ATX БЛОК ПИТАНИЯ, СХЕМА

С каждым днём всё более популярны среди радиолюбителей компьютерные блоки питания ATX . При относительно небольшой цене, они представляют собой мощный, компактный источник напряжения 5 и 12 В 250 - 500 ватт. БП ATX можно использовать и в зарядных устройствах для автомобильных аккумуляторов, и в лабораторных блоках питания, и в сварочных инверторах, и ещё массу применений можно найти для них при определённой фантазии. Причём если схема БП ATX и подвергается переделке, то минимальной.

Схемотехника этих блоков питания примерно одинакова практически у всех производителей. Небольшое отличие касается лишь БП AT и ATX. Главное различие между ними заключается в том, что БП в AT не поддерживает программно стандарт расширенного управления питанием. Отключить данный БП можно, лишь прекратив подачу напряжение на его вход, а в блоках питания формата ATX есть возможность программного отключения сигналом управления с материнской платы. Как правило плата ATX имеет большие размеры чем AT и вытянута по вертикали.


В любом компьютерном БП, напряжение +12 В предназначено для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Это напряжение также подается на вентиляторы. Они потребляют ток до 0.3 А, но в новых компьютерах это значение ниже 0.1 А. Питание +5 вольт подаётся на все узлы компьютера, поэтому имеет очень большую мощность и ток, до 20 А, а напряжение +3.3 вольта предназначено исключительно для запитки процессора. Зная что современные многоядерные процессоры имеют мощность до 150 ватт, нетрудно подсчитать ток этой цепи: 100 ватт/3.3 вольт=30 А! Отрицательные напряжения -5 и -12 В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов.

В задачи БП входит и приостановка функционирования системы до тех пор, пока величина входного напряжения не достигнет значения, достаточного для нормальной работы. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power Good. Если этот сигнал не поступил, компьютер работать не будет.


Сигнал Power Good можно использовать для сброса вручную если подать его на микросхему тактового генератора. При заземлении сигнальной цепи Power Good, генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала - выполняется аппаратная перезагрузка компьютера. В компьютерных БП типа ATX, предусмотрен сигнал, называемый PS ON, он может использоваться программой для отключения источника питания.

Здесь можно скачать компьютерных блоков питания, а тут очень полезная по описанию, видам и принципу действия БП AT и ATX. Для проверки работоспособности блока питания, следует нагрузить БП лампами для автомобильных фар и замерять все выходные напряжения тестером. Если напряжения в пределах нормы. Также стоит проверить изменение выдаваемое БП напряжение с изменением нагрузки.

Работа этих блоков питания очень стабильна и надёжна, но в случае сгорания, чаще всего выходят из строя мощные транзисторы, низкоомные резисторы, выпрямительные диоды на радиаторе, варисторы, трансформатор и предохранитель.

По компьютерным БП

Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.

Что это такое

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

  • +12В;
  • +3,3В.

Кроме этих заявленных величин существует и дополнительное величины:

  • -12В;

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Обзор схем источников питания

Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.

Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.

В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:

  • приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
  • наличие универсальных внутренних элементов защиты;
  • удобство использования.

Простой импульсный БП

Принцип работы обычного импульсного БП можно увидеть на фото.


Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.

Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.

Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.

Видео: Принцип работы ШИМ контроллера БП

АТХ без коррекции коэффициента

Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.

Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.

Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.


ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.

АТХ с коррекцией коэффициента мощности

В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).

Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.


В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.

Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».

Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания.

На двухканальном ШИМ-контролере

Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.


В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.

Схема подключения блока питания компьютера

Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:

Конструктивные особенности

Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.

Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.

В различных моделях могут быть и другие разъемы:



В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.

На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.


Каждый цвет провода подает определенное напряжение:

  • желтый - +12 В;
  • красный - +5 В;
  • оранжевый - +3,3 В;
  • черный – заземление.

У различных производителей могут изменяться значения для этих цветов проводов.

Также есть разъемы для подачи тока комплектующим компьютера.


Параметры и характеристики

БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.

Мощность – основной показатель

Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.

Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.


Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным - +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.

В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.

Рабочие напряжение

При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.

Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.


Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.

Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.

Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.

Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.


Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.

Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.

Схемотехника компьютерных блоков питания

Схемы для компьютеров

Р. АЛЕКСАНДРОВ, г. Малоярославец Калужской обл.
Радио, 2002 год, № 5, 6, 8

ИБП бытовых компьютеров рассчитаны на работу от сети однофазного переменного тока (110/230 В, 60 Гц ≈ импортные, 127/220 В, 50 Гц ≈ отечественного производства). Поскольку сеть 220 В, 50 Гц в России общепринята, проблемы выбора блока на нужное сетевое напряжение не существует. Нужно лишь убедиться, что переключатель сетевого напряжения на блоке (если он имеется) установлен в положение 220 или 230 В. Отсутствие переключателя говорит о том, что блок способен работать в обозначенном на его этикетке интервале сетевых напряжений без каких-либо переключений. ИБП, рассчитанные на частоту 60 Гц, безупречно работают в сети 50 Гц.

К системным платам формата AT ИБП подключают двумя жгутами проводов с розетками Р8 и Р9, показанными на рис. 1 (вид со стороны гнезд). Указанные в скобках цвета проводов стандартны, хотя не все изготовители ИБП их строго соблюдают. Чтобы правильно сориентировать розетки при подключении к вилкам системной платы, существует простое правило: четыре черных провода (цепь GND), подходящие к обеим розеткам, должны быть расположены рядом.

Основные цепи питания системных плат формата АТХ сосредоточены в разъеме, показанном на рис. 2. Как и в предыдущем случае, вид со стороны гнезд розетки. ИБП этого формата имеют вход дистанционного управления (цепь PS-ON), при соединении которого с общим проводом (цепью СОМ ≈ "common", эквивалентом GND) включенный в сеть блок начинает работать. Если цепь PS-ON≈СОМ разорвана, напряжения на выходах ИБП отсутствуют, за исключением "дежурных" +5 В в цепи +5VSB. В этом режиме потребляемая от сети мощность очень незначительна.

ИБП формата АТХ бывают снабжены дополнительной выходной розеткой, показанной на рис. 3 . Назначение ее цепей следующее:

FanM ≈ выход датчика скорости вращения вентилятора, охлаждающего ИБП (два импульса на один оборот);
FanC ≈ аналоговый (0...12 В) вход управления скоростью вращения этого вентилятора. Если этот вход отключен от внешних цепей или на него подано постоянное напряжение более 10 В, производительность вентилятора максимальна;
3.3V Sense ≈ вход сигнала обратной связи стабилизатора напряжения +3,3 В. Его соединяют отдельным проводом непосредственно с выводами питания микросхем на системной плате, что позволяет скомпенсировать падение напряжения на подводящих проводах. Если дополнительная розетка отсутствует, эта цепь бывает выведена на гнездо 11 основной розетки (см. рис. 2);
1394R ≈ минус изолированного от общего провода источника напряжения 8...48 В для питания цепей интерфейса IEEE-1394;
1394V ≈ плюс того же источника.

ИБП любого формата обязательно снабжают несколькими розетками для питания дисководов и некоторых других периферийных устройств компьютера.

Каждый "компьютерный" ИБП выдает логический сигнал, называемый R G. (Power Good) в блоках AT или PW-OK (Power OK) в блоках АТХ, высокий уровень которого свидетельствует, что все выходные напряжения находятся в допустимых пределах. На "материнской" плате компьютера этот сигнал участвует в формировании сигнала системного сброса (Reset). После включения ИБП уровень сигнала RG. (PW-OK) некоторое время остается низким, запрещая работу процессора, пока в цепях питания не завершатся переходные процессы.

При отключении сетевого напряжения или внезапно возникшей неисправности ИБП логический уровень сигнала P. G. (PW-OK) изменяется прежде, чем выходные напряжения блока упадут ниже допустимых значений. Это вызывает остановку процессора, предотвращает искажение данных, хранящихся в памяти, и другие необратимые операции.

Взаимозаменяемость ИБП можно оценить по следующим критериям.

Число выходных напряжений для питания IBM PC формата AT должно быть не менее четырех (+12 В, +5 В, -5 В и -12 В). Максимальный и минимальный выходные токи регламентируют отдельно для каждого канала. Их обычные значения для источников различной мощности приведены в табл. 1 . Компьютерам формата АТХ дополнительно необходимы +3,3 В и некоторые другие напряжения (о них было сказано выше).


Учтите, что нормальная работа блока при нагрузке меньше минимальной не гарантирована, а иногда такой режим просто опасен. Поэтому включать ИБП без нагрузки в сеть (например, для проверки) не рекомендуется.

Мощность блока питания (суммарная по всем выходным напряжениям) в полностью укомплектованном периферийными устройствами бытовом ПК должна быть не менее 200 Вт. Практически необходимо иметь 230...250 Вт, а при установке дополнительных "винчестеров" и приводов CD-ROM может потребоваться и больше. Сбои в работе ПК, особенно возникающие в моменты включения электродвигателей упомянутых устройств, нередко связаны именно с перегрузкой блока питания. Компьютеры, используемые в качестве серверов информационных сетей, потребляют до 350 Вт. ИБП небольшой мощности (40... 160 Вт) применяют в специализированных, например, управляющих компьютерах с ограниченным набором периферии.

Объем , занимаемый ИБП, обычно растет за счет увеличения его длины в сторону передней панели ПК. Установочные размеры и точки крепления блока в корпусе компьютера остаются неизменными. Поэтому любой (за редкими исключениями) блок удастся установить на место отказавшего.

Основой большинства ИБП служит двухтактный полумостовой инвертор, работающий на частоте в несколько десятков килогерц. Напряжение питания инвертора (приблизительно 300 В) ≈ выпрямленное и сглаженное сетевое. Собственно инвертор состоит из узла управления (генератора импульсов с промежуточным каскадом усиления мощности) и мощного выходного каскада. Последний нагружен на высокочастотный силовой трансформатор. Выходные напряжения получают с помощью выпрямителей, подключенных к вторичным обмоткам этого трансформатора. Стабилизация напряжений производится с помощью широтно-импульсной модуляции (ШИМ) импульсов, генерируемых инвертором. Обычно стабилизирующей ОС охвачен лишь один выходной канал, как правило, +5 или +3,3 В. В результате напряжения на других выходах не зависят от напряжения в сети, но остаются подверженными влиянию нагрузки. Иногда их дополнительно стабилизируют с помощью обычных микросхем-стабилизаторов.

СЕТЕВОЙ ВЫПРЯМИТЕЛЬ



В большинстве случаев этот узел выполняют по схеме, подобной показанной на рис. 4 , различия лишь в типе выпрямительного моста VD1 и большем или меньшем числе защитных и предохранительных элементов. Иногда мост собран из отдельных диодов. При разомкнутом выключателе S1, что соответствует питанию блока от сети 220...230 В, выпрямитель ≈ мостовой, напряжение на его выходе (соединенных последовательно конденсаторах С4, С5) близко к амплитуде сетевого. При питании от сети 110... 127 В, замкнув контакты выключателя, превращают устройство в выпрямитель с удвоением напряжения и получают на его выходе постоянное напряжение, вдвое большее амплитуды сетевого. Подобное переключение предусматривают в ИБП, стабилизаторы которых удерживают выходные напряжения в допустимых пределах лишь при отклонении сетевого на 20%. Блоки с более эффективной стабилизацией способны работать при любом сетевом напряжении (как правило, от 90 до 260 В) без переключения.

Резисторы R1, R4 и R5 предназначены для разрядки конденсаторов выпрямителя после его отключения от сети, а С4 и С5, кроме того, выравнивают напряжения на конденсаторах С4 и С5. Терморезистор R2 с отрицательным температурным коэффициентом ограничивает амплитуду броска тока зарядки конденсаторов С4, С5 в момент включения блока. Затем в результате саморазогрева его сопротивление падает, и он практически не влияет на работу выпрямителя. Варистор R3 с классификационным напряжением больше максимальной амплитуды сетевого защищает от выбросов последнего. К сожалению, этот варистор бесполезен при случайном включении блока с замкнутым выключателем S1 в сеть 220 В. От тяжелых последствий этого спасает замена резисторов R4, R5 варисторами с классификационным напряжением 180...220 В, пробой которых влечет за собой сгорание плавкой вставки FU1. Иногда варисторы подключают параллельно указанным резисторам или только одному из них.

Конденсаторы С1 ≈ СЗ и двухобмо-точный дроссель L1 образуют фильтр, защищающий компьютер от проникновения помех из сети, а сеть ≈ от помех, создаваемых компьютером. Через конденсаторы С1 и СЗ корпус компьютера связан по переменному току с проводами сети. Поэтому напряжение прикосновения к незаземленному компьютеру может достигать половины сетевого. Это не опасно для жизни, так как реактивное сопротивление конденсаторов достаточно велико, но нередко приводит к выходу из строя интерфейсных цепей в момент подключения к компьютеру периферийных устройств.

МОЩНЫЙ КАСКАД ИНВЕРТОРА


На рис. 5 показана часть схемы распространенного ИБП GT-150W. Импульсы, сформированные узлом управления, через трансформатор Т1 поступают на базы транзисторов VT1 и VT2, поочередно открывая их. Диоды VD4, VD5 защищают транзисторы от напряжения обратной полярности. Конденсаторы С6 и С7 соответствуют С4 и С5 в выпрямителе (см. рис. 4). Напряжения вторичных обмоток трансформатора Т2 выпрямляют для получения выходных. Один из выпрямителей (VD6, VD7 с фильтром L1C5) показан на схеме.

Большинство мощных каскадов ИБП отличаются от рассмотренного лишь типами транзисторов, которые могут быть, например, полевыми или содержать встроенные защитные диоды. Существует несколько вариантов исполнения базовых цепей (для биполярных) или цепей затвора (для полевых транзисторов) с разным числом, номиналами и схемами включения элементов. Например, резисторы R4, R6 могут быть подключены непосредственно к базам соответствующих транзисторов.

В установившемся режиме узел управления инвертором питают выходным напряжением ИБП, но в момент включения оно отсутствует. Существуют два основных способа получить необходимое для пуска инвертора напряжение питания. Первый из них реализован в рассматриваемой схеме (рис. 5). Сразу после включения блока выпрямленное сетевое напряжение поступает через резистивный делитель R3 ≈ R6 в базовые цепи транзисторов VT1 и\/Т2, приоткрывая их, причем диоды VD1 и VD2 предотвращают шунтирование участков база-эмиттер транзисторов обмотками II и III трансформатора Т1. В это же время происходит зарядка конденсаторов С4, С6 и С7, причем ток зарядки конденсатора С4, протекая по обмотке I трансформатора Т2 и по части обмотки II трансформатора Т1, наводит в обмотках II и III последнего напряжение, открывающее один из транзисторов и закрывающее другой. Какой из транзисторов закроется, а какой ≈ откроется, зависит от асимметрии характеристик элементов каскада.

В результате действия положительной ОС процесс протекает лавинообразно, а наведенный в обмотке II трансформатора Т2 импульс через один из диодов VD6, VD7, резистор R9 и диод VD3 заряжает конденсатор СЗ до напряжения, достаточного для начала работы узла управления. В дальнейшем он питается по той же цепи, а выпрямленное диодами VD6, VD7 напряжение после сглаживания фильтром L1C5 поступает на выход+12 В ИБП.

Вариант цепей начального запуска, использованный в ИБП LPS-02-150XT, отличается только тем, что напряжение на делитель, аналогичный R3 ≈ R6 (рис. 5), подают от отдельного однополупериодного выпрямителя сетевого напряжения с конденсатором фильтра небольшой емкости. В результате транзисторы инвертора приоткрываются раньше, чем зарядятся конденсаторы фильтра основного выпрямителя (С6, С7, см. рис. 5), что обеспечивает более уверенный запуск.

Второй способ питания узла управления во время пуска предусматривает наличие специального понижающего трансформатора небольшой мощности с выпрямителем, как показано на схеме рис. 6 , примененной в ИБП PS-200B.

Число витков вторичной обмотки трансформатора выбрано таким образом, чтобы выпрямленное напряжение было немного меньшим выходного в канале +12 В блока, но достаточным для работы узла управления. Когда выходное напряжение ИБП достигает номинала, диод VD5 открывается, диоды моста VD1 ≈ VD4 остаются закрытыми в течение всего периода переменного напряжения и узел управления переходит на питание выходным напряжением инвертора, не потребляя больше энергии от "пускового" трансформатора.

В мощных каскадах инверторов, запускаемых таким образом, необходимость в начальном смещении на базах транзисторов и положительной обратной связи отсутствует. Поэтому не требуется резисторов R3, R5, диоды VD1, VD2 заменяют перемычками, а обмотку II трансформатора Т1 выполняют без отвода (см. рис. 5).

ВЫХОДНЫЕ ВЫПРЯМИТЕЛИ

На рис. 7 показана типовая схема четырехканального выпрямительного узла ИБП. Чтобы не нарушать симметрии пе-ремагничивания магнитопровода силового трансформатора выпрямители строят только по двухполупериодным схемам, причем мостовые выпрямители, для которых характерны повышенные потери, почти не применяют. Главная особенность выпрямителей в ИБП ≈ сглаживающие фильтры, начинающиеся с индуктивности (дросселя). Напряжение на выходе выпрямителя с подобным фильтром зависит не только от амплитуды, но и от скважности (отношения длительности к периоду повторения) поступающих на вход импульсов. Это дает возможность стабилизировать выходное напряжение, изменяя скважность входного. Применяемые во многих других случаях выпрямители с фильтрами, начинающимися с конденсатора, подобным свойством не обладают. Процесс изменения скважности импульсов обычно называют ШИМ ≈ широтно-импульсной модуляцией (англ. PWM ≈ Pulse Width Modulation).


Так как амплитуда импульсов, пропорциональная напряжению в питающей сети, на входах всех имеющихся в блоке выпрямителей изменяется по одинаковому закону, стабилизация с помощью ШИМ одного из выходных напряжений стабилизирует и все остальные. Чтобы усилить этот эффект, дроссели фильтров L1.1 ≈ L1.4 всех выпрямителей намотаны на общем магнитопроводе. Магнитная связь между ними дополнительно синхронизирует происходящие в выпрямителях процессы.

Для правильной работы выпрямителя с L-фильтром необходимо, чтобы ток его нагрузки превышал некоторое минимальное значение, зависящее от индуктивности дросселя фильтра и частоты импульсов. Эту начальную нагрузку создают резисторы R4 ≈ R7, подключенные параллельно выходным конденсаторам С5 ≈ С8. Они же служат для ускорения разрядки конденсаторов после выключения ИБП.

Иногда напряжение -5 В получают без отдельного выпрямителя из напряжения -12 В с помощью интегрального стабилизатора серии 7905. Отечественные аналоги ≈ микросхемы КР1162ЕН5А, КР1179ЕН05. Ток, потребляемый узлами компьютера по этой цепи, обычно не превышает нескольких сотен миллиампер.

В некоторых случаях интегральные стабилизаторы устанавливают и в других каналах ИБП. Это решение исключает влияние изменяющейся нагрузки на выходные напряжения, но снижает КПД блока и по этой причине применяется только в сравнительно маломощных каналах. Примером может служить схема узла выпрямителей ИБП PS-6220C, показанная на рис. 8 . Диоды VD7 ≈ VD10 ≈ защитные.


Как и в большинстве других блоков, здесь в выпрямителе напряжения +5 В установлены диоды с барьером Шоттки (сборка VD6), отличающиеся меньшими, чем у обычных диодов падением напряжения в прямом направлении и временем восстановления обратного сопротивления. Оба этих фактора благоприятны для увеличения КПД. К сожалению, сравнительно низкое допустимое обратное напряжение не позволяет применять диоды Шоттки и в канале +12 В. Однако в рассматриваемом узле эта проблема решена последовательным соединением двух выпрямителей: к 5 В недостающие 7 В добавляет выпрямитель на сборке диодов Шоттки VD5.

