Автоматизированная система управления наружным освещением (АСУНО) предназначена для многоуровневой автоматизации управления наружным освещением города с применением современных технических решений. Применение автоматизированных систем управления позволяет сделать освещение города легкоуправляемым, экономичным и оперативным. АСУНО обеспечивает оперативное переключение режимов освещения по графику на уровне сегментов осветительной сети, удаленный контроль и управление до уровня светоточки, а также конфигурирование каждого сегмента. Связь с центральным диспетчерским пунктом по радиоканалу, сотовой связи или оптоволоконной линии связи.

Внедрение автоматизированной системы управления наружным освещением решают следующие задачи:

  1. Обеспечение оптимального и стабильного уровня освещенности в соответствии с действующими нормативами;
  2. Сокращение эксплуатационных затрат и сокращение численности персонала;
  3. Повышение надежности и эффективности работы сети наружного освещения;
  4. Обеспечение оперативного контроля состояния электротехнического оборудования и линий наружного освещения;
  5. Обеспечение технического и коммерческого учета потребленной электроэнергии;
  6. Существенное улучшение показателей энергоэффективности.

Преимущества использования системы управления наружным освещением:

  1. Повышение надежности работы оборудования за счет исключения устройств контактной коммутации и применения блоков бесконтактной коммутации силовых линий;
  2. Замена электромагнитных пускорегулирующих аппаратов на электронные ПРА;
  3. Удаленный контроль, конфигурирование и управление оборудованием в линиях освещения с точностью до конкретного светильника;
  4. Экономичность системы;
  5. Совместимость системы с уже существующим в городе силовым и осветительным оборудованием;
  6. Возможность наращивания существующих систем освещения от одной улицы до целого города;
  7. Возможность подключения дополнительных диспетчерских пунктов, включаемых в локальную сеть с ЦДП, а также мобильных диспетчерских пунктов (ноутбук) при наличии выхода в интернет.

Обеспечить эффективное функционирование осветительной системы возможно, применяя средства автоматического управления освещением. Управление осветительной установкой осуществляется двумя основными способами: отключением всех или части светильников (дискретное управление) и плавным изменением мощности светильников (для групп светильников или индивидуально).

К системам дискретного управления освещением относятся различные фотореле и таймеры. Принцип действия основан на включении и отключении питания по сигналам установленных датчиков или в зависимости от времени суток по предварительно заложенной программе. К системам дискретного управления освещением относятся также автоматы, оснащенные датчиками присутствия. Они отключают светильники в помещении спустя заданный промежуток времени после того, как из него удаляется последний человек. Это наиболее экономичный вид систем дискретного управления, однако к побочным эффектам их использования относится возможное сокращение срока службы ламп за счет частых включений и выключений. Системы плавного регулирования мощности освещения по своему устройству несколько сложнее.

Современные системы управления освещением сочетают в себе значительные возможности экономии электроэнергии:

  1. Точное поддержание искусственной освещенности в помещении на заданном уровне. Достигается это введением в систему управления освещением фотоэлемента, находящегося внутри помещения и контролирующего создаваемую осветительной установкой освещенность. Несмотря на наличие в подавляющем большинстве помещений естественного освещения в светлое время суток, мощность осветительной установки рассчитывается без его учета. Если поддерживать освещенность, создаваемую совместно осветительной установкой и естественным освещением, на заданном уровне, то можно еще больше снизить мощность осветительной установки.
  2. В определенное время года и часы суток возможно даже использование одного естественного освещения. Эта функция может осуществляться тем же фотоэлементом, что и в предыдущем случае, при условии, что он отслеживает полную (естественную + искусственную) освещенность. При этом экономия энергии может составлять 20-40%.
  3. Дополнительная экономия энергии в освещении может быть достигнута отключением осветительной установки в определенные часы суток, а также в выходные и праздничные дни. Эта мера позволяет эффективно бороться с забывчивостью людей, не отключающих освещение на рабочих местах перед своим уходом. Для ее реализации автоматизированная система управления освещением должна быть оборудована собственными часами реального времени.
  4. Учет присутствия людей в помещении. При оборудовании системы управления освещением датчиком присутствия можно включать и отключать светильники в зависимости от того, есть ли люди в данном помещении. Эта функция позволяет расходовать энергию наиболее оптимально, однако ее применение оправдано далеко не во всех помещениях. В отдельных случаях она может даже сокращать срок службы осветительного оборудования и производить неприятное впечатление при работе. Экономия, получаемая за счет отключения светильников по сигналам таймера и датчиков присутствия электроэнергии, составляет 10-25 %.

