваться рассмотренные ранее методы нелинейного программирования.

2.8.4. Применение градиентных методов

Как известно, основное уравнение градиентного метода:

. (2.36)

Рассмотрим пример, в котором необходимо выбрать сеть для питания только одного узла (рис. 2.20). Полагаем, что затраты представлены квадратичными зависимостями. В качестве исходной точки примем Р 0 =(0,Р Н ).

При учете ограничений движение к минимуму должно осуществляться по проекции градиента на поверхность ограничений, т.е. вдоль вектораV . Вектор V можно получить путем исключения из составляющих, перпендикулярных поверхности ограничений. Эти составляющие образуют градиент ограничений . Таким образом, вектор V определяется по выражению

. (2.37)

Для определения неопределенных множителей , образующих вектор V , используется условие равенства нулю скалярного произведения:

. (2.38)

Из этого условия, приняв для линейного ограничения градиент равным , можно найти . Действительно, из преобразования

можно получить следующее матричное выражение для множителей

. (2.40)

Составляющие вектора множителей λ позволяют определить все составляющие вектора V

,

и использовать их в процедуре градиентного метода

.

Однако, найти проекцию градиента можно проще, если в (2.37) подставить выражение (2.40) и провести несложное преобразование

где П =- матрица проектирования.

Итерационный процесс продолжается до тех пор, пока не выполнится условие требуемой точности для всех составляющих .

Рис. 2.21 Блок-схема алгоритма с выбором оптимального шага приведена на рисунке 2.21. Назначение блоков: 1. Формирование расчетной схемы. 2. Определение типа функций для расчета затрат и их производных для всех ветвей. 3. Формирование матрицы инциденций М. 4. Определение матрицы проектирования градиента П. 5. Исходное приближение потоков Р=Р0. 6. Вычисление градиента в точке Р. 7. Определение проекции V градиента. 8. Проверка условия окончания . 9. Организация пробного шага Р 1 = Р- V t 0/ . 10. Вычисление градиента и проекции V 1 в конце шага. 11. Определение оптимального шага . 12. Рабочий шаг . 13. Вывод результатов

Пример 2.3 . Определить оптимальные потоки в ветвях сети, расчетная схема которой приведена на рисунке 2.22.

Итерационный расчет начинается с принятия исходного приближения Р 0 , определения величины градиента и проекции его на поверхность ограничений

Затем в направлении проекции делается пробный шаг t 0 =0,1 и определяются потоки по ветвям Р 1 в конце этого шага, градиент и его проекция

После этого можно определить шаг, близкий к оптимальному

и выполнить рабочий шаг из исходной точки Р по направлению проекции

После этого в соответствии с алгоритмом возвращаемся к блоку 6, где вновь вычисляется градиент и его проекция

Проверка условия в блоке 8 определяет завершение итерационного процесса.

По найденным потокам можно выбирать сечение ЛЭП.

Быстрая сходимость процесса объясняется квадратичным характером целевой функции, которая имеет линейный градиент и оптимальный шаг, найденный по двум точкам приводит к точному решению.

Недостатком метола является большая размерность задачи, определяемая количеством ветвей расчетной схемы.

2.8.5. Метод покоординатной оптимизации

В расчетной схеме, как правило, минимальным является число контуров, определяемое как разность числа ветвей и узлов. Поэтому при оптимизации в качестве неизвестных целесообразно использовать контурные мощности и применить метод покоординатного поиска. Преимущество этого метода в том, что на каждом шаге оптимизации целевой функции выбирается только одна переменная при фиксированных значениях остальных. Найденное значение фиксируется, и затем переходят к оптимизации следующей переменной и т.д.

Рассмотрим балансовое ограничение . Все потоки по ветвям можно разделить на две составляющие:

,

где – потоки в дереве, ветви которого связывают все узлы с балансирующим без образования контуров;

–потоки в хордах, т.е. в ветвях, образующих контуры.

Основное ограничение можно представить разделенным на блочные матрицы, как показано на рисунке 2.23.

Потоки в ветвях дерева однозначно определяются потоками в хордах, что следует из соотношений, полученных на основе операций с блочными матрицами, и представленных ниже:

(2.42)

В качестве исходного приближения можно принять:

Тогда потоки в деревьях:

.

В качестве хорд могут быть выбраны разные ветви исходной схемы, дополняющие выделенное дерево с образованием контуров. Число комбинаций определяется возможным количеством деревьев, рассчитываемых с помощью определителя Трента,формируемого для независимых узлов:

, (2.43)

где – число ветвей, связанных с узлом ; – число ветвей, связывающих узлы и .

Пример 2.4. Определить число деревьев для схемы

Контурная оптимизация осуществляется по следующему алгоритму.

1) Составляется расчетная схема.

2) Определяются зависимости для учета затрат в линии расчетной схемы. Для этого могут использоваться любые аппроксимирующие функции вплоть до точной нижней огибающей затрат в новые линии.

3) Выбираются и нумеруются хорды, для которых принимается исходное приближение потоков , и считаются потоки в ветвях дерева.

4) Организуется цикл по хордам, в котором последовательно выполняются следующие операции:

– для текущей хорды просматривается контур, который она замыкает;

– по принятому потоку в хорде определяются потоки в ветвях контура;

– по потокам в ветвях контура считаются затраты в каждую ветвь и общие затраты во все ветви контура;

– последовательно изменяя значение потоков хорды в сторону возрастания или убывания, при этом определяются новые потоки в ветвях контура и новые затраты, которые сравниваются с предыдущими до поиска минимума.

Таким образом, проводится оптимизация. Если затраты считаются по аппроксимации , то можно рассматривать такие потоки в хорде, при которых в контуре появляется ветвь с нулевой мощностью, что обеспечивает минимум затрат. После этого текущая хорда переносится в эту ветвь.

5) После выхода из цикла новое положение хорд сравнивается с предыдущим. Если оно не совпадает, то осуществляется очередной цикл оптимизации. При совпадении расчет заканчивается. Обычно достаточно двух-трех циклов.

Пример 2.5. Выбрать оптимальный план развития сети 220 кВ, которая представлена на рисунке 2.25-а.


Для рассматриваемой сети развитие связано с ростом нагрузок и подключением новой подстанции. Пунктиром показаны возможные трассы ЛЭП. На рисунке 2.25-б приведены кривые затрат в существующие и новые ЛЭП и их линейные аппроксимации.

В таблице приведены выражения для определения затрат в каждую ветвь расчетной схемы с учетом длины.

Таблица 2.6

Линия Затраты
0-1
1-2
2-3
0-3

В расчетной схеме всего 1 контур и в качестве начального положения хорды примем участок 2-3. Выделим все ветви контура для расчета затрат. Итерационный процесс представлен в таблице 2.7:

Таблица 2.7

0-1
1-2
2-3
0-3

В исходном положении хорды затраты составили 812 тыс.руб. Перемещение хорды в соседнее положение привело к изменению потоков и снизило затраты. Дальнейшее перемещение в том же направлении оказалось уже не выгодным.

В результате оптимизации находится дерево, соответствующее минимальным затратам.

Для сети любой сложности итеративный процесс сходится достаточно быстро. При этом могут использоваться специальные быстрые алгоритмы, применяемые для разомкнутых сетей. Они основаны на методе «вторых адресных отображений».

Найденное в результате оптимизации дерево определяет основу развивающейся сети, которая может дополняться с учетом требований надежности и качества режима.

Рассмотрим суть метода вторых адресных отображений, который может использоваться при выборе оптимального дерева развивающейся сети. Рассмотрим разомкнутую схему (рис. 2.26), по которой от центра питания нагрузка поступает к нескольким потребителям. При заданных узловых нагрузках, например токовых, ток каждой ветви определяется простым суммированием токов тех узлов, которые проходят через эту ветвь. Если схема сети задана парами узлов для каждой ветви строго в направлении от ЦП, что является вполне естественным, то порядковый номер начального узла ветви в списке (массиве) конечных узлов позволит легко организовать проход от любого узла до ЦП, который для завершения пути должен иметь особый номер, например отрицательный. Найденные таким образом для каждой ветви номера и называют «вторыми адресами».

Таблица 2.8

№ пп УН УК ТУ УН2 Ток ветви (ТВ)
-10 -10 10+4+6+8+5=33
5+4+8=17

В таблице показаны исходные данные и этапы расчета токов ветвей. Обозначения массивов здесь: УН – узлы начала, УК – узлы конца ветвей, ТУ– токи узлов, ТВ – токи ветвей, УН2 – вторые адресные отображения.

Анализируя таблицу, следует обратить внимание на то, что при правильно заданной конфигурации сети каждый номер узла в массиве УН можно найти в массиве УК. Как уже отмечалось, место его, т.е. порядковый номер, в этом массиве и называют вторым адресным отображением.

Найденные адреса могут использоваться для определения токов в ветвях, потоков мощности, потерь, т.е. для расчета режима. Рассмотрим порядок определения токов по ветвям. Здесь сначала все элементы массива ТУ переписываются в массив ТВ, а затем токи всех узлов, начиная с последнего, накладываются путем суммирования на токи ветвей, по которым узел запитан от пункта питания в соответствии с вторыми адресами.

Аналогично проводится расчет потокораспределения мощностей, учет потерь мощности и напряжения.

Рассмотрим два алгоритма, используемых при анализе разомкнутых сетей.

На рисунке 2.27 приведена блок-схема алгоритма определения вторых адресов, а на рисунке 2.28 блок-схема алгоритма расчета токораспределения.

В алгоритме контурной оптимизации развивающейся сети хорды объединяются в отдельный массив, где формируются и вторые адреса для обоих узлов разомкнутой ветви. В цикле оптимизации для каждой хорды определяется питающий узел, выполняющий роль ЦП и ограничивающий перемещение положения хорды в процессе одномерной оптимизации.

2.8.6. Метод «ветвей и границ» (МВГ) для выбора оптимальной
распределительной сети

Распределительные сети, как правило, эксплуатируются по разомкнутым схемам. Основой для выбора новой сети является поиск дерева минимальных затрат. Число возможных деревьев огромно и определятся определителем Трента. Оптимальное дерево можно найти путем расчета затрат для каждого дерева из всего множества возможных деревьев. Но такой просмотр всех комбинаций не реален даже при современных ЭВМ.

Суть метода ветвей и границ заключается в разбиении всего множества возможных планов на подмножества с последующей упрощенной оценкой эффективности каждого и отбрасыванием (исключением из дальнейшего анализа) неперспективных подмножеств. По сути это комбинаторный метод, но с целенаправленным перебором вариантов. Метод впервые появился в 1960 году для решения задачи линейного целочисленного программирования, но оказался незамеченным, и лишь в 1963 году был эффективно использован для решения задачи о коммивояжере, который должен объехать все коммерческие пункты по кратчайшему пути. Подобную задачу решают и спортсмены ориентировщики.

Исходное множество и все текущие разбиваются на непересекающиеся подмножества , где – номер разбиения, – порядковый номер подмножества на этапе разбиения (рис. 2.29).

Для исходного множества существует неизвестный план с минимальными затратами

, (2.44)

где – точная нижняя граница затрат, которая неизвестна;

– точная нижняя граница затрат, которая также существует для .

Полагаем, что имеется возможность для достаточно простого определения некоторой внешней оценки затрат для этого подмножества, для которой выполняется условие . Эту оценку можно использовать для выявления «дорогих» подмножеств, которые можно исключить из дальнейшего разбиения. Для повышения надежности в конкурентных подмножествах рассматривают еще и внутренние оценки , для которых . Внешние и внутренние оценки показаны на рисунке 2.30.

Перспективные подмножества делятся аналогично. Процесс ветвления продолжается до тех пор, пока в подмножестве не останется несколько вариантов (2÷4) или не совпадут внешние и внутренние оценки = .

Рассмотрим применение идеи метода ветвей и границ для задачи поиска новой распределительной сети с линейной аппроксимацией затрат в ветви расчетной схемы

Н оминальное напряжение ЛЭП существенно влияет на ее технико-экономические показатели. При большом номинальном напряжении возможна передача большой мощности на большие расстояния и с меньшими потерями. Пропускная способность электропередачи при переходе на следующую ступень номинального напряжения увеличивается в несколько раз. В то же время с повышением номинального напряжения существенно возрастают капитальные вложения в оборудование и сооружение ЛЭП.

Номинальные напряжения электрических сетей в России установлены ГОСТ 2112883 (табл. 1).

Таблица 1

Номинальные междуфазные напряжения, кВ,

для напряжений выше 1000 В по ГОСТ 721–77 (СТ СЭВ 779–77)

Сети и прием-ники Генераторы и синхронные компенсаторы Трансформаторы и автотрансформаторы Наибольшее рабочее напряжение
без РПН с РПН
первичные обмотки вторичные обмотки первичные обмотки вторичные обмотки
(3) * (3,15) * (3) и (3,15) ** (3,15) и (3,3) (3,15) (3,6)
6,3 6 и 6,3 ** 6,3 и 6,6 6 и 6,3 ** 6,3 и 6,6 7,2
10,5 10 и 10,5 ** 10,5 и 11,0 10 и 10,5 ** 10,5 и 11,0 12,0
21,0 22,0 20 и 21,0 ** 22,0 24,0
38,5 35 и 36,75 38,5 40,5
110 и 115 115 и 121
(150) * (165) (158) (158) (172)
220 и 230 230 и 242

* Номинальные напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются.

** Для трансформаторов и автотрансформаторов, присоединяемых непосредственно к шинам генераторного напряжения электрических станций или к выводам генераторов.

Экономически целесообразное номинальное напряжение ЛЭП зависит от многих факторов, среди которых наиболее важными являются передаваемая активная мощность и расстояние. В справочной литературе приводятся области применения электрических сетей разных номинальных напряжений, построенные на основе критерия, который непригоден в условиях рыночной экономики. Поэтому выбор варианта электрической сети с тем или иным номинальным напряжением должен приниматься на основе других критериев, например критерия полных затрат (см. п. 2.4). Тем не менее, ориентировочные значения номинальных напряжений могут быть получены и по прежним методикам (например, по эмпирическим формулам и таблицам, учитывающим предельную дальность передачи и пропускную способность линий разных номинальных напряжений).

Чаще всего применяют следующие две эмпирические формулы определения напряжения U :

Или

, (1)

где Р - передаваемая мощность, МВт; l - длина линии, км.

Полученные напряжения используются для подбора стандартного номинального напряжения, причем совсем не обязательно выбирать напряжение всегда больше, чем получено по этим формулам. При разнице полных затрат сопоставляемых вариантов электрической сети менее 5 % предпочтение должно отдаваться варианту использования более высокого напряжения. Пропускная способность и дальность передачи линий 35–1150 кВ с учетом наиболее часто применяемых сечений проводов и фактической средней длины ВЛ приведены в табл. 2.

Таблица 2

Пропускная способность и дальность передачи линий 35–1150 кВ

Напряжение линии, кВ Сечение провода, мм 2 Передаваемая мощность, МВт Длина линии электропередачи, км
натуральная при плотности тока 1,1 А/мм 2* предельная (при КПД = 0,9) средняя (между двумя соседними подстанциями)
70-150 4-10
70-240 13-45
150-300 13-45
240-400 90-150
2 ´ 240-2 ´ 400 270-450
3 ´ 300-3 ´ 400 620-820
3 ´ 300-3 ´ 500 770-1300
5 ´ 300-5 ´ 400 1500-2000
8 ´ 300-8 ´ 500 4000-6000

* Для ВЛ 750–1150 кВ 0,85 А/мм 2 .

Варианты проектируемой электрической сети или отдельные ее участки могут иметь разные номинальные напряжения. Обычно сначала определяют напряжения головных, более загруженных участков. Участки кольцевой сети, как правило, необходимо выполнять на одно номинальное напряжение.

Напряжения 6 и 10 кВ предназначены для распределительных сетей в городах, сельской местности и на промышленных предприятиях. Преимущественное распространение имеет напряжение 10 кВ, сети 6 кВ применяются при наличии на предприятиях значительной нагрузки электродвигателей с номинальным напряжением 6 кВ. Применение напряжений 3 и 20 кВ для вновь проектируемых сетей не рекомендуется.

Напряжение 35 кВ используется для создания центров питания 6 и 10 кВ главным образом в сельской местности. В России (бывшем СССР) получили распространение две системы напряжений электрических сетей (110 кВ и выше): 110–220–500 и 110(150)–330–750 кВ. Первая система применяется в большинстве ОЭС, вторая после разделения СССР осталась только в ОЭС Северо-Запада (в ОЭС Центра и ОЭС Северного Кавказа при основной системе 110–220–500 кВ ограниченное распространение имеют также сети 330 кВ).

Напряжение 110 кВ имеет наиболее широкое распространение для распределительных сетей во всех ОЭС независимо от принятой системы напряжений. Сети напряжением 150 кВ выполняют те же функции, что и сети 110 кВ, но имеются только в Кольской энергосистеме и для вновь проектируемых сетей не используются. Напряжение 220 кВ применяется для создания центров питания сети 110 кВ. С развитием сети 500 кВ сети 220 кВ приобрели в основном распределительные функции. Напряжение 330 кВ используется для системообразующей сети энергосистем и создания центров питания для сетей 110 кВ. Системообразующие сети выполняются на напряжении 500 или 750 кВ в зависимости от принятой системы напряжений. Для ОЭС, где применяется система напряжений 110–220–500 кВ, в качестве следующей ступени принято напряжение 1150 кВ.

Пример 2

Для отобранных в примере 1 вариантов развития сети б , в и е (рис. 1) выбрать номинальные напряжения участков сети. Величины активных нагрузок в пунктах питания: Р 1 = 40 МВт, Р 2 = 30 МВт и Р 3 = 25 МВт.

Решение. Для всех рассматриваемых вариантов характерно наличие головного участка сети ЦП – 1. Переток мощности на этом участке сети (без учета потерь мощности на других) равен сумме нагрузок всех трех энергоузлов, т. е. Р ЦП – 1 = Р 1 + Р 2 + Р 3 = 95 МВт. Согласно выражениям (1), получаем напряжения для этого участка сети или

и, в соответствии с рекомендуемой шкалой напряжений (табл. 1), можно принять номинальное напряжение 110 или 220 кВ. Ток аварийного режима для данного участка сети при U н = 110 кВ равен

А, при U н = 220 кВ – 268 кА. Для обоих классов напряжений можно использовать марку провода марки АС‑240/32 в сети 110 кВ по допустимому нагреву, в сети 220 кВ – по условиям короны. Рассмотрим остальные участки проектируемой сети.

Участок 1 – 2 характерен для всех вариантов развития сети б , в и е (рис. 1)и отличается в них только уровнем перетока мощности по нему. Для варианта б напряжения по выражениям (1) соответственно равны U 1 – 2 = 79,18 и U 1 – 2 = 96,08 кВ, для вариантов в и е U 1 – 2 = 92,14 и U 1 – 2 = 119,13 кВ.

Участок 1 – 3 характерен для двух вариантов развития сети – б и е. Для варианта б напряжения для этого участка в соответствие с выражениями (1) соответственно равны U 1 – 3 = 80 и U 1 – 3 = 91,29 кВ, варианта е U 1 – 3 = 97,43 и U 1 – 3 = 123,61 кВ.

Участок 2 – 3 характерен для вариантов в и е. Напряжения для этого участка равны U 2 – 3 = 73,7 и U 2 – 3 = 92,59 кВ.

Напряжением до 1000 В

Электрические сети напряжением до 1000 В служат для распределения электроэнергии от трансформаторных подстанций до электропотребителей. Они состоят из питающих линий, магистралей и ответвлений.

Питающая линия предназначена для передачи электроэнергии от РУ напряжением до 1000 В к распределительному пункту, магистрали или отдельному электроприемнику.

Магистраль предназначена для передачи электроэнергии нескольким распределительным пунктам или электроприемникам, присоединенных к ней в различных точках.

Ответвление отходит от магистрали к электроприемнику или от распределительного пункта к одному или нескольким мелким электроприемникам, включенным в линию.

Схема радиальной сети. Схема магистральной сети

1 – подстанция, 2 – распределительный пункт, 3 – электроприемник.

Периодичность осмотров электрических сетей напряжением до 1000 В устанавливается местной инструкцией в зависимости от условий эксплуатации, но не реже одного раза в три месяца. Измерение токовых нагрузок, температуры электрических сетей, испытания изоляции обычно совмещают с межремонтными испытаниями РУ, к которым подключены электросети. При осмотрах цеховых сетей особое внимание обращают на обрывы, увеличенный провес проводов или троса, подтеки мастики на кабельных воронках и др. Волосяной щеткой очищают от пыли и грязи провода и кабели, а также наружные поверхности труб с электропроводкой и ответвительные коробки.

Проверяют наличие хорошего контакта заземляющего проводника с контуром заземления или заземляющей конструкцией; разъемные соединения разбирают, зачищают до металлического блеска, собирают и затягивают.

Осматривают провода и кабели, поврежденные участки изоляции восстанавливают обмоткой ХБ лентой или лентой ПХВ. Измеряют мегомметром на 1000 В сопротивление изоляции, если оно будет меньше 0,5 мОм, то участки проводки с низким сопротивлением изоляции заменяют новым.

Открывают крышки ответвительных коробок. При наличии внутри коробки, на контактах и проводах влаги и пыли проверяют состояние уплотнений крышки коробки на вводах в коробку. Уплотнения, потерявшие упругость и не обеспечивающие герметичность коробок, заменяют. Соединения имеющие следы окисления или оплавления, разбирают, зачищают, смазывают техническим вазелином и собирают.

Проверяют стрелу провиса, которая для тросовых и струнных проводок должна быть при пролете 6м не более 100 – 150 мм, а при пролете 12 м не более 200 – 250 мм. При необходи-мости участки с большой стрелой провиса перетягивают. Натяжение стальных тросов проводят до минимально возможной стрелы провиса. При этом усилие натяжения не должно превышать 75% разрывного усилия, допускаемого для данного сечения троса.

В зависимости от способов прокладки изменяются условия охлаждения проводов. Это приводит к необходимости корректировать допустимые токовые нагрузки.

Длительно допустимые токовые нагрузки на провода с резиновой и поливинилхлоридной изоляцией определяют из условий нагрева жил до температуры ; при температуре окружающего воздуха .Нагрузки на провода, проложенные в коробах, а также в лотках, принимают как на проводники, проложенные в трубах.

При расчете электрических сетей напряжением до 1000 В сечение проводов выбирают по длительно допустимой токовой нагрузке и проверяют сеть на допустимое отклонение напряжения.

Для упрощения этих расчетов можно использовать номографический метод определения сечения линий электропередачи по условиям нагрева и отклонения напряжения. Метод дает возможность выбора сечений для внутренних проводок зданий.

Номограммы для определения сечения кабельных линий представлены ниже.


Номограмма для определения сечения проводов кабельных линий напряжением до 1000 В.

1 - =1; 2 – =0,95; 3 – =0,9; 4 – =0,85;

5 – =0,8; 6 – =0,75; 7 – =0,7.

I – 10%; II – 5%; III – 2,5%.

На правой части номограммы по известным значениям мощности Р и коэффициента мощности в диапазоне от0,7 до 1 определяют ток в линии I . Эта часть номограммы линейна и реализует выражение

где Р – расчетная активная мощность нагрузки, кВт; - номинальное напряжение сети.

Сечение линии электропередачи , удовлетворяющее условию нагрева, выбирают с учетом требования ПУЭ.

где - длительно допустимый ток нагрузки. Так как длительно допустимый ток для кабельных линий зависит от материала изоляции и способа прокладки, то на номограмме даны

четыре шкалы стандартного ряда сечения фазных жил.

На левой части номограммы по моменту нагрузки

по допустимому отклонению напряжения и известному коэффициенту мощности определяется сечение проводов линии электропередачи, удовлетворяющее заданному уровню напряжения. Для построения зависимостей на номограмме используется выражение

где r,x – активная и индуктивная составляющие сопротивления линии.

Эти зависимости объединены в семейство кривых для трех значений допустимых отклонений напряжения.

Первое значение 2,5% - допустимое снижение напряжения наиболее удаленных ламп внутреннего рабочего освещения промышленных предприятий и общественных зданий.

Второе значение 5% - то же, на зажимах электродвигателей.

Третье значение 10% - то же, в послеаварийных режимах.

Проверка сечения кабельной линии по допустимому отклонению напряжения для всех видов кабельных сетей производится по шкале для кабелей с пластмассовой изоляцией при прокладке в земле.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png