Для устранения опасных для диодов выбросов напряжения, возникающих в обмотках трансформатора на фронтах импульсов, предусмотрены демпфирующие цепи R1C1, R2C2, R3C3 и R4C4.

УЗЕЛ УПРАВЛЕНИЯ

В большинстве "компьютерных" ИБП этот узел построен на базе микросхемы ШИМ-контроллера TL494CN (отечественный аналог ≈ КР1114ЕУ4) или ее модификаций. Основная часть схемы подобного узла ≈ на рис. 9 , на ней показаны и элементы внутреннего устройства упомянутой микросхемы.


Генератор пилообразного напряжения G1 служит задающим. Его частота зависит от номиналов внешних элементов R8 и СЗ. Генерируемое напряжение поступает на два компаратора (A3 и А4), выходные импульсы которых суммирует элемент ИЛИ D1. Далее импульсы через элементы ИЛИ-НЕ D5 и D6 подают на выходные транзисторы микросхемы (V3, V4). Импульсы с выхода элемента D1 поступают также на счетный вход триггера D2, и каждый из них изменяет состояние триггера. Таким образом, если на вывод 13 микросхемы подана лог. 1 или он, как в рассматриваемом случае, оставлен свободным, импульсы на выходах элементов D5 и D6 чередуются, что и необходимо для управления двухтактным инвертором. Если микросхему TL494 применяют в однотактном преобразователе напряжения, вывод 13 соединяют с общим проводом, в результате триггер D2 больше не участвует в работе, а импульсы на всех выходах появляются одновременно.

Элемент А1 ≈ усилитель сигнала ошибки в контуре стабилизации выходного напряжения ИБП. Это напряжение (в рассматриваемом случае ≈ +5 В) через резистивный делитель R1R2 поступает на один из входов усилителя. На втором его входе ≈ образцовое напряжение, полученное от встроенного в микросхему стабилизатора А5 с помощью резистивного делителя R3 ≈ R5. Напряжение на выходе А1, пропорциональное разности входных, задает порог срабатывания компаратора А4 и, следовательно, скважность импульсов на его выходе. Так как выходное напряжение ИБП зависит от скважности (см. выше), в замкнутой системе автоматически поддерживается его равенство образцовому с учетом коэффициента деления R1R2. Цепь R7C2 необходима для устойчивости стабилизатора. Второй усилитель (А2) в данном случае от ключей подачей соответствующих напряжений на его входы и в работе не участвует.

Функция компаратора A3 ≈ гарантировать наличие паузы между импульсами на выходе элемента D1, даже если выходное напряжение усилителя А1 вышло за допустимые пределы. Минимальный порог срабатывания A3 (при соединении вывода 4 с общим проводом) задан внутренним источником напряжения GV1. С увеличением напряжения на выводе 4 минимальная длительность паузы растет, следовательно, максимальное выходное напряжение ИБП падает.

Этим свойством пользуются для плавного пуска ИБП. Дело в том, что в начальный момент работы блока конденсаторы фильтров его выпрямителей полностью разряжены, что эквивалентно замыканию выходов на общий провод. Пуск инвертора сразу же "на полную мощность" приведет к огромной перегрузке транзисторов мощного каскада и возможному выходу их из строя. Цепь C1R6 обеспечивает плавный, без перегрузок, пуск инвертора.

В первый после включения момент конденсатор С1 разряжен, а напряжение на выводе 4 DA1 близко к +5 В, получаемым от стабилизатора А5. Это гарантирует паузу максимально возможной длительности, вплоть до полного отсутствия импульсов на выходе микросхемы. По мере зарядки конденсатора С1 через резистор R6 напряжение на выводе 4 уменьшается, а с ним и длительность паузы. Одновременно растет выходное напряжение ИБП. Так продолжается, пока оно не приблизится к образцовому и не вступит в действие стабилизирующая обратная связь. Дальнейшая зарядка конденсатора С1 на процессы в ИБП не влияет. Так как перед каждым включением ИБП конденсатор С1 должен быть полностью разряжен, во многих случаях предусматривают цепи его принудительной разрядки (на рис. 9 не показаны).

ПРОМЕЖУТОЧНЫЙ КАСКАД

Задача этого каскада ≈ усиление импульсов перед их подачей на мощные транзисторы. Иногда промежуточный каскад отсутствует как самостоятельный узел, входя в состав микросхемы задающего генератора. Схема такого каскада, примененного в ИБП PS-200B, показана на рис. 10 . Согласующий трансформатор Т1 здесь соответствует одноименному на рис. 5.

В ИБП APPIS использован промежуточный каскад по схеме, приведенной на рис. 11 , отличающийся от рассмотренного выше наличием двух согласующих трансформаторов Т1 и Т2 ≈ отдельно для каждого мощного транзистора. Полярность включения обмоток трансформаторов такова, что транзистор промежуточного каскада и связанный с ним мощный транзистор находятся в открытом состоянии одновременно. Если не принять специальных мер, через несколько тактов работы инвертора накопление энергии в магнитопроводах трансформаторов приведет к насыщению последних и значительному уменьшению индуктивности обмоток.

Рассмотрим, как решается эта проблема, на примере одной из "половин" промежуточного каскада с трансформатором Т1. При открытом транзисторе микросхемы обмотка Ia подключена к источнику питания и общему проводу. Через нее течет линейно нарастающий ток. В обмотке II наводится положительное напряжение, поступающее в базовую цепь мощного транзистора и открывающее его. Когда транзистор в микросхеме будет закрыт, ток в обмотке Iа прервется. Но магнитный поток в магнитопроводе трансформатора не может измениться мгновенно, поэтому в обмотке Iб возникнет линейно спадающий ток, текущий через открывшийся диод VD1 от общего провода к плюсу источника питания. Таким образом энергия, накопленная в магнитном поле в течение импульса, в паузе возвращается в источник. Напряжение на обмотке II во время паузы ≈ отрицательное, и мощный транзистор закрыт. Аналогичным образом, но в противофазе, работает вторая "половина" каскада с трансформатором Т2.

Наличие в магнитопроводах пульсирующих магнитных потоков с постоянной составляющей приводит к необходимости увеличивать массу и объем трансформаторов Т1 и Т2. В целом промежуточный каскад с двумя трансформаторами не очень удачен, хотя он и получил довольно широкое распространение.