Дистанционное беспроводное управление осветительной установкой. Хотя такая функция не является автоматизированной, она часто присутствует в автоматизированных системах управления освещением благодаря тому, что ее реализация на базе электроники системы управления освещением очень проста, а сама функция добавляет значительное удобство в управлении осветительной установкой.

Методами непосредственного управления осветительной установкой является дискретное включение/отключение всех или части светильников по командам управляющих сигналов, а также ступенчатое или плавное снижение мощности освещения в зависимости от этих же сигналов.

Ввиду того что современные регулируемые электронные ПРА имеют ненулевой нижний порог регулирования, в современных автоматизированных системах управления освещением применяется комбинация плавного регулирования вплоть до нижнего порога с полным отключением ламп в светильниках при его достижении.

Классификация систем автоматического управления освещением.

Системы автоматического управления освещением условно можно разделить на 2 основных класса – так называемые локальные и централизованные.

Для локальных систем характерно управление только одной группой светильников, в то время как централизованные системы допускают подключение практически бесконечного числа раздельно управляемых групп светильников.

В свою очередь, по охватываемой сфере управления локальные системы могут быть подразделены на «системы управлении светильниками» и «системы управления освещением помещений», а централизованные – на специализированные (только для управления освещением) и общего назначения (для управления всеми инженерными системами здания - отоплением, кондиционированием, пожарной и охранной сигнализацией и т.д.).

Локальные «системы управления светильниками в большинстве случаев не требуют дополнительной проводки, а иногда даже сокращают необходимость в прокладке проводов. Конструктивно они выполняются в малогабаритных корпусах, закрепляемых непосредственно на светильнике или на колбе одной из ламп. Все датчики, как правило, составляют один электронный прибор, в свою очередь, встроенный в корпус самой системы.

Часто светильники, оборудованные датчиками, обмениваются между собой информацией по проходам электрической сети. За счет этого даже в случае, если в здании остался единственный человек, находящиеся на его пути светильники останутся включенными.

Централизованные системы управления освещением, наиболее полно отвечающие названию «интеллектуальных», строятся на основе микропроцессоров, обеспечивающих возможность практически одновременного многовариантного управления значительным (до нескольких сотен) числом светильников. Такие системы могут применяться либо только для управления освещением, либо также и для взаимодействия с другими системами зданий (например, с телефонной сетью, системами безопасности, вентиляции, отопления и солнцезащитных ограждений).

Централизованные системы выдают также управляющие сигналы на светильники по сигналам локальных датчиков. Однако преобразование сигналов происходит в едином (центральном) узле, что предоставляет дополнительные возможности вручную управлять освещением здания. Одновременно существенно упрощается ручное изменение алгоритма работы системы.

При системах централизованного дистанционного или автоматического управления освещением питание цепей управления разрешается от линии, питающей освещение. Для помещений, имеющих зоны с разными условиями естественного освещения, управление рабочим освещением должно обеспечивать включение и отключение светильников группами или рядами по мере изменения естественной освещенности помещений.

В статье рассматривается вопрос классификации, устройства, принципов действия и реализуемых функций систем управления освещением различного уровня, в том числе, на базе светодиодных технологий.

Если проанализировать среднестатистический 8-часовой рабочий день на любом крупном или мелком производстве, то однозначно можно прийти к выводу о необходимости организации искусственного освещения. Без него создать оптимальные условия для трудовой активности, повысить производительность и безопасность персонала нереально. Об этом говорится в множестве отраслевых и ведомственных актов, но здесь упускается один важный на сегодня момент – экономия ресурсов. Работая, осветительные приборы потребляют определенный объем электроэнергии, что при неэффективной схеме становится тяжелым бременем для бюджета предприятия. Можно, конечно же, перейти на галогенные или светодиодные светильники, но куда эффективнее видится системы управления освещением на производстве. Именно об этом и пойдет речь далее.

Что такое СУО?

Электрический ток, который необходим для питания всех электроприборов, в том числе, и осветительных, не возникает из неоткуда. Для этого, к примеру, нужно сжечь определенный объем угля на ТЭС, высвободив тепловую энергию. Последняя передается пару, который крутит лопасти турбины, в результате чего генерируется то самое электричество. Подобных технологических цепочек в зависимости от типа станции (АЭС, ГЭС и т. д.) предостаточно, но общим для них является необходимость использования природных ресурсов, а они, как известно, не безграничны.

Стремление к в таких условиях выглядит более чем обоснованным, если не из соображения экономии ресурсов, то уж точно с финансовой точки зрения. Более того, Закон Украины 75/94-ВР прямо обязывает принимать конкретные меры по повышению эффективности. К таким мероприятиям относится, в частности, проектирование освещения, системы управления им. В профессиональной среде они называются сокращенно, посредством аббревиатуры – СУО.

Такая система представляет собой электронную сеть, в которой действуют заранее определенные интеллектуальные алгоритмы. Главной задачей СУО является автоматизация функционирования как внутреннего, так и наружного освещения. На практике это означает, что человеку не нужно больше ходить и нажимать на кнопки выключателей, чтобы на рабочем месте стало светлее. За него эти задачи решает центральный или локальный пульт управления. Причем, он определяет не только время, когда необходимо подключить/отключить отдельные контура, но и интенсивность светового потока.

Классификация

В зависимости от предпринятых проектных и масштабов системы, они могут комплектоваться различными устройствами:

  • Выключатели с возможностью автоматического реагирования;
  • Диммеры, корректирующие яркость освещения в зависимости от заданных условий;
  • Лампы, прожекторы, светодиодные ленты (с сопутствующим оборудованием);
  • Комплекты датчиков (света, движения, открытия, присутствия);
  • Системы управления с использованием специального ПО и т. д.

Учитывая разнообразие задач и используемых для их комплектующих, система автоматического управления освещением классифицируется по широкому перечню критериев. К ним обычно относят способ передачи данных, а также масштабы и иерархическую структуру.

По способу передачи данных и контроля все СУО можно разделить на два типа: аналоговые и цифровые. Для первой группы характерной особенностью является наличие большого количества кабельной соединительной продукции, что в любом случае экономически не выгодно. Цифровые системы используют специальный протокол, к примеру, DSI (аналогичный используется в дисплеях мобильных устройствах), который позволяет минимизировать количество проводки, повысить комфорт монтажа и эксплуатации.

По масштабам реализации все делят также на два типа:

  • Локальные . Осуществляется контроль отдельной небольшой группы светильников. В большинстве случаев такие системы не нуждаются в обособленной проводке – весь конструктив, включая датчики и контроллеры, монтируется в компактном корпусе прямо на светильниках. Отдельные варианты таких СУО могут обмениваться между собой информацией, используя действующую сеть электропитания приборов;
  • Централизованные . Возможность управления большим количеством контуров освещения, в том числе, остальными инженерными системами объекта (отоплением, кондиционированием, водоснабжением и т. д.). Выполнение подобных задач требует построения сложной иерархии, использования специального ПО, микропроцессоров, систем обмена данными. Управление отдельными ветками осуществляется из центрального узла на основании заданных параметров работы и показаний локальных датчиков.

Кроме того, существует достаточно четкая иерархия, в рамках которой система управления наружным освещением (как и внутренним) может реализовывать определенный объем задач:

  • СУО базового уровня . Имеет возможность регулировать освещенность в диапазоне 0…1000 люкс на высотах 0…5 м, световой поток в пределах 10…100%, определять движение, присутствие на участке, активировать и деактивировать освещение в автоматическом режиме. Кроме светильников, в комплектацию входят промышленные датчики и автоматика локального применения;
  • СУО среднего уровня . на базе шкафов управления, включающих средства автоматизации, коммутации, учета электроэнергии и свободно программируемые контроллеры с модулями расширения;
  • СУО продвинутого уровня . Управление таким масштабным проектом требует использования специального программного и аппаратного обеспечения. Реализуется на базе персональных или промышленных компьютеров. Имеет возможность визуализации процессов, архивирования, анализа, передачи данных, контроля состояния системы, формирования отчетностей. Для связи могут использоваться проводные и беспроводные технологии (Ethernet, Internet, GPRS, IP).

Функции системы управления освещением

Автоматические СУО в зависимости от выполняют следующие группы функций:

  • Информационные . Обеспечение визуализации состояния СУО и управления ею. Сюда можно отнести сбор и обработку информации от датчиков, измерение, контроль параметров работы отдельных элементов, регистрацию штатных и нештатных ситуаций, формирование отчетов и т. п.;
  • Сигнализирующие . Информирование персонала о срабатывании автоматов (выключателей), возникновении аварий, несанкционированных подключениях к системе, числе неисправных точек освещения;
  • Управляющие . Обеспечение возможности работы в автоматическом и ручном (дистанционном, аппаратном) режимах;
  • Сервисные . Автоматическая и ручная диагностика, конфигурирование, защита и обеспечение доступа к СУО.

Системы управления светодиодным освещением

Использование излучающих в видимом диапазоне полупроводников на сегодняшний день является одним из наиболее перспективных . Но поскольку это тип приборов имеет совершенно иной принцип и требования к работе, нежели энергосберегающие и лампы накаливания. В частности, существует возможность изменения яркости в зависимости от требования (например, времени суток). Для этого обычно используется широтно-испульсная модуляция (ШИМ). На светодиоды подается импульсами высокой частоты ток, в результате чего происходит их частое включение/выключение. Человеческий глаз же воспринимает этот процесс, как плавное изменение яркости.

Еще один специфический момент – это цвет, который получается при смешивании отдельных каналов. Для контроля этого процесса обычно используют различные вариации RGB-контролеров (стандартные, многоканальные, DMX, DALI), репитеры, диммеры, датчики.

Подробнее

Экспортные истории: как Украина «несет свет» в Европу

Подробнее

Модернизация системы электроосвещения на ДТЭК Добропольская ЦОФ

Подробнее

Что такое теплоотвод в светодиодном светильнике?

Подробнее

Сколько в год можно сэкономить на электроэнергии с использованием светодиодного освещения?

Подробнее

20 Сен

Энергоэффективное освещение, как конкурентное преимущество

Подробнее

Особенности эксплуатации светодиодного освещения

Подробнее

Автоматизация освещения

Подробнее

Окупаемость инвестиций в модернизацию системы освещения

Подробнее

Оптическая система LED светильника: линзы, отражатели

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Требуемый микроклимат в помещении создается следующими системами инженерного оборудования зданий: отопления, освещения, вентиляции и кондиционирования воздуха. Системы отопления служат для создания и поддержания в помещениях в холодный период года необходимых температур воздуха, регламентируемых соответствующими нормами. Таким образом, они позволяют разрешить лишь одну из задач по созданию и обеспечению микроклимата в помещении - необходимого теплового режима.

В тесной связи с тепловым режимом помещений находится воздушный режим, под которым понимают процесс обмена воздухом между помещениями и наружным воздухом. Системы вентиляции предназначены для удаления из помещений загрязненного воздуха.

Системы кондиционирования воздуха являются более совершенными средствами создания и обеспечения в помещениях улучшенного микроклимата.

Автоматизация освещения - очень важный элемент на производстве. Автоматизация освещения имеет два приемущества, первое - это экономия электроэнергии, то есть выключение освещения во время достаточного естественного освещения. Второе приемущество - это оптимальное освещение в производственном помещений. Недостаток освещения приводит к упадку сил, а так же к сонливости. В результате продутивность работы снижается.

1. Выбор и обоснование конфигурации обордувания

1.1 Формулировка задания

В данной работе рассматривается система автоматического управления отоплением, вентиляцией и освещением произвоственного помещения.

Управление поделено на три сегмента, которые будут в дальнейшем времени показаны на панели HMI. Управление осуществляется в автоматичиском или в ручном режиме. Система включается при нажатий кнопки START. Далее происходит выбор режима. Если нажата кнопка STOP, то все выходные элементы будут выключены.

Первый сегмент это отопление. Отопительная система должна работать так, чтобы в помещениях всегда было комфортно. Отопление помещения происходит методом конвекции, то есть нагретый воздух поднимается вверх. Воздух нагревается посредством радиаторов, в которых нагретая вода поступает по трубам из котла отопления.

Имеется датчик аналоговый температуры ТТ, установленный внутри помещения. Система отопления работает по двум режимам ZIMA и LETO, зависящий от времени года. После выбора режима включается KTL (котел). В холодное время года (ZIMA) нагревание включается если температура ниже 19 градусов, при достижений температуры 21 градусов нагревание отключается. При превышений температуры в 26 градусов включается CON (кондиционер). Оно выключается при температуре ниже или равной 24 градусов.

В теплое время года (LETO) работает так же. Но нагревание воды начинается если температура внутри помещения ниже 16 градусов, при достижений температуры 18 градусов нагревание отключается. При превышений температуры в 25 градусов включается CON (кондиционер). Оно выключается при температуре ниже или равной 23 градусов.

Так же можно управлять отоплением в ручную. Есть кнопка включения EN_H и выключения DIS_H нагревания воды. Кондиционирование так же можно включить EN_CON либо выключить DIS_CON.

Второй сегмент это освещение. На улице расположен аналоговый датчик освещенности DL. Освещение зависит от показания этого датчика. В помещение падает большое количество света с улицы. В комнате имеется два источника света вспомогательное освещение S_LED и основоное освещение M_LED. Если освещение на улице в диапазоне от 900 до 1200 люксов, то оба источника света будут выключены. При недостатке освещения, то есть если освещение ниже 500 люксов, после задержки в 30 секунд включается основное освещение. Если вспомогательное было включено, то оно выключится. Если освещение в диапазоне от 500 до 900, после задержки в 30 секунд включится вспомгательное освещение и выключится основное освещение если оно было включено. Так же его можно включить S_LED_ON и выключить S_LED_OFF в ручную. После наступления ночи, сделав задержку в 30 секунд включается основное освещение, если вспомогательное освещение было включено, то оно отключается. Оновное освещение так же можно включить M_LED_ON либо выключить M_LED_OFF в любое время в ручном режиме. Третий сегмент это вентиляция. Вентиляция происходит вытяжной системой. Которое включается периодический каждые пол часа. В помещений находится датчик углекислого газа DCO2. При величине до 400 ppm вытяжение не будет работать. При увелечений концентраций углекислого газа, если оно будет лежать в диапазоне от 400 ppm до 600 ppm и если таймер отсчитал свои 30 минут, то включается вытяжка воздуха на 5 минут. Если показания будут в диапазоне от 600 ppm до 1000 ppm и если таймер отсчитал свои 30 минут, то включается вытяжка воздуха на 10 минут. Есле же концентрация будет выше 1000 ppm и если таймер отсчитал свои 30 минут, то включается вытяжка воздуха на 15 минут. Вытяжение включается EXH_ON либо отключается EXH_OFF в ручном режиме кнопками.

1.2 Составление структурной схемы системы автоматизаций

Рисунок 1 - Структурная схема система автоматизаций

1.3 Выбор и обоснование выбора оборудования

Поскольку у нас 15 входных сигналов и 6 выходных сигналов, в качестве программируемого логического контроллера (PLC) было выбрано Siemens Simatic S7 314C-2PN/DP CPU (6ES7314-6EH04-0AB0). Потому что он компактный и со встройными модулями. А так же еще один резервный ПЛК. Резервный ПЛК нужен для того, чтобы работать в случае поломки первого процессора. На рисунке 2 изображена аппаратная часть ПЛК.

Характеристика:

Рабочая память 192 Кб.

Загружаемая память (MMC) - 8 МБ.

Время выполнения логических операций - 0.06 мкс:

Количество флагов/таймеров/счетчиков -2048/256/256.

Кол-во каналов ввода-вывода, дискретных/ аналоговых, не более - 16048/1006.

Встроенные интерфейсы - MPI / DP и ETHERNET PROFINET.

Встроенных дискретных входов/выходов - 24/16.

Встроенных аналоговых входов/выходов -4 AI (I/U) +1 AI (Pt100)/2 AO.

4 быстрых счётчика (60 кГц).

Блок питания PS 307; 5 A отличается следующими свойствами:

Выходной ток 5 A.

Выходное напряжение 24 в пост. тока; регулируемое, устойчивое при коротком замыкании и холостом ходе.

Подключение к однофазной системе переменного тока (номинальное входное напряжение 120/230 В перем. тока, 50/60 Гц).

Надежная гальваническая развязка в соответствии с EN 60 950.

Может быть использован как источник питания нагрузки.

В проекте будет использовано SIMATIC HMI Comfort Panel. SIMATIC HMI Comfort Panel -- это новая серия панелей оператора для решения широкого круга задач человеко-машинного интерфейса. Отсутствие вращающихся частей, небольшая монтажная глубина, высокая стойкость к вибрационным и ударным, а также электромагнитным воздействиям, степень защиты фронтальной части корпуса IP65 позволяют использовать панели этой серии в жестких промышленных условиях, успешно решать задачи оперативного управления и мониторинга на уровне производственных машин и установок.

Все панели этой серии оснащены:

Встроенным интерфейсом RS 422/RS 485 с поддержкой протокола PROFIBUS DP.

Встроенным интерфейсом PROFINET. В панелях операторов с диагональю экрана от 7” и выше этот интерфейс оснащен встроенным 2-канальным коммутатором Ethernet.

Двумя USB-Host портами и одним USB портом ведомого прибора.

Двумя отсеками для установки SIMATIC HMI SD карт.

Аудио входом и аудио выходом.

2-полюсным съемным терминальным блоком подключения цепи питания =24 В.

Они могут работать с программируемыми контроллерами:

S7-300/ S7-400/ WinAC с подключением через PROFIBUS DP или PROFINET;

В данном проекте будет использовано TP1200 Comfort, диагональ 12 дюймов.

Датчик освещенности DL.

Техническое описание.

Датчик освещенности имеет следующие характеристики:

Датчики для встраиваемых применений D15х40мм (LP01) / D30х6мм (LP02).

Встроенный кабель длиной от 2 до 15м (стандартная длина 2м).

Спектральная характеристика в области видимого света: 400…700нм.

Стандартные диапазоны измерения: 100, 1000, 10000 Люкс.

Выходной сигнал: 4-20мА с 2-х проводной схемой подключения.

Отличительной особенностью датчиков серии LP01 и LP02 является наличие встроенной платы преобразования сигналов фотоэлемента в ток 4-20мА, что позволяет передавать выходной сигнал без искажений на расстояние до 500м.

Датчик температуры TT.

Датчик температуры комнатный SIEMENS QAA2071 используется в системах вентиляции и кондиционирования воздуха для измерения и регулирования комнатной температуры. Датчик температуры QAA2071 выполнен на базе чувствительного элемента NTC и работает в диапазоне температур 0...50 °C

Таблица 1 - Техническое описание

Датчик DCO2.

Датчик DCO2 предназначен для измерения содержания CO2 воздуха в помещении. Датчики (кроме реле) комбинируют в современном корпусе измерение содержания СО2, относительной влажности (RH) и температуры (Т). Измерение содержания СО2 основывается на инфракрасном принципе.

Таблица 2 - Техническое описание

Напряжение питания

15…35 В пост. тока

Тип выхода

перекидное реле 0-10 В 4-20 мА

Диапазоны измерения CO2

0…2000 ррм 0…5000 ррм

Погрешность измерения CO2 (25°С)

<± (50ррм+2% от изм. знач.) <± (50ррм+3% от изм. знач.)

Диапазоны измерения влажности

Погрешность измерения влажности

Погрешность измерения темп.

Рабочая температура

20 … +60 °С

Температура хранения

20 … +60 °С

Относительная влажность

Твердотелое реле

Технические параметры:

Управление: пост.ток.

Управляющее напряжение, В 3…32.

Коммутируемое переменное напряжение, В 40…440.

Максимальный ток нагрузки, А 100.

Физические кнопки управления.

Характеристика:

Рабочее напряжение, В 24.

Ток нагрузки, А 10.

Температура работы, С -55...65.

Рисунок 2 - Конфигурация оборудования

1.4 Составление электрической схемы автоматизации

Рисунок 3 - Электрическая схема аналогового входа

Рисунок 4 - Электрическая схема дискретного входа\выхода

2. Составление блок схемы алгоритма и програмного обеспечения нижнего уровня на языке Step7 LAD, STL

2.1 Составление блок-схемы алгоритма программы

В первой части на рисунке 5 происходит опрос кнопок (физические кнопки или управление через HMI). Сначала происходит опрос кнопки STOP, если есть сигнал то все механизмы отключаются независимо от режима работы. Если сигнала нет, то происходит опрос кнопки START. При отрицательном состояний (она не нажата) цикл уходит в конец. Если есть сигнал о нажатий START, то выполняется вторая часть.

Во второй части на рисунке 6 происходит выбор режима работы (автоматический или ручной режим). Если есть сигнал AUTO, то выбирается режим автоматического управления и работа переходит в третью часть. Если сигнала нет то ПЛК делает опрос MANUAL. При положительном сигнале, управление осуществляется в ручном режиме и работа переходит в четвертую часть.

В третьей части на рисунке 6 происходит выбор режима работы отопления и кондиционирования, зависящий от времени года. После этого прооисходит опрос датчика температуры TT, далее управление зависит от значения этого датчика.

В четвертой части (рисунок 6) осуществляется опрос кнопок управления (физические кнопки или управление через HMI) в ручном режиме работы. В этой части исходя из сигнала кнопок происходит выключение либо включение исполнительных механизмов.

В пятой части (рисунок 6) ПЛК делает опрос датчика освещения DL, а затем исходя из его значений выполняется автоматическое управление освещением. После этого происходит опрос значений датчика углекислого газа DCO2, управление вытяжкой зависит от его значений.

Для удобства программирования алгоритма, он был поделен на отдельные функций. Порядок вызова функций организоционным блоком изображен на рисунке 5.

Рисунок 5 - Структура прикладной программы

Рисунок 6 - Блок-схема алгоритма программы

Рисунок 7 - Блок-схема алгоритма программы

2.2 Составление таблицы символов

Для удобной работы тэги были разделены на несколько таблиц символов. На рисунке 7 изображен список этих таблиц. BIN_IN содержит 42 тэга которые используются для обработки дискретных входных сигналов. ANA_IN содержит тэги аналоговых входных сигналов. BIN_OUT содержит тэги дискретных сигналов. В Useful_tags находятся прочие тэги которые являются неотъемлемой частью алгоритма программы.

На рисунке 8, 9, 10, 11, 12 изображены непосредственно тэги применяемые на уровне программирования алогоритма автоматизаций.

Рисунок 8 - Группы тэгов

Рисунок 9 - Тэги BIN_IN

Рисунок 10 - Тэги BIN_IN

Рисунок 11 - Тэги ANA_IN

Рисунок 12 - Тэги BIN_OUT

Рисунок 13 - Тэги useful_tags

2.3 Составление программы на языке Step7 (STL)

Алгоритм работы программы в TIA Portal для автоматизаций отопления, кондиционирования, освещения и вентиляций приведен на языке STL:

Рисунок 14 - Функциянальные блоки программы

Рисунок 15 - Кнопка остановки системы

Рисунок 16 - Старт системы и выбор автоматического режима

Рисунок 17 - Масштабирование аналогового сигнала датчика температуры

Рисунок 18 - Масштабирование аналогового сигнала датчика освещенности

Рисунок 19 - Масштабирование аналогового сигнала датчика углекислого газа

Рисунок 20 - Выбор режима работы отоплени

Рисунок 21 - Включение нагревания воды (температура ниже 18)

Рисунок 22 - Выключение нагревания воды (температура больше 18)

Рисунок 23 - Включение кондиционера (температура больше 25)

Рисунок 24 - Выключение кондиционера (температура ниже 23)

Рисунок 25 - После обработки блока отопления, следующем вызывается блок автоматизация освещения

Рисунок 26 - Включение основного освещения (освещение ниже 500 лк)

Рисунок 27 - Включение вспомогательного освещения (освещение в диапазоне от 500 до 900 лк)

Рисунок 28 - Выключение всего освещения (освещение в диапазоне от 900 до 1200 лк)

Рисунок 29 - После обработки функций освещения следующем вызывается функция вентиляции

Рисунок 30 - Включение таймера ожидания проверки

Рисунок 31 - Включение вытяжения на 15 сек.(концентрация газа в диапазоне от 400 до 600 ppm)

Рисунок 32 - Включение вытяжения на 20 сек.(концентрация газа в диапазоне от 600 до 1000 ppm)

Рисунок 33 - Включение вытяжения на 25 сек.(концентрация газа больше 1000 ppm)

Если в начале выбора режима отопления был выбран режим ZIMA, то вызывается функция ZIMA и обрабатывается так же как и функция LETO. Отличия только в диапазонах температуры.

Рисунок 34 - Вызов функций ZIMA

Ручное управление выполняется в одной функций MANUAL. Вызывается в организоционном блоке если была нажата кнопка ручного управления. Ниже представленных рисунках изображены включения выходных элементов. Алгоритм выключения выполняется при таком же порядке, но результат RLO инвертируется.

Рисунок 35 - Вызов функций MANUAL

Рисунок 36 - Включение котела отопления

Рисунок 37 - Выключение котела отопления

Рисунок 38 - Включение обогревания

Рисунок 39 - Включение кондиционера

Рисунок 40 - Включение основного освещения

Рисунок 41 - Включение основного освещения

Рисунок 42 - Включение вытяжения

3. Создание диспетчерского пункта и реализация полной SCADA системы

3.1 Составление перечня тегов (HMI Tags) связи программы контроллера с объектами диспетчерского пункта

программный контроллер логический аналоговый

В разделе HMI Tags (рисунок 43) был создан список тегов для визуализации и управления технологическим объектом.

Рисунок 43 - Данные HMI Tags

3.2 Составление окон диспетчерского пункта (Screens) для HMI панели.

Окна диспетчерского пункта для HMI состоит из семи окон (рисунок 44). Root Screen (рисунок 45) - это окно которое открывается при включений HMI. В этом окне находятся три кнопки являющиеся ссылками на окна AUTOMATION, MANUAL, TRENDS.

Окно AUTOMATION (рисунок 46) состоит из панели управления в режиме автