Схемы стабилизаторов напряжения

Для питания устройств, не требующих высокой стабильности напряжения питания, применяют наиболее простые, надежные и дешевые стабилизаторы - параметрические. В таком стабилизаторе регулирующий элемент при воздействии на выходное напряжение не учитывает разницы между ним и заданным напряжением.

В наиболее простом виде параметрический стабилизатор это регулирующий компонент (стабилитрон), подсоединяемый параллельно нагрузке. Надеюсь вы помните , ведь, в отличие от диода, он включается в электрическую цепь в обратном направлении, т. е. на анод следует отрицательный, а на катод - положительный потенциал напряжения от источника. В основе принципа действия такого стабилизатора лежит свойство стабилитрона поддерживать на своих выводах постоянное напряжение при существенных изменениях силы протекающего в схеме тока. Балластное сопротивление R, включенное последовательно с стабилитроном и нагрузкой, ограничивает протикающий ток через стабилитрон, если отключить нагрузку.

Для питания устройств, с напряжением 5 В, в этой схеме стабилизаторе можно применить стабилитрон типа КС 147. Номинал сопротивления резистора R берется таким, чтобы при максимальном уровне входного напряжения и отсоединенной нагрузке ток через стабилитрон не был более 55 мА. Так как в рабочем режиме через это сопротивление протекает ток стабилитрона и нагрузки, его мощность должна быть как минимум 1-2 Вт. Ток нагрузки этого стабилизатора должен лежать в интервале 8-40 мА.

Если выходной ток стабилизатора мал для питания, увеличить его мощность можно, добавив усилитель, например на основе транзистора.

Его роль в этой схеме выполняет транзистор VT1, цепь коллектор - эмиттер которого включается последовательно с нагрузкой стабилизатора. Выходное напряжение такого стабилизатора равно разности входного напряжения стабилизатора и падения напряжения в цепи коллектор - эмиттер транзистора и определяется напряжением стабилизации стабилитрона VD1. Стабилизатор обеспечивает в нагрузке ток до 1 А. В качестве VT1 можно использовать транзисторы типа КТ807, КТ815, КТ817.

Пять схем простых стабилизаторов

Классические схемы, которые неоднократно описаны во всех учебниках и справочниках по электронике.


Рис.1. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. 5В, 1А.



Рис.2. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. 12В, 1А.


Рис.3. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. Регулируемое напряжение 0..20В, 1А

Стабилизатор на 5V 5A построен на основе статьи "Пятивольтовый с системой защиты", Радио №11 за 84г стр. 46-49. Схема действительно оказалась удачной, что не всегда бывает. Легко повторяема.

Особенно хороша идея тиристорной защиты нагрузки при выходе из строя самого стабилизатора. Если ведь он (стабилизатор) погорит, то ремонтировать что он питал себе дороже. Транзистор в стабилизаторе тока VT1 германиевый для уменьшения зависимости выходного напряжения от температуры. Если это не важно можно и кремниевый применить. Остальные транзисторы подойдут любые подходящие по мощности. При выходе из строя регулирующего транзистора VT3 напряжение на выходе стабилизатора превышает порог срабатывания стабилитрона VD2 типа КС156А (5.6V) открывается тиристор и коротит вход и выход, горит предохранитель. Просто и надежно. Назначение элементов регулировок указано на схемах.



Рис.4. Принципиальная схема стабилизатора с защитой от короткого замыкания в нагрузке и тиристорной схемой защитой при выходе из строя схемы самого стабилизатора.

Номинальное напряжение - 5В, ток - 5А.
RP1 - установка тока срабатывания защиты, RP2 - установка выходного напряжения

Следующая схема стабилизатора на 24V 2A

Все существующие источники питания относят к одной из двух групп: первичного и вторичного электропитания. К источникам первичного электропитания относят системы, перерабатывающие химическую, световую, тепловую, механическую или ядерную энергию в электрическую. Например, химическую энергию преобразует в электрическую солевой элемент или батарея элементов, а световую энергию - солнечная батарея.

В состав источника первичного электропитания может входить не только сам преобразователь энергии, но и устройства и системы, обеспечивающие нормальное функционирование преобразователя. Зачастую непосредственное преобразование энергии затруднено, и тогда вводят промежуточное, вспомогательное преобразование энергии. Например, энергия внутриатомного распада на атомной электростанции может быть преобразована в энергию перегретого пара, вращающего турбину электромашинного генератора, механическую энергию которого преобразуют в электрическую энергию.

К источникам вторичного электропитания относят такие системы, которые из электрической энергии одного вида вырабатывают электрическую энергию другого вида. Так, например, источниками вторичного электропитания являются инверторы и конверторы, выпрямители и умножители напряжения, фильтры и стабилизаторы.

Классифицируют источники вторичного электропитания по номинальному рабочему выходному напряжению. При этом различают низковольтные источники питания с напряжением до 100 В, высоковольтные с напряжением более 1 кВ и источники питания со средним выходным напряжением от 100 В до 1 кВ.

Любые источники вторичного электропитания классифицируют по мощности Рн, которую они способны отдать в нагрузку. При этом выделяют пять категорий:

микромощные (Рн < 1 Вт);
маломощные (1 Вт < Рн < 10 Вт);
средней мощности (10 Вт < Рн < 100 Вт);
повышенной мощности (100 Вт < Рн < 1 кВт);
большой мощности (Рн > 1 кВт)

Источники питания могут быть стабилизированными и нестабилизированными. При наличии цепи стабилизации выходного напряжения стабилизированные источники обладают меньшей флюктуацией данного параметра, относительно нестабили-зированных. Поддержание неизменным выходного напряжения может быть достигнуто различными способами, однако все эти способы можно свести к параметрическому или компенсационному принципу стабилизации. В компенсационных стабилизаторах присутствует цепь обратной связи для отслеживания изменений регулируемого параметра, а в параметрических стабилизаторах такая обратная связь отсутствует.

Любой источник питания по отношению к сети обладает следующими основными параметрами:

минимальное, номинальное и максимальное питающее напряжение или относительное изменение номинального напряжения в сторону повышения или понижения;
вид питающего тока: переменный или постоянный;
число фаз переменного тока;
частота переменного тока и диапазон ее флюктуации от минимума до максимума;
коэффициент потребляемой от сети мощности;
коэффициент формы потребляемого от сети тока, равный отношению первой гармоники тока к его действующему значению;
постоянство питающего напряжения, которое характеризуется неизменностью параметров во времени

По отношению к нагрузке источник питания может обладать теми же параметрами, что и по отношению к питающей сети, и дополнительно характеризоваться следующими параметрами:

амплитуда пульсации выходного напряжения или коэффициент пульсации;
величина тока нагрузки;
тип регулировок выходных тока и напряжения;
частота пульсации выходного напряжения источника питания, в общем случае не равная частоте переменного тока питающей сети;
нестабильность выходных тока и напряжения под воздействием любых факторов, ухудшающих стабильность.