Если мощности транзисторов микросхемы TL494CN недостаточно для непосредственного управления выходным каскадом инвертора, применяют схему, подобную приведенной на рис. 12 , где изображен промежуточный каскад ИБП KYP-150W. Половины обмотки I трансформатора Т1 служат коллекторными нагрузками транзисторов VT1 и VT2, поочередно открываемых импульсами, поступающими от микросхемы DA1. Резистор R5 ограничивает коллекторный ток транзисторов приблизительно до 20 мА. С помощью диодов VD1, VD2 и конденсатора С1 на эммитерах транзисторов VT1 и VT2 поддерживают необходимое для их надежного закрывания напряжение +1,6 В. Диоды VD4 и VD5 демпфируют колебания, возникающие в моменты переключения транзисторов в контуре, образованном индуктивностью обмотки I трансформатора Т1 и ее собственной емкостью. Диод VD3 закрывается, если выброс напряжения на среднем выводе обмотки I превышает напряжение питания каскада.


Еще один вариант схемы промежуточного каскада (ИБП ESP-1003R) показан на рис. 13. В данном случае выходные транзисторы микросхемы DA1 включены по схеме с общим коллектором. Конденсаторы С1 и С2 ≈ форсирующие. Обмотка I трансформатора Т1 не имеет среднего вывода. В зависимости от того, какой из транзисторов VT1, VT2 в данный момент открыт, цепь обмотки замыкается на источник питания через резистор R7 или R8, подключенный к коллектору закрытого транзистора.

ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Прежде чем ремонтировать ИБП, его необходимо извлечь из системного блока компьютера. Для этого отключают компьютер от сети, вынув вилку из розетки. Вскрыв корпус компьютера, освобождают все разъемы ИБП и, отвернув четыре винта на задней стенке системного блока, вынимают ИБП. Затем снимают П-образную крышку корпуса ИБП, отвернув крепящие ее винты. Печатную плату можно извлечь, отвернув три винта-"самореза", которыми она закреплена. Особенность плат многих ИБП в том, что печатный проводник общего провода разделен на две части, которые соединяются между собой лишь через металлический корпус блока. На извлеченной из корпуса плате эти части необходимо соединить навесным проводником.

Если блок питания был отключен от сети питания менее получаса назад, необходимо найти на плате и разрядить оксидные конденсаторы 220 или 470 мкФ х 250 В (это самые большие конденсаторы в блоке). В процессе ремонта эту операцию рекомендуется повторять после каждого отключения блока от сети либо временно зашунтировать конденсаторы резисторами 100...200 кОм мощностью не менее 1 Вт.

В первую очередь осматривают детали ИБП и выявляют явно неисправные, например, сгоревшие или с трещинами в корпусе. Если выход блока из строя был вызван неисправностью вентилятора, следует проверить элементы, установленные на теплоотводах: мощные транзисторы инвертора и сборки диодов Шотки выходных выпрямителей. При "взрыве" оксидных конденсаторов происходит разбрызгивание их электролита по всему блоку. Во избежание окисления металлических токоведущих частей необходимо смыть электролит слабощелочным раствором (например, разведя средство "Fairy" водой в соотношении 1:50).

Включив блок в сеть, прежде всего следует измерить все его выходные напряжения. Если окажется, что хотя бы в одном из выходных каналов напряжение близко к номинальному значению, неисправность следует искать в выходных цепях неисправных каналов. Однако, как показывает практика, выходные цепи редко выходят из строя.

В случае нарушения работы всех каналов методика определения неисправностей следующая. Измеряют напряжение между плюсовым выводом конденсатора С4 и минусовым С5 (см. рис. 4) или коллектором транзистора VT1 и эмиттером VT2 (см. рис. 5) Если измеренное значение существенно меньше 310 В, нужно проверить и при необходимости заменить диодный мост VD1 (см. рис. 4) или отдельные составляющие его диоды. Если выпрямленное напряжение в норме, а блок не работает, скорее всего, отказал один или оба транзистора мощного каскада инвертора (VT1, VT2, см. рис. 5), которые подвержены наибольшим тепловым перегрузкам. При исправных транзисторах остается проверить микросхему TL494CN и связанные с ней цепи.

Отказавшие транзисторы допускается заменять отечественными или импортными аналогами, подходящими по электрическим параметрам, габаритным и установочным размерам, руководствуясь данными, приведенными в табл. 2. Замену диодам подбирают по табл. 3.


Выпрямительные диоды сетевого выпрямителя (см. рис. 4) можно с успехом заменить отечественными КД226Г, КД226Д. Если в сетевом выпрямителе установлены конденсаторы емкостью 220 мкФ, желательно их заменить на 470 мкФ, место для этого на плате обычно предусмотрено. Для снижения помех рекомендуется каждый из четырех выпрямительных диодов зашунтировать конденсатором 1000 пФ на напряжение 400...450 В.

Транзисторы 2SC3039 можно заменить отечественными КТ872А. А вот демпфирующий диод PXPR1001 взамен отказавшего трудно приобрести даже в больших городах. В этой ситуации можно воспользоваться тремя соединенными последовательно диодами КД226Г или КД226Д. Существует возможность взамен отказавшего диода и защищенного им мощного транзистора установить транзистор со встроенным демпфирующим диодом, например, 2SD2333, 2SD1876, 2SD1877 или 2SD1554. Следует заметить, что во многих выпущенных после 1998 г. ИБП такая замена уже произведена.


Для увеличения кликните по изображению (откроется в новом окне)

Для повышения надежности работы ИЭП можно рекомендовать параллельно резисторам R7 и R8 (см. рис. 5) подключить дроссели индуктивностью по 4 мкГн. Их можно намотать проводом диаметром не менее 0,15 мм в шелковой изоляции на любых кольцевых магнитопроводах. Число витков рассчитывают по известным формулам.

Подстроечный резистор для регулировки выходного напряжения (R3, см. рис. 9) во многих ИБП отсутствует, вместо него установлен постоянный. Если требуется подстройка, ее можно произвести, временно установив подстроечный резистор, а затем вновь заменив его постоянным найденного номинала.

Для повышения надежности полезно заменить установленные в фильтрах наиболее мощных выпрямителей + 12 В и +5 В импортные оксидные конденсаторы эквивалентными по емкости и напряжению конденсаторами К50-29. Следует заметить, что на платах многих ИБП установлены не все предусмотренные схемой конденсаторы (по-видимому, из экономии), что отрицательно сказывается на характеристиках блока. Рекомендуется установить недостающие конденсаторы на предназначенные для них места.

Собирая блок после ремонта, не забудьте удалить временно установленные перемычки и резисторы, а также подключить к соответствующему разъему встроенный вентилятор.

ЛИТЕРАТУРА
1. Куличков А. Импульсные блоки питания для IBM PC. - М.: ДМК, серия "Ремонт и сервис", 2000.
2. Гук М. Аппаратные средства IBM PC. - С.-Пб.: Питер, 2000.
3. Куневич А.. Сидоров И. Индуктивные элементы на ферритах. - С.-Пб.: Лениздат, 1997.
4. Никулин С. Надежность элементов радиоэлектронной аппаратуры. - М.: Энергия, 1979.

Статья написана на основе книги А.В.Головкова и В.Б Любицкого"БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT" Материал взят с сайта интерлавка. Переменное напряжение сети подается через сетевой выключатель PWR SW через сетевой предохранитель F101 4А, помехоподавляющие фильтры, образованные элементами С101, R101, L101, С104, С103, С102 и дроссели И 02, L103 на:
выходной трехконтактный разъем, к которому может подстыковываться кабель питания дисплея;
двухконтактный разъем JP1, ответная часть которого находится на плате.
С разъема JP1 переменное напряжение сети поступает на:
мостовую схему выпрямления BR1 через терморезистор THR1;
первичную обмотку пускового трансформатора Т1.

На выходе выпрямителя BR1 включены сглаживающие емкости фильтра С1, С2. Терморезистор THR ограничивает начальный бросок зарядного тока этих конденсаторов. Переключатель 115V/230V SW обеспечивает возможность питания импульсного блока питания как от сети 220-240В, так и от сети 110/127 В.

Высокооомные резисторы R1, R2, шунтирующие конденсаторы С1, С2 являются симметрирующими (выравнивают напряжения на С1 и С2), а также обеспечивают разрядку этих конденсаторов после выключения импульсного блока питания из сети. Результатом работы входных цепей является появление на шине выпрямленного напряжения сети постоянного напряжения Uep, равного +310В, с некоторыми пульсациями. В данном импульсном блоке питания используется схема запуска с принудительным (внешним) возбуждением, которая реализована на специальном пусковом трансформаторе Т1, на вторичной обмотке которого после включения блока питания в сеть появляется переменное напряжение с частотой питающей сети. Это напряжение выпрямляется диодами D25, D26, которые образуют со вторичной обмоткой Т1 двухполупериодную схему выпрямления со средней точкой. СЗО - сглаживающая емкость фильтра, на которой образуется постоянное напряжение, используемое для питания управляющей микросхемы U4.

В качестве управляющей микросхемы в данном импульсном блоке питания традиционно используется ИМС TL494.

Питающее напряжение с конденсатора СЗО подается на вывод 12 U4. В результате на выводе 14 U4 появляется выходное напряжение внутреннего опорного источника Uref=-5B, запускается внутренний генератор пилообразного напряжения микросхемы, а на выводах 8 и 11 появляются управляющие напряжения, которые представляют собой последовательности прямоугольных импульсов с отрицательными передними фронтами, сдвинутые друг относительно друга на половину периода. Элементы С29, R50, подключенные к выводам 5 и 6 микросхемы U4 определяют частоту пилообразного напряжения, вырабатываемого внутренним генератором микросхемы.

Согласующий каскад в данном импульсном блоке питания выполнен по бестранзисторной схеме с раздельным управлением. Напряжение питания с конденсатора СЗО подается в средние точки первичных обмоток управляющих трансформаторов Т2, ТЗ. Выходные транзисторы ИМС U4 выполняют функции транзисторов согласующего каскада и включены по схеме с ОЭ. Эмиттеры обоих транзисторов (выводы 9 и 10 микросхемы) подключены к "корпусу". Коллекторными нагрузками этих транзисторов являются первичные полуобмотки управляющих трансформаторов Т2, ТЗ, подключенные к выводам 8, 11 микросхемы U4 (открытые коллекторы выходных транзисторов). Другие половины первичных обмоток Т2, ТЗ с подключенными к ним диодами D22, D23 образуют цепи размагничивания сердечников этих трансформаторов.

Трансформаторы Т2, ТЗ управляют мощными транзисторами полумостового инвертора.

Переключения выходных транзисторов микросхемы вызывают появление импульсных управляющих ЭДС на вторичных обмотках управляющих трансформаторов Т2, ТЗ. Под действием этих ЭДС силовые транзисторы Q1, Q2 попеременно открываются с регулируемыми паузами ("мертвыми зонами"). Поэтому через первичную обмотку силового импульсного трансформатора Т5 протекает переменный ток в виде пилообразных токовых импульсов. Это объясняется тем, что первичная обмотка Т5 включена в диагональ электрического моста, одно плечо которого образовано транзисторами Q1, Q2, а другое - конденсаторами С1, С2. Поэтому при открывании какого-либо из транзисторов Q1, Q2 первичная обмотка Т5 оказывается подключена к одному из конденсаторов С1 или С2, что и обуславливает протекание через нее тока в течение всего времени, пока открыт транзистор.
Демпферные диоды D1, D2 обеспечивают возврат энергии, запасенной в индуктивности рассеяния первичной обмотки Т5 за время закрытого состояния транзисторов Q1, Q2 обратно в источник (рекуперация).
Конденсатор СЗ, включенный последовательно с первичной обмоткой Т5, ликвидирует постоянную составляющую тока через первичную обмотку Т5, исключая тем самым нежелательное подмагничивание его сердечника.

Резисторы R3, R4 и R5, R6 образуют базовые делители для мощных транзисторов Q1, Q2 соответственно и обеспечивают оптимальный режим их переключения с точки зрения динамических потерь мощности на этих транзисторах.

Диоды сборки SD2 представляют собой диоды с барьером Шоттки, чем достигается необходимое быстродействие и повышается КПД выпрямителя.

Обмотка III совместно с обмоткой IV обеспечивает получение выходного напряжения +12В вместе с диодной сборкой (полумостом) SD1. Эта сборка образует с обмоткой III двухполупериодную схему выпрямления со средней точкой. Однако средняя точка обмотки III не заземлена, а подключена к шине выходного напряжения +5В. Это даст возможность использовать диоды Шоттки в канале выработки +12В, т.к. обратное напряжение, прикладываемое к диодам выпрямителя при таком включении, уменьшается до допустимого для диодов Шоттки уровня.

Элементы L1, С6, С7 образуют сглаживающий фильтр в канале +12В.

Средняя точка обмотки II заземлена.

Стабилизация выходных напряжений осуществляются разными способами в разных каналах.
Отрицательные выходные напряжения -5В и -12В стабилизируются при помощи линейных интегральных трехвыводных стабилизаторов U4 (типа 7905) и U2 (типа 7912).
Для этого на входы этих стабилизаторов подаются выходные напряжения выпрямителей с конденсаторов С14, С15. На выходных конденсаторах С16, С17 получаются стабилизированные выходные напряжения -12В и -5В.
Диоды D7, D9 обеспечивают разрядку выходных конденсаторов С16, С17 через резисторы R14, R15 после выключения импульсного блока питания из сети. Иначе эти конденсаторы разряжались бы через схему стабилизаторов, что нежелательно.
Через резисторы R14, R15 разряжаются и конденсаторы С14, С15.

Диоды D5, D10 выполняют защитную функцию в случае пробоя выпрямительных диодов.

Выходное напряжение +12В в данном ИБП не стабилизируется.

Регулировка уровня выходных напряжений в данном ИБП производится только для каналов +5В и +12В. Эта регулировка осуществляется за счет изменения уровня опорного напряжения на прямом входе усилителя ошибки DA3 при помощи подстроечного резистора VR1.
При изменении положения движка VR1 в процессе настройки ИБП будет изменяться в некоторых пределах уровень напряжения на шине +5В, а значит и на шине +12В, т.к. напряжение с шины +5В подается в среднюю точку обмотки III.

Комбинированная зашита данного ИБП включает в себя:

Ограничивающую схему контроля ширины управляющих импульсов;
полную схему защиты от КЗ в нагрузках;
неполную схему контроля выходного перенапряжения (только на шине +5В).

Рассмотрим каждую из этих схем.

Ограничивающая схема контроля использует в качестве датчика трансформатор тока Т4, первичная обмотка которого включена последовательно с первичной обмоткой силового импульсного трансформатора Т5.
Резистор R42 является нагрузкой вторичной обмотки Т4, а диоды D20, D21 образуют двухпо-лупериодную схему выпрямления знакопеременного импульсного напряжения, снимаемого с нагрузки R42.

Резисторы R59, R51 образуют делитель. Часть напряжения сглаживается конденсатором С25. Уровень напряжения на этом конденсаторе пропорционально зависит от ширины управляющих импульсов на базах силовых транзисторов Q1, Q2. Этот уровень через резистор R44 подается на инвертирующий вход усилителя ошибки DA4 (вывод 15 микросхемы U4). Прямой вход этого усилителя (вывод 16) заземлен. Диоды D20, D21 включены так, что конденсатор С25 при протекании тока через эти диоды заряжается до отрицательного (относительно общего провода) напряжения.

В нормальном режиме работы, когда ширина управляющих импульсов не выходит за допустимые пределы, потенциал вывода 15 положителен, благодаря связи этого вывода через резистор R45 с шиной Uref. При чрезмерном увеличении ширины управляющих импульсов по какой-либо причине, отрицательное напряжение на конденсаторе С25 возрастает, и потенциал вывода 15 становится отрицательным. Это приводит к появлению выходного напряжения усилителя ошибки DA4, которое до этого было равно 0В. Дальнейший рост ширины управляющих импульсов приводит к тому, что управление переключениями ШИМ-ком-паратора DA2 передается к усилителю DA4, и последующего за этим увеличения ширины управляющих импульсов уже не происходит (режим ограничения), т.к. ширина этих импульсов перестает зависеть от уровня сигнала обратной связи на прямом входе усилителя ошибки DA3.

Схема защиты от КЗ в нагрузках условно может быть разделена на защиту каналов выработки положительных напряжений и защиту каналов выработки отрицательных напряжений, которые схемотехнически реализованы примерно одинаково.
Датчиком схемы защиты от КЗ в нагрузках каналов выработки положительных напряжений (+5В и +12В) является диодно-резистивный делитель D11, R17, подключенный между выходными шинами этих каналов. Уровень напряжения на аноде диода D11 является контролируемым сигналом. В нормальном режиме работы, когда напряжения на выходных шинах каналов +5В и +12В имеют номинальные величины, потенциал анода диода D11 составляет около +5,8В, т.к. через делитель-датчик протекает ток с шины +12В на шину +5В по цепи: шина +12В - R17- D11 - шина +56.

Контролируемый сигнал с анода D11 подается на резистивный делитель R18, R19. Часть этого напряжения снимается с резистора R19 и подается на прямой вход компаратора 1 микросхемы U3 типа LM339N. На инвертирующий вход этого компаратора подается опорный уровень напряжения с резистора R27 делителя R26, R27, подключенного к выходу опорного источника Uref=+5B управляющей микросхемы U4. Опорный уровень выбран таким, чтобы при нормальном режиме работы потенциал прямого входа компаратора 1 превышал бы потенциал инверсного входа. Тогда выходной транзистор компаратора 1 закрыт, и схема ИБП нормально функционирует в режиме ШИМ.

В случае КЗ в нагрузке канала +12В, например, потенциал анода диода D11 становится равным 0В, поэтому потенциал инвертирующего входа компаратора 1 станет выше, чем потенциал прямого входа, и выходной транзистор компаратора откроется. Это вызовет закрывание транзистора Q4, который нормально открыт током базы, протекающим по цепи: шина Upom - R39 - R36 -б-э Q4 - "корпус".

Открывание выходного транзистора компаратора 1 подключает резистор R39 к "корпусу", и поэтому транзистор Q4 пассивно закрывается нулевым смещением. Закрывание транзистора Q4 влечет за собой зарядку конденсатора С22, который выполняет функцию звена задержки срабатывания защиты. Задержка необходима из тех соображений, что в процессе выхода ИБП на режим, выходные напряжения на шинах +5В и +12В появляются не сразу, а по мере зарядки выходных конденсаторов большой емкости. Опорное же напряжение от источника Uref, напротив, появляется практически сразу же после включения ИБП в сеть. Поэтому в пусковом режиме компаратор 1 переключается, его выходной транзистор открывается, и если бы задерживающий конденсатор С22 отсутствовал, то это привело бы к срабатыванию защиты сразу при включении ИБП в сеть. Однако в схему включен С22, и срабатывание защиты происходит лишь после того как напряжение на нем достигнет уровня, определяемого номиналами резисторов R37, R58 делителя, подключенного к шине Upom и являющегося базовым для транзистора Q5. Когда это произойдет, транзистор Q5 открывается, и резистор R30 оказывается подключен через малое внутреннее сопротивление этого транзистора к "корпусу". Поэтому появляется путь для протекания тока базы транзистора Q6 по цепи: Uref - э-6 Q6 - R30 - к-э Q5 -"корпус".

Транзистор Q6 открывается этим током до насыщения, в результате чего напряжение Uref=5B, которым запитан по эмиттеру транзистор Q6, оказывается приложенным через его малое внутреннее сопротивление к выводу 4 управляющей микросхемы U4. Это, как было показано ранее, ведет к останову работы цифрового тракта микросхемы, пропаданию выходных управляющих импульсов и прекращению переключении силовых транзисторов Q1, Q2, т.е. к защитному отключению. КЗ в нагрузке канала +5В приведет к тому, что потенциал анода диода D11 будет составлять всего около +0.8В. Поэтому выходной транзистор компаратора (1) окажется открыт, и произойдет защитное отключение.
Аналогичным образом построена защита от КЗ в нагрузках каналов выработки отрицательных напряжений (-5В и -12В) на компараторе 2 микросхемы U3. Элементы D12, R20 образуют диодно-резистивный делитель-датчик, подключаемый между выходными шинами каналов выработки отрицательных напряжений. Контролируемым сигналом является потенциал катода диода D12. При КЗ в нагрузке канала -5В или -12В, потенциал катода D12 повышается (от -5,8 до 0В при КЗ в нагрузке канала -12В и до -0,8В при КЗ в нагрузке канала -5В). В любом из этих случаев открывается нормально закрытый выходной транзистор компаратора 2, что и обуславливает срабатывание защиты по приведенному выше механизму. При этом опорный уровень с резистора R27 подается на прямой вход компаратора 2, а потенциал инвертирующего входа определяется номиналами резисторов R22, R21. Эти резисторы образуют двуполярно запитанный делитель (резистор R22 подключен к шине Uref=+5B, а резистор R21 - к катоду диода D12, потенциал которого в нормальном режиме работы ИБП, как уже отмечалось, составляет -5,8В). Поэтому потенциал инвертирующего входа компаратора 2 в нормальном режиме работы поддерживается меньшим, чем потенциал прямого входа, и выходной транзистор компаратора будет закрыт.

Защита от выходного перенапряжения на шине +5В реализована на элементах ZD1, D19, R38, С23. Стабилитрон ZD1 (с пробивным напряжением 5,1В) подключается к шине выходного напряжения +5В. Поэтому, пока напряжение на этой шине не превышает +5,1 В, стабилитрон закрыт, а также закрыт транзистор Q5. В случае увеличения напряжения на шине +5В выше +5,1В стабилитрон "пробивается", и в базу транзистора Q5 течет отпирающий ток, что приводит к открыванию транзистора Q6 и появлению напряжения Uref=+5B на выводе 4 управляющей микросхемы U4, т.е. к защитному отключению. Резистор R38 является балластным для стабилитрона ZD1. Конденсатор С23 предотвращает срабатывание защиты при случайных кратковременных выбросах напряжения на шине +5В (например, в результате установления напряжения после скачкообразного уменьшения тока нагрузки). Диод D19 является развязывающим.

Схема образования сигнала PG в данном импульсном блоке питания является двухфункциональной и собрана на компараторах (3) и (4) микросхемы U3 и транзисторе Q3.

Схема построена на принципе контроля наличия переменного низкочастотного напряжения на вторичной обмотке пускового трансформатора Т1, которое действует на этой обмотке лишь при наличии питающего напряжения на первичной обмотке Т1, т.е. пока импульсный блок питания включен в питающую сеть.
Практически сразу после включения ИБП в питающую сеть появляется вспомогательное напряжение Upom на конденсаторе СЗО, которым запитывается управляющая микросхема U4 и вспомогательная микросхема U3. Кроме того, переменное напряжение со вторичной обмотки пускового трансформатора Т1 через диод D13 и то-коограничивающий резистор R23 заряжает конденсатор С19. Напряжением с С19 запитывается резистивный делитель R24, R25. С резистора R25 часть этого напряжения подается на прямой вход компаратора 3, что приводит к закрыванию его выходного транзистора. Появляющееся сразу вслед за этим выходное напряжение внутреннего опорного источника микросхемы U4 Uref=+5B за-питывает делитель R26, R27. Поэтому на инвертирующий вход компаратора 3 подается опорный уровень с резистора R27. Однако этот уровень выбран меньшим, чем уровень на прямом входе, и поэтому выходной транзистор компаратора 3 остается в закрытом состоянии. Поэтому начинается процесс зарядки задерживающей емкости С20 по цепи: Upom - R39 - R30 - С20 - "корпус".
Растущее по мере зарядки конденсатора С20 напряжение подается на инверсный вход 4 микросхемы U3. На прямой вход этого компаратора подается напряжение с резистора R32 делителя R31, R32, подключенного к шине Upom. Пока напряжение на заряжающемся конденсаторе С20 не превышает напряжения на резисторе R32, выходной транзистор компаратора 4 закрыт. Поэтому в базу транзистора Q3 протекает открывающий ток по цепи: Upom - R33 - R34 - 6-э Q3 - "корпус".
Транзистор Q3 открыт до насыщения, а сигнал PG, снимаемый с его коллектора, имеет пассивный низкий уровень и запрещает запуск процессора. За это время, в течение которого уровень напряжения на конденсаторе С20 достигает уровня на резисторе R32, импульсный блок питания успевает надежно выйти в номинальный режим работы, т.е. все его выходные напряжения появляются в полном объеме.
Как только напряжение на С20 превысит напряжение, снимаемое с R32, компаратор 4 переключится, него выход ной транзистор откроется.
Это повлечет за собой закрывание транзистора Q3, и сигнал PG, снимаемый с его коллекторной нагрузки R35, становится активным (Н-уровня) и разрешает запуск процессора.
При выключении импульсного блока питания из сети на вторичной обмотке пускового трансформатора Т1 переменное напряжение исчезает. Поэтому напряжение на конденсаторе С19 быстро уменьшается из-за малой емкости последнего (1 мкф). Как только падение напряжения на резисторе R25 станет меньше, чем на резисторе R27, компаратор 3 переключится, и его выходной транзистор откроется. Это повлечет за собой защитное отключение выходных напряжений управляющей микросхемы U4, т.к. откроется транзистор Q4. Кроме того, через открытый выходной транзистор компаратора 3 начнется процесс ускоренной разрядки конденсатора С20 по цепи: (+)С20 - R61 - D14 - к-э выходного транзистора компаратора 3 - "корпус".

Как только уровень напряжения на С20 станет меньше, чем уровень напряжения на R32, компаратор 4 переключится, и его выходной транзистор закроется. Это повлечет за собой открывание транзистора Q3 и переход сигнала PG в неактивный низкий уровень до того, как начнут недопустимо уменьшаться напряжения на выходных шинах ИБП. Это приведет к инициализации сигнала системного сброса компьютера и к исходному состоянию всей цифровой части компьютера.

Оба компаратора 3 и 4 схемы выработки сигнала PG охвачены положительными обратными связями с помощью резисторов R28 и R60 соответственно, что ускоряет их переключение.
Плавный выход на режим в данном ИБП традиционно обеспечивается при помощи формирующей цепочки С24, R41, подключенной к выводу 4 управляющей микросхемы U4. Остаточное напряжение на выводе 4, определяющее максимально возможную длительность выходных импульсов, задается делителем R49, R41.
Питание двигателя вентилятора осуществляется напряжением с конденсатора С14 в канале выработки напряжения -12В через дополнительный развязывающий Г-образный фильтр R16, С15.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png