Кроме того, источники питания характеризуются:

КПД;
массой;
габаритными размерами;
диапазоном температур окружающей среды и влажности
уровнем генерируемого шума при использовании вентилятора в системе охлаждения;
устойчивостью к перегрузкам и к ударам с ускорением;
надежностью;
длительностью наработки на отказ;
временем готовности к работе;
устойчивостью к перегрузкам в нагрузках, и, как частный случай, коротким замыканиям;
наличием гальванической развязки между входом и выходом;
наличием регулировок и эргономичностью;
ремонтопригодностью.

Параллельный параметрический стабилизатор, последовательный стабилизатор на биполярном транзисторе. Практические расчеты.

Доброго дня уважаемые Радиолюбители!
Сегодня на сайте “ “, в разделе “ “, мы продолжим рассмотрение статьи “ “. Напомню, что в прошлый раз, изучая схему источника питания радиолюбительских устройств, мы остановились на назначении и расчете сглаживающего фильтра:

Сегодня мы рассмотрим последний элемент – стабилизатор напряжения.

Стабилизатор напряжения - преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при колебаниях входного напряжения и сопротивления нагрузки

Сегодня мы рассмотрим два простейших стабилизатора напряжения:
- ;
– .

Параллельный параметрический стабилизатор напряжения на стабилитроне

Полупроводниковый стабилитрон - (другое название – диод Зенера) предназначен для стабилизации постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора он выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом. В более сложных схемах ему отводится только роль источника опорного напряжения.

Один из внешних видов и обозначение стабилитрона:

Как работает стабилитрон

Напряжение на стабилитрон (в отличие от диода) подают в обратной полярности (анод соединяют с минусом а катод с плюсом источника питания – Uобр ). При таком включении через стабилитрон течет обратный ток – Iобр .
При увеличении напряжения обратный ток растет очень медленно (на схеме, почти параллельно оси Uобр ), но при некотором напряжении Uобр переход стабилитрона пробивается (но разрушение стабилитрона в этот момент не происходит) и через него начинает идти обратный ток значительно большего значения. В этот момент вольтамперная характеристика стабилитрона (ВАХ ) резко идет вниз (почти параллельно оси Iобр ) – наступает режим стабилизации, основные параметры которого – напряжение стабилизации минимальное (Uст min ) и ток стабилизации минимальный (Iст min ).
При дальнейшем увеличении Uобр ВАХ стабилитрона опять меняет свое направление – заканчивается режим стабилизации, основные параметры которого – напряжение стабилизации максимальное (Uст max ) и ток стабилизации максимальный (Iст max ). С этого момента стабилитрон теряет свои свойства, начинает разогреваться, что может привести к тепловому пробою перехода стабилитрона и соответственно к его выходу из строя.

Режим стабилизации стабилитрона может быть в широких пределах, поэтому в документации на стабилитроны указывают допустимые минимальные и максимальные значения токов (Iст min и Iст max ) и напряжений стабилизации (Uст min и Uст max ). Внутри этих диапазонов лежат выбранные производителем номинальные значения Iст и Uст . Номинальный ток стабилизации обычно устанавливается производителями на уровне 25%-35% от максимального, а номинальное значение напряжения стабилизации как среднее от максимального и минимального.

Для примера можно воспользоваться программой “ “ и воочию посмотреть какие характеристики приводятся в справочниках по стабилитронам:


К примеру стабилитрон Д814Г:
- номинальный ток стабилизации (Iст)= 5 мА;
номинальное напряжение стабилизации (Uст)= (от 10 до 12 вольт)= 11 вольт;
– максимальный ток стабилизации (Iст max)= 29 мА.
Эти данные нам будут необходимы при расчетах простейшего стабилизатора напряжения.

Если вы не смогли найти нужный наш родной, советский, стабилитрон, то можно используя, к примеру программу, подобрать по нужным параметрам буржуйский аналог:


Как видите, стабилитрон Д814Г легко можно заменить аналогом – BZX55C11 (у которого характеристики даже немного получше)

Ну а теперь рассмотрим параллельный параметрический стабилизатор напряжения на стабилитроне .

Параллельный параметрический стабилизатор напряжения на стабилитроне применяется в слаботочных устройствах (несколько миллиампер) и представляет собой делитель напряжения (на резисторе R – балластный резистор и стабилитроне VD – который выполняет роль второго резистора) на вход которого подается нестабильное напряжение а выходное напряжение снимается с нижнего плеча делителя. При повышении (понижении) входного напряжения внутреннее сопротивление стабилитрона уменьшается (увеличивается), что позволяет удерживать выходное напряжение на заданном уровне. На балластном резисторе падает разница между входным напряжением питания и напряжением стабилизации стабилитрона.

Рассмотрим схему данного (самого простейшего) стабилизатора напряжения:


Для нормальной работы схемы ток через стабилитрон должен в несколько раз (3-10 раз) превышать ток в стабилизируемой нагрузке. Практически, так-как номинальный ток стабилизации стабилитрона в несколько раз меньше максимального, то допускается при расчетах считать, что ток нагрузки не должен превышать номинального тока стабилизации.
К примеру : ток потребляемый нагрузкой составляет 10 мА, значит нам необходимо подобрать такой стабилитрон, чтобы его номинальный ток стабилизации не был меньше 10 мА (лучше конечно, если он будет больше).

Расчет параллельного параметрического стабилизатора напряжения на стабилитроне

Дано:
Uвх – входное напряжение = 15 вольт
Uвых – выходное напряжение (напряжение стабилизации) = 11 вольт

Расчет:
1. По справочнику, приведенному выше, определяем, что для наших целей подходит стабилитрон Д814Г:
Uст (10-12в)= 11 вольт
Iст max = 29 мА
Iст номинальный = 5 мА
Исходя из сказанного выше, определяемся, что ток нагрузки не должен превышать Iст номинального – 5 мА
2. Определяем напряжение падения на балластном резисторе (R) как разность входного и выходного стабилизированного напряжения:
Uпад=Uвх – Uвых =15-11= 4 вольта
3. Используя закон Ома, определяем номинал балластного сопротивления R, деля напряжение падения Uпад на Iст стабилитрона:
R= Uпад/Iст = 4/0,005= 800 Ом
Так как резисторов номиналом 800 Ом нет, берем ближайший больший номинал – R=1000 Ом= 1 кОм
4. Определяем мощность балластного резистора R :
Pрез= Uпад*Iст = 4*0,005= 0,02 ватта
Так как через резистор протекает не только ток стабилизации стабилитрона но и ток потребляемый нагрузкой, то полученное значение увеличиваем минимум в 2 раза:
Pрез = 0,004*2= 0,008 ват, что соответствует ближайшему номиналу = 0,125 ватт.

Что делать если вы не нашли стабилитрон с нужным напряжением стабилизации.
В этом случае можно применить последовательное соединение стабилитронов . К примеру, если мы соединим последовательно два стабилитрона Д814Г, то напряжение стабилизации составит 22 вольта (11+11). Если соединим Д814Г и Д810 то получим напряжение стабилизации 20 вольт (11+10).
Допускается любое число последовательного соединения стабилитронов одной серии (как в примере – Д8**).
Последовательное соединение стабилитронов разной серии допускается только в том случае, если рабочие токи последовательной цепочки укладываются в паспортные диапазоны токов стабилизации каждой использованной серии.

Что делать, если в приведеном выше примере, ток нагрузки составляет к примеру не 5 а 25 мА?
Можно конечно все так и оставить, так как максимальный ток стабилизации (Iст max) Д814Г равен 29 мА, единственное придется пересчитать мощность балластного резистора. Но в этом случае стабилитрон будет работать на пределе своих возможностей и у вас не будет никаких гарантий, что он не выйдет из строя.
А что делать если ток нагрузки составляет, к примеру, 50 мА?

Последовательный стабилизатор напряжения на биполярном транзисторе

Последовательный стабилизатор напряжения на биполярном транзисторе – это по сути параллельный параметрический стабилизатор на стабилитроне, подключенный ко входу эммитерного повторителя.

Его выходное напряжение меньше напряжения стабилизации стабилитрона за счет падения напряжения на переходе база-эммитер транзистора (для кремниевых транзисторов – около 0,6 вольт, для германиевы – окло 0,25 вольт), что нужно учитывать при выборе стабилитрона.
Эммитерный повторитель (он же – усилитель тока) позволяет увеличить максимальный ток стабилизатора напряжения по сравнению с параллельным параметрическим стабилизатором на стабилитроне в β (h 21э) раз (где β (h21э) – коэффициент усиления по току данного транзистора, берется наименьшее значение).

Схема последовательного стабилизатора на биполярном транзисторе :


Так-как данный стабилизатор состоит из двух частей – источник опорного напряжения (он же параллельный параметрический стабилизатор на стабилитроне) и усилителя тока на транзисторе (он же эммитерный повторитель), то расчет такого стабилизатора производится аналогично выше приведенному примеру.
Единственное отличие:
- к примеру нам надо получить ток нагрузки 50 мА, тогда выбираем транзистор с коэффициентом усиления β (h 21э) не менее 10 (β (h 21э) =Iнагрузки/Iст=50/5=10
– мощность балластного резистора рассчитываем по формуле: Ррез=Uпад*(Iст+Iнагрузки)

Ток нагрузки можно увеличить еще в несколько раз, если применить схему с составным тразистором (два транзистора, включенные по схеме Дарлингтона или Шиклаи):

Вот, в принципе, и все.

Оборудование : две макетных панели, монтажные проводники с наконечниками, миллиамперметр до 10 мА, источник регулируемого постоянного напряжения до 10 В, цифровой вольтметр.

ВНИМАНИЕ: монтаж электрических схем осуществлять только при выключенном напряжении питания на макетной панели.

Стабилизатором напряжения (тока ) называется устройство, автоматически поддерживающее напряжение (ток) на стороне потребителя (на нагрузке) с заданной степенью точности. Стабилизаторы напряжения в первую очередь ставят в источниках питания после выпрямителя. Чем чувствительнее прибор, чем точнее измерительное устройство, тем выше должна быть стабильность источников питания. Стабилизаторы тока не менее важны, чем стабилизаторы напряжения. Источники тока применяются для обеспечения смещения транзисторов, в качестве активной нагрузки усилительных каскадов. Они необходимы для работы интеграторов и генераторов пилообразного напряжения. Стабилизаторы тока требуются также, например, в электрохимии, электрофорезе.

Основными дестабилизирующими факторами , вызывающими изменение напряжения (тока) потребителя, являются: колебания сетевого напряжения 220 В, колебания частоты тока в сети, изменения потребляемой нагрузкой мощности, изменения температуры окружающей среды и др.

Стабилизаторы подразделяются в зависимости от рода напряжения (тока) на стабилизаторы переменного напряжения (тока) и стабилизаторы постоянного напряжения (тока). По принципу действия стабилизаторы делятся на параметрические и компенсационные . Стабилизация напряжения (тока) в параметрических стабилизаторах осуществляется за счет нелинейности вольт-амперной характеристики (ВАХ) нелинейного элемента (газоразрядного и полупроводникового стабилитрона, стабистора, полевого или биполярного транзисторов и др.). Компенсационные стабилизаторы представляют собой замкнутую систему автоматического регулирования с отрицательной обратной связью. В зависимости от способа включения регулирующего элемента относительно сопротивления нагрузки стабилизаторы подразделяются на последовательные и параллельные . По режиму работы регулирующего элемента стабилизаторы подразделяются на стабилизаторы с непрерывным регулированием и импульсные . В свою очередь импульсные стабилизаторы подразделяются по принципу управления на широтно-импульсные, частотно-импульсные и релейные.

Основными параметрами стабилизаторов постоянного напряжения, характеризующими качество стабилизации, являются:

Коэффициент стабилизации К СТ – отношение относительных изменений входного и выходного напряжений (при постоянном выходном токе):

(1)

где DU ВХ и DU ВЫХ – соответственно приращения входного и выходного напряжений, U ВХ и U ВЫХ – значения входного и выходного напряжений стабилизатора.

Выходное сопротивление R ВЫХ (или внутреннее сопротивление r I) стабилизатора равно отношению приращения выходного напряжения DU ВЫХ к приращению тока нагрузки DI Н при неизменном входном напряжении U ВХ = const:

(2)

Коэффициент полезного действия (КПД) – отношение мощности на выходе стабилизатора к мощности на входе.

Полупроводниковые параметрические стабилизаторы (с использованием стабилитронов) являются наиболее простыми. Они характеризуются сравнительно невысокими коэффициентами стабилизации (10–100), большим выходным сопротивлением (единицы и десятки ом), низким КПД.

Стабилитрон – это полупроводниковый диод, у которого используется для стабилизации напряжения участок электрического пробоя (лавинного или туннельного) на обратной ветви ВАХ (рис. 1). В прямом направлении ВАХ стабилитрона такая же, как и у любого кремниевого диода. Пробивное напряжение диода – напряжение стабилизации стабилитрона U СТ (от 3 до 200 В) зависит от толщины p-n-перехода или от удельного сопротивления базы диода. Низковольтные стабилитроны (U СТ < 6 В) изготавливаются на основе сильнолегированного кремния и в них происходит туннельный пробой. Высоковольтные стабилитроны (U СТ > 6 В) изготавливаются на основе слаболегированного кремния. Поэтому принцип их действия связан с лавинным пробоем.

В данной лабораторной работе исследуются стабилитроны Д814А и 2С156А. Их справочные данные приведены в табл. 1. Стабилизация напряжения тем лучше, чем круче идет кривая ВАХ (рис. 1) и, соответственно, чем меньше дифференциальное внутреннее сопротивление стабилитрона. Кроме того, следует отметить, что стабилитроны с низким напряжением стабилизации (с туннельным пробоем) обладают отрицательным температурным коэффициентом напряжения (ТКН), т.е. при повышении температуры напряжение стабилизации уменьшается. Стабилитроны с лавинным пробоем имеют положительный ТКН. Существуют и термокомпенсированные стабилитроны, выполненные в одном корпусе в виде последовательного соединения стабилитрона с положительным ТКН и диода, включенного в прямом направлении (у которого отрицательный ТКН).

Таблица 1

Основные параметры Д814А 2С156А
Напряжение стабилизации U СТ, В 7 – 8,5 5,6
Разброс напряжения стабилизации, % ± 10
Минимальный ток стабилизации I СТ m I n (ток, при котором наступает устойчивый пробой), мА
Максимальный ток стабилизации I СТ max (ток, при котором мощность, рассеиваемая на стабилитроне не превышает допустимого значения), мА
Дифференциальное внутреннее сопротивление , Ом
Температурный коэффициент напряжения стабилизации (отношение относительного изменения напряжения стабилизации к абсолютному изменению температуры окружающей среды ), % / °С + 0,07 ±0,05
Максимально допустимый прямой ток, мА
Максимально допустимая рассеиваемая мощность, Вт 0,34 0,3
Температура окружающей среды, °С от минус 60 до +100

Задание 1 .

1.1. Найти на макетной панели стабилитроны Д814А и 2С156А, соединенные с токоограничивающими резисторами 150 и 240 Ом (рис. 2).

1.2. Установить на блоке питания напряжение 10 В. Подключить вольтметр к стабилитрону Д814А. Включить тумблер на макетной панели. Ток, текущий через стабилитрон, вызывает его нагрев и изменение U CT . Положительный или отрицательный ТКН имеет данный стабилитрон? По часам определить время, необходимое для прогрева схемы. Для этого следует заполнить табл. 2 измерениями напряжения на стабилитроне в момент включения питания и через каждую минуту. Время прогрева необходимо учитывать в том случае, когда необходимо очень точно измерить напряжение на стабилитроне (до тысячных (или сотых) долей вольта).

Таблица 2

1.3. Измерить обратные ВАХ стабилитронов. Для этого необходимо, подавая напряжение питания от 1 до 10 В с шагом 1 В, измерить напряжение на стабилитронах. Подаваемое напряжение и напряжение на стабилитронах измерять с точностью до сотых долей вольта. Токи, текущие через стабилитроны, вычислять по падению напряжения на токоограничивающих резисторах. Результатами измерений и вычислений заполнить табл. 3.

Таблица 3

U ПИТ, В Д814А 2С156А
U, В I, мА U, В I, мА
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
R Д = Ом R Д = Ом

1.4. По данным, представленным в табл. 3, построить экспериментальные ВАХ стабилитронов (рис. 3). Сравнить реальные напряжения стабилизации и минимальные токи стабилизации со справочными данными.

1.5. На рабочих участках ВАХ рассчитать дифференциальные сопротивления, записать их в табл. 3 и сравнить со справочными данными.

Рассмотрим теперь работу стабилитрона с нагрузкой R Н. Схема простейшего параметрического стабилизатора напряжения приведена на рис. 4. При увеличении входного напряжения U ВХ, как только ток через стабилитрон становится равным I ст min , напряжение на стабилитроне перестает увеличиваться и становится равным U СТ.

Дальнейшее увеличение U ВХ приводит лишь к росту падения напряжения на токоограничивающем резисторе R. Поэтому напряжение на нагрузке R Н поддерживается неизменным.

Наиболее часто стабилитрон работает в таком режиме, когда входное напряжение U ВХ нестабильно, а сопротивление нагрузки R Н постоянно. Для такого случая сопротивление R обычно рассчитывают для средней точки Т вольт-амперной характеристики стабилитрона (рис. 1) Если напряжение U ВХ меняется от U min до U max , то R можно найти по следующей формуле:

Где - среднее входное напряжение; - средний ток стабилитрона; - ток нагрузки. Нестабильность напряжения в данном случае почти полностью поглощается резистором R. Колебания входного напряжения сглаживаются благодаря малому дифференциальному сопротивлению стабилитрона.

Второй возможный режим стабилизации применяется в том случае, когда U BX = = const, а R Н изменяется в пределах от R н min до R н max . для такого режима R можно определить по средним значениям токов по формуле:

где , , .

Работу схемы в данном режиме можно объяснить так. Так как падение напряжения на резисторе R равное U BX - U С T постоянно, то ток, протекающий через этот резистор также постоянен. Этот ток представляет собой сумму токов стабилитрона и нагрузки. Поэтому, если увеличивается потребление тока нагрузкой, то ток через стабилитрон должен уменьшаться (для того, чтобы их сумма оставалась неизменной). Если нагрузка отбирает очень много тока у стабилитрона, то ток через стабилитрон становится меньше I c т min , и стабилизация напряжения нарушается.

Задание 2 .

2.1. Собрать на макетной панели схему, изображенную на рис. 5, в которой в качестве нагрузки стабилизатора используются последовательно соединенные резисторы сопротивлением 470 Ом, 750 Ом и внутреннее сопротивление миллиамперметра (100 Ом).

2.2. Подключая и отключая нагрузку от стабилитрона, убедиться по вольтметру в том, что при подключении нагрузки напряжение U СТ уменьшается. Напряжение U СТ уменьшается также и при увеличении тока нагрузки. Это можно показать, вращая ось переменного резистора 470 Ом. Таким образом, нагрузка отбирает часть тока у стабилитрона, и рабочая точка на ВАХ стабилитрона перемещается вверх в область меньших токов и меньших напряжений стабилизации U СТ (см. рис. 1 и рис. 3).

2.3. Вычислить коэффициент стабилизации по формуле (1) для минимального тока нагрузки (чем больше будет ток нагрузки, тем хуже будет стабилизация напряжения). Для этого следует изменять входное напряжение от 9 В до 10 В (пусть DU ВХ = 10 В – 9 В = 1 В, а U ВХ = 9,5 В). Выходное напряжение следует измерять как можно точнее (до тысячных долей вольта), так как коэффициент стабилизации может достигать величины в несколько десятков. Не забудьте при измерениях о времени прогрева схемы (см. табл. 2).

Напряжение U ВЫХ нельзя регулировать или установить заданное значение;

Стабилитроны имеют конечное дифференциальное сопротивление, а в связи с этим они не всегда достаточно сильно сглаживают пульсации входного напряжения и влияние изменения сопротивления нагрузки;

При широком диапазоне изменения токов нагрузки приходится выбирать стабилитроны с большой мощностью рассеяния (с большими максимальными токами).




Для получения более постоянного напряжения на нагрузке при изменении потребляемого тока применяется схема (рис. 6), в которой стабилитрон отделен от нагрузки эмиттерным повторителем. Ток стабилитрона в такой схеме относительно независим от тока нагрузки, так как по цепи базы транзистора протекает небольшой ток (меньше в h 21Э чем в нагрузке). Параметры транзистора (предельная мощность, напряжения и токи) выбираются, учитывая мощность нагрузки.

Если необходимо регулировать выходное напряжение, то используется часть опорного (стабилизированного) напряжения, снимаемого с движка переменного резистора. Схемная реализация такой возможности показана на рис. 7.


Задание 3 .

3.1. Собрать схемы стабилизаторов напряжения со стабилитронами Д814А и 2С156А (рис. 6). Используя вольтметр, убедиться в том, что выходное напряжение меньше напряжения на стабилитроне на величину падения напряжения на эмиттерном переходе транзистора (на » 0,6 В).

3.2. По имеющимся в схеме сопротивлениям вычислить:

Максимальную мощность нагрузки Р Н;

Мощность резисторов в цепи стабилитронов Р R .

3.3. Результатами вычислений заполнить табл. 4.

Таблица 4

Д814А 2С156А
Р Н, Вт Р R , Вт Р Н, Вт Р R , Вт

3.4. Собрать схему стабилизатора напряжения с регулируемым выходным напряжением (рис. 7) и проверить ее работоспособность.

Существует ряд способов увеличения коэффициента стабилизации. При этом происходит усложнении схемы стабилизатора.

Во-первых, стабилитрон можно запитывать через стабилизатор тока (а не через резистор), и тогда напряжение на стабилитроне практически не будет изменяться.

Во-вторых, можно использовать двухкаскадную схему (рис. 8), общий коэффициент стабилизации которой равен произведению коэффициентов стабилизации отдельных каскадов (звеньев) и может достигать нескольких сотен.

В-третьих, следует выбрать другие схемы стабилизаторов, например, компенсационного типа с использованием транзисторных схем и операционных усилителей.

В-четвертых, можно использовать интегральные стабилизаторы напряжения (микросхемы).

Рассмотрим источники стабильного тока . Идеальный источник тока обладает бесконечно большим внутренним сопротивлением R = ¥ и обеспечивает в нагрузке R Н ток, который не зависит от падения напряжения на нагрузке (от сопротивления нагрузки).

Схема простейшего источника тока показана на рис. 9. При условии, что R H << R (т.е. U H << U), ток сохраняет почти постоянное значение приблизительно равное U/R.

Простейшему резистивному источнику тока присущи существенные недостатки. Для того, чтобы получить хорошее приближение к идеальному источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током такого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого в другом узле схемы. Если необходим значительный ток, то напряжение U (рис. 9) нужно выбрать большой величины. Для того, чтобы обеспечить I = 1 мА и R = 10 МОм необходимо приложить напряжение U = 10 кВ. Это условие можно обойти, если потребовать большого дифференциального внутреннего сопротивления (dU/dI), тогда как статическое внутреннее сопротивление может быть малым. Этой особенностью обладает выходная характеристика транзистора (полевого или биполярного).

Любой источник тока обладает набором их одних и тех же функциональных узлов: источник питания, регулирующий элемент, датчик тока и нагрузка.

Схема источника тока, изображенного на рис. 10, построена на основе схемы с общим эмиттером и отрицательной обратной связью по току. Работает она следующим образом. Напряжение на базе U Б > 0,6 В поддерживает эмиттерный переход в открытом состоянии: (для кремниевых транзисторов). Ток эмиттера равен:

Так как для больших значений коэффициента усиления по току h 21Э, ток эмиттера приблизительно равен току коллектора, то ток коллектора (а это есть ток нагрузки) вычисляется по той же формуле:

Если предусмотреть возможность изменения напряжения на базе, то получится регулируемый источник тока.

Формула (3) справедлива до тех пор, пока транзистор не перейдет в режим насыщения. Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке, которое не может быть больше, чем напряжение питания (см. рис. 10). В противном случае источник тока был бы способен генерировать бесконечную мощность. Поэтому для источника тока рабочий диапазон определяется тем, что транзистор должен находиться в активном режиме работы.

Задание 4 .

4.1. Собрать на макетной панели источник стабильного тока, изображенный на рис. 11, установив при этом переменный резистор 2 кОм в нагрузке на минимум (против часовой стрелки - до упора).

4.3. Проверить, чтобы ток делителя напряжения (резисторы R1 и R2) превышал в 5–10 раз ток базы регулирующего транзистора, который приблизительно равен I Б = I K / h 21Э, где коэффициент усиления транзистора h 21Э принять равным 50.

I ДЕЛИТЕЛЯ = мА, I Б = мА. Это условие необходимо для того, чтобы при изменении тока нагрузки (а, следовательно, и базового тока, текущего через резистор R1) напряжение на базе практически не изменялось.

4.4. Установите при помощи резистора R2 = 1 кОм ток нагрузки 5–7 мА. Вращая ось переменного резистора нагрузки 2 кОм, убедитесь в том, что через нагрузку течёт почти стабильный ток, однако в крайнем правом положении оси резистора (по часовой стрелки) ток резко уменьшается. Почему?

4.5. Собрать на макетной панели схему стабилизатора тока, изображенную на рис. 12, в которой для задания напряжения на базе транзистора используется стабилитрон. Рассчитать теоретически ток стабилитрона (I СТ = мА) и ток нагрузки (I Н = мА). Проверить по миллиамперметру экспериментально ток нагрузки (I Н ЭКС = мА).

В этой статье пойдёт речь о стабилизаторах постоянного напряжения на полупроводниковых приборах. Рассмотрены наиболее простые схемы стабилизаторов напряжения, принципы их работы и правила расчёта. Изложенный в статье материал полезен для конструирования источников вторичного стабилизированного питания.

Начнём с того, что для стабилизации любого электрического параметра должна быть схема слежения за этим параметром и схема управления этим параметром. Для точности стабилизации необходимо наличие "эталона", с которым стабилизируемый параметр сравнивается. Если в ходе сравнения оказывается, что параметр больше эталонного значения, то схема слежения (назовём её схемой сравнения) даёт команду на схему управления "уменьшить" значение параметра. И наоборот, если параметр оказывается меньше эталонного значения, то схема сравнения даёт команду на схему управления "увеличить" значение параметра. На этом принципе работают все схемы автоматического управления всех устройств и систем, которые нас окружают, от утюга, до космического аппарата, разница лишь в способе контроля и управления параметром. Точно так же работает стабилизатор напряжения.

Структурная схема такого стабилизатора изображена на рисунке.

Работу стабилизатора можно сравнить с регулировкой воды, бегущей из водопроводного крана. Человек подходит к крану, открывает его, а потом, наблюдая за потоком воды, регулирует его подачу в большую, или меньшую сторону, добиваясь оптимального для себя потока. Сам человек выполняет функцию схемы сравнения, в качестве эталона выступает представление человека о том, какой поток воды должен быть, а в качестве схемы управления выступает водопроводный кран, который управляется схемой сравнения (человеком). Если человек изменит своё представление об эталоне, решив, что поток воды, бегущий из крана недостаточный, то он откроет его больше. В стабилизаторе напряжения точно так же. Если у нас появляется желание изменить выходное напряжение, тогда мы можем изменить эталонное (опорное) напряжение. Схема сравнения, заметив изменение эталонного напряжения, самостоятельно изменит и выходное напряжение.

Резонным будет вопрос: Зачем нам такое нагромождение схем, если можно на выходе использовать источник уже "готового" эталонного напряжения? Дело в том, что источник эталонного (далее по тексту – опорного) напряжения – слаботочный (низкоамперный), поэтому не способен питать мощную (низкоомную) нагрузку. Такой источник опорного напряжения можно использовать в качестве стабилизатора для питания схем и устройств, потребляющих малый ток – КМОП-микросхем, слаботочных усилительных каскадов и др.

Схема источника опорного напряжения (слаботочного стабилизатора) изображена ниже. По своей сути – это специальный делитель напряжения, описанный в статье , отличие его в том, что в качестве второго резистора используется специальный диод – стабилитрон. В чём особенность стабилитрона? Простыми словами, стабилитрон, это такой диод, который в отличие от обычного выпрямительного диода, при достижении определённого значения обратно приложенного напряжения (напряжения стабилизации) пропускает ток в обратном направлении, а при его дальнейшем повышении, уменьшая своё внутреннее сопротивление, стремится удержать его на определённом значении.

На вольтамперной характеристике (ВАХ) стабилитрона режим стабилизации напряжения изображен в отрицательной области прикладываемого напряжения и тока.

По мере увеличения обратного напряжения, прикладываемого к стабилитрону, он сначала "сопротивляется" и ток, протекающий через него минимален. При определённом напряжении, ток стабилитрона начинает увеличиваться. Достигается такая точка вольтамперной характеристики (точка 1 ), после которой дальнейшее увеличение напряжения на делителе "резистор – стабилитрон" не вызывает увеличения напряжения на p-n переходе стабилитрона. На этом участке ВАХ происходит увеличение напряжения лишь на резисторе. Ток, проходящий через резистор и стабилитрон продолжает расти. От точки 1 , соответствующей минимальному току стабилизации, до определённой точки 2 вольтамперной характеристики, соответствующей максимальному току стабилизации стабилитрон работает в требуемом режиме стабилизации (зелёный участок ВАХ). После точки 2 вольтамперной характеристики стабилитрон теряет свои "полезные" свойства, начинает греться и может выйти из строя. Участок от точки 1 до точки 2 является рабочим участком стабилизации, на котором стабилитрон выступает в качестве регулятора.

Зная, как рассчитывается простейший делитель напряжения на резисторах можно элементарно рассчитать цепь стабилизации (источник опорного напряжения). Как и в делителе напряжения, в цепи стабилизации протекают два тока – ток делителя (стабилизатора) I ст и ток нагрузочной цепи I нагр . В целях "качественной" стабилизации последний должен быть на порядок меньше первого.

Для расчётов цепи стабилизации используются значения параметров стабилитронов, публикуемые в справочниках:

  • Напряжение стабилизации U ст ;
  • Ток стабилизации I ст (обычно - средний);
  • Минимальный ток стабилизации I ст.min ;
  • Максимальный ток стабилизации I ст.max .

Для расчёта стабилизатора, как правило, используются только два первых параметра - U ст , I ст , остальные применяются для расчёта схем защиты по напряжению, в которых возможно значительное изменение входного напряжения.

Для повышения напряжения стабилизации можно использовать цепочку из последовательно соединённых стабилитронов, но для этого, допустимый ток стабилизации таких стабилитронов должен быть в пределах параметров I ст.min и I ст.max , иначе существует вероятность выхода стабилитронов из строя.

Следует добавить, что простые выпрямительные диоды также обладают свойствами стабилизации обратно приложенного напряжения, только значения напряжений стабилизации лежат на более высоких значениях обратно приложенного напряжения. Значения максимального обратно приложенного напряжения выпрямительных диодов обычно указывается в справочниках, а напряжение при котором проявляется явление стабилизации обычно выше этого значения и для каждого выпрямительного диода, даже одного типа, различно. Поэтому, используйте выпрямительные диоды в качестве стабилитрона высоковольтного напряжения только в самом крайнем случае, когда не сможете найти необходимый Вам стабилитрон, или сделать цепочку из стабилитронов. В этом случае, напряжение стабилизации определяется экспериментально. Необходимо соблюдать осторожность при работе с высоким напряжением.

Порядок расчёта стабилизатора напряжения (источника опорного напряжения)

Расчет простейшего стабилизатора напряжения мы проведём с рассмотрением конкретного примера.
Исходные, предъявляемые к схеме параметры:

1. Входное напряжение делителя - U вх (может быть стабилизированным, а может и нет). Допустим, что U вх = 25 вольт;

2. Выходное напряжение стабилизации - U вых (опорное напряжение). Допустим, что нам необходимо получить U выx = 9 вольт. Решение:

1. Исходя из необходимого напряжения стабилизации, по справочнику подбирают необходимый стабилитрон. В нашем случае это Д814В .

2. Из таблицы находят средний ток стабилизации - I ст . По таблице он равен 5 мА.

3. Вычисляют напряжение, падающее на резисторе - U R1 , как разность входного и выходного стабилизированного напряжения. U R1 = U вx - U выx ---> U R1 = 25 – 9 = 16 вольт

4. По закону Ома делят это напряжение на ток стабилизации, протекающий через резистор, и получают значение сопротивления резистора. R1 = U R1 / I ст ---> R1 = 16 / 0,005 = 3200 Ом = 3,2 кОм

Если полученного значения нет в резистивном ряде, выберите ближайший по номиналу резистор. В нашем случае это резистор номиналом 3,3 кОм .

5. Вычисляют минимальную мощность резистора, помножив падение напряжения на нём на протекающий ток (ток стабилизации). Р R1 = U R1 * I ст ---> Р R1 = 16 * 0,005 = 0,08 Вт

Учитывая, что через резистор кроме тока стабилитрона протекает ещё и выходной ток, поэтому выбирают резистор, мощностью не менее, чем в два раза больше вычисленной. В нашем случае это резистор мощностью не меньшей 0,16 Вт . По ближайшему номинальному рядубольшую сторону) это соответствует мощности 0,25 Вт .

Вот и весь расчёт.

Как было написано ранее, простейшую цепочку стабилизатора постоянного напряжения можно использовать для питания схем, в которых используют малые токи, а для питания более мощных схем они не годятся.

Одним из вариантов повышения нагрузочной способности стабилизатора постоянного напряжения является использование эмиттерного повторителя. На схеме изображён каскад стабилизации на биполярном транзисторе. Транзистор "повторяет" приложенное к базе напряжение.

Нагрузочная способность такого стабилизатора возрастает на порядок. Недостатком такого стабилизатора, как и простейшей цепочки состоящей из резистора и стабилитрона, является невозможность регулировки выходного напряжения.

Выходное напряжение такого каскада будет меньше напряжения стабилизации стабилитрона на значение падения напряжения на p-n переходе "база – эмиттер" транзистора. В статье , я писал, что для кремниевого транзистора оно равно – 0,6 … 0,7 вольта, для германиевого транзистора – 0,2 … 0,3 вольта. Обычно грубо считают – 0,65 вольта и 0,25 вольта.

Поэтому, например при использовании кремниевого транзистора, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет на 0,65 вольта меньше, т.е – 8,35 вольта.

Если вместо одного транзистора использовать составную схему включения транзисторов, то нагрузочная способность стабилизатора возрастёт ещё на порядок. Здесь также, как и в предыдущей схеме следует учитывать уменьшение выходного напряжения за счёт его падения на p-n переходах "база – эмиттер" транзисторов. В данном случае, при использовании двух кремниевых транзисторов, напряжении стабилизации стабилитрона равном 9 вольт, выходное напряжение будет уже на 1,3 вольта меньше (по 0,65 вольт на каждый транзистор), т.е – 7,7 вольта. Поэтому, при проектировании подобных схем необходимо учитывать такую особенность и подбирать стабилитрон с учётом потерь на переходах транзисторов.

Рассчитанное таким образом сопротивление позволяет более эффективно гасить реактивную составляющую выходного транзистора и полноценно использовать мощностные способности обоих транзисторов. Не забывайте производить расчёт требуемой мощности резисторов, иначе всё сгорит в неподходящий момент. Выход из строя резистора R2 может привести к выходу из строя транзисторов и того, что Вы подключите в качестве нагрузки. Расчёт мощности стандартный, описанный на страничке .

Как выбрать транзистор для стабилизатора?

Основные параметры для транзистора в стабилизаторе напряжения: максимальный ток коллектора, максимальное напряжение "коллектор-эмитер" и максимальная мощность. Все эти параметры всегда имеются в справочниках.
1. При выборе транзистора необходимо учитывать, что паспортный (по справочнику) максимальный ток коллектора должен быть не менее, чем в полтора раза больше максимального тока нагрузки, который вы хотите получить на выходе стабилизатора. Это делается для того, чтобы обеспечить запас по току нагрузки при случайных кратковременных бросках нагрузки (например короткого замыкания). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

2. Максимальное напряжение "коллектор-эмитер" характеризует способность транзистора выдерживать определённое напряжение между коллектором и эмитером в закрытом состоянии. В нашем случае этот параметр должен также превышать не менее, чем в полтора раза напряжение подводимое к стабилизатору от цепи "трансформатор-выпрямитель-фильтр питания" вашего блока стабилизированного питания.

3. Паспортная выходная мощность транзистора должна обеспечивать работу транзистора в режиме "полуоткрытого" состояния. Всё напряжение, которое вырабатывается цепочкой "трансформатор-выпрямительный мост-фильтр питания" делится на две нагрузки: собственно нагрузка вашего блока стабилизированного питания и сопротивление коллекторно-эмитерного перехода транзистора. По обоим нагрузкам течёт один и тот же ток, поскольку они подключены последовательно, а вот напряжение делится. Из этого следует, что необходимо выбрать такой транзистор, который при заданном токе нагрузки способен выдерживать разницу между напряжением, вырабатываемым цепочкой "трансформатор-выпрямительный мост-фильтр питания" и выходным напряжением стабилизатора. Мощность вычисляется как произведение напряжения на ток (из учебника физики средней школы).

Например: На выходе цепи "трансформатор-выпрямительный мост-фильтр питания" (а значит на входе стабилизатора напряжения) напряжение равно 18 вольт. Нам необходимо получить выходное стабилизированное напряжение 12 вольт, при токе нагрузки 4 ампера.

Находим минимальное значение необходимого паспортного тока коллектора (Iк max):
4 * 1,5 = 6 ампер

Определяем минимальное значение необходимого напряжения "коллектор-эмитер" (Uкэ):
18 * 1,5 = 27 вольт

Находим среднее напряжение, которое в рабочем режиме будет "падать" на переходе "коллектор-эмитер", и тем самым поглощаться транзистором:
18 - 12 = 6 вольт

Определяем потребную номинальную мощность транзистора:
6 * 4 = 24 ватт

При выборе типа транзистора необходимо учитывать, что паспортная (по справочнику) максимальная мощность транзистора должна быть не менее, чем в два - три раза больше номинальной мощности падающей на транзисторе. Это делается для того, чтобы обеспечить запас по мощности при различных бросках тока нагрузки (а следовательно и изменения падающей мощности). При этом следует учесть, чем больше эта разница, тем менее массивный радиатор охлаждения требуется транзистору.

В нашем случае необходимо выбрать транзистор с паспортной мощностью (Рк) не менее:
24 * 2 = 48 ватт

Выбираете любой транзистор, удовлетворяющий этим условиям, с учётом, что чем паспортные параметры будут намного больше расчётных, тем меньше по размерам потребуется радиатор охлаждения (а может и вообще не нужен будет). Но при чрезмерном превышении этих параметров учитывайте тот факт, что чем больше выходная мощность транзистора, тем меньше его коэффициент передачи (h21), а это ухудшает коэффициент стабилизации в источнике питания.

В следующей статье мы рассмотрим . В нём используется принцип контроля выходного напряжения мостовой схемой. Он обладает меньшей пульсацией выходного напряжения, чем "эмиттерный повторитель", кроме того, он позволяет регулировать выходное напряжение в небольших пределах. На его основе будет рассчитана простая схема стабилизированного блока питания.

Для некоторых электрических цепей и схем вполне хватает обычного блока питания, не имеющего стабилизации. Источники тока такого типа обычно состоят из понижающего трансформатора, выпрямительного диодного моста и фильтрующего конденсатора. Выходное напряжение блока питания зависит от количества витков вторичной обмотки на понижающем трансформаторе. Но как известно сетевое напряжение 220 вольт нестабильно. Оно может колебаться в некоторых пределах (200-235 вольт). Следовательно и выходное напряжение на трансформаторе тоже будет «плавать» (в место допустим 12 вольт будет 10-14, или около того).

Электротехника, которая особо не капризна к небольшим изменения питающего постоянного напряжения может обойтись таким вот простым блоком питания. Но вот более чувствительная электроника уже это не терпит, она от этого даже может выйти из строя. Так что возникает необходимость в дополнительный схеме стабилизации постоянного выходного напряжения. В этой статье я привожу электрическую схему достаточно простого стабилизатора постоянного напряжения, который имеет стабилитрон и транзистор. Именно стабилитрон выступает в роли опорного элемента, который определяет и стабилизирует выходное напряжения блока питания.

Теперь давайте перейдем к непосредственному разбору электрической схемы простого стабилизатора постоянного напряжения. Итак, к примеру у нас имеется понижающий трансформатор с выходным переменным напряжением в 12 вольт. Эти самые 12 вольт мы подаем на вход нашей схемы, а именно на диодный мост и фильтрующий конденсатор. Диодный выпрямитель VD1 из переменного тока делает постоянный (но скачкообразный). Его диоды должны быть рассчитаны на ту максимальную силу тока (с небольшим запасом где-то 25%), который может выдавать блок питания. Ну, и напряжение их (обратное) должно быть не ниже выходного.

Фильтрующий конденсатор C1 сглаживает эти скачки напряжения, делая форму постоянного напряжения более ровной (хотя и не идеальной). Его емкость должна быть от 1000 мкф до 10 000 мкф. Напряжение, также больше выходного. Учтите, что есть такой вот эффект - переменное напряжение после диодного моста и фильтрующего конденсатора электролита увеличивается примерно на 18%. Следовательно в итоге мы уже получим на выходе не 12 вольт, а где-то 14,5.

Теперь начинается часть стабилизатора постоянного напряжения. Основным функциональным элементом тут является сам стабилитрон. Напомню, что стабилитроны имеют способность в некоторых пределах стабильно держать на себе определенное постоянное напряжение (напряжение стабилизации) при обратном своем включении. При подачи на стабилитрон напряжения от 0 до напряжения стабилизации оно просто будет увеличиваться (на концах стабилитрона). Дойдя до уровня стабилизации напряжение будет оставаться неизменным (с незначительным ростом), а расти начнет сила тока, протекающего через него.

В нашей схеме простого стабилизатора, который на выходе должен выдавать 12 вольт, стабилитрон VD2 рассчитан на напряжение 12,6 (поставим стабилитрон на 13 вольт, это соответствует Д814Д). Почему 12,6 вольт? Потому, что 0,6 вольт осядут на транзисторном переходе эмиттер-база. А на выходе получится ровно 12 вольт. Ну, а поскольку мы ставим стабилитрон на 13 вольт, то на выходе БП будет где-то 12,4 В.

Стабилитрон VD2 (создающим место опорного постоянного напряжения) нуждается в ограничителе тока, который будет предохранять его от чрезмерного перегрева. На схеме эту роль выполняет резистор R1. Как видно он подключен последовательно стабилитрону VD2. Еще один фильтрующий конденсатор электролит C2 стоит параллельно стабилитрону. Его задача также сглаживать излишки пульсаций напряжения. Можно обойтись и без него, но все же лучше будет с ним!

Далее на схеме мы видим биполярный транзистор VT1, который подключен по схеме общий коллектором. Напомню, схемы подключения биполярных транзисторов по типу общий коллектор (это еще называется эмиттерный повторитель) характеризуются тем, что они значительно усиливают силу тока, но при этом нет никакого усиления по напряжению (даже оно немного меньше входного, именно на те самые 0,6 вольт). Следовательно мы на выходе транзистора получаем то постоянное напряжение, которое имеется на его входе (а именно напряжение опорного стабилитрона, равное 13 вольтам). И поскольку эмиттерный переход на себе оставляет 0,6 вольта, то и на выходе транзистора уже будет не 13, а 12,4 вольта.

Как вы должны знать, чтобы транзистор начал открываться (пропускать через себя управляемые токи по цепи коллектор-эмиттер) ему нужен резистор для создания смещения. Эту задачу выполняет все тот же резистор R1. Изменяя его номинал (в определенных пределах) можно менять силу тока на выходе транзистора, а значит и на выходе нашего стабилизированного блока питания. Тем, кто желает с этим поэкспериментировать советую на место R1 поставить подстроечное сопротивление номиналом около 47 килоом. Подстраивая его смотрите, как будет изменяться сила тока на выходе блока питания.

Ну, и на выходе схемы простого стабилизатора постоянного напряжения стоит еще один небольшой фильтрующий конденсатор электролит C3, сглаживающий пульсации на выходе стабилизированного блока питания. Параллельно ему припаян резистор нагрузки R2. Он замыкает эмиттер транзистора VT1 на минус схемы. Как видим схема достаточно проста. Содержит минимум компонентов. Она обеспечивает вполне стабильное напряжение на своем выходе. Для питания многой электротехники данного стабилизированного блока питания будет вполне хватать. Данный транзистор рассчитан на максимальную силу тока в 8 ампер. Следовательно для такого тока нужен радиатор, который будет отводить излишек тепла от транзистора.

P.S. Если параллельно стабилитрону поставить еще переменный резистор номиналом 10 килоом (средний вывод подсоединяем к базе транзистора), то в итоге мы получим уже регулируемый блок питания. На нем можно плавно изменять выходное напряжение от 0 до максимума (напряжение стабилитрона минус те самые 0,6 вольт). Думаю такая схема уже будет более востребована.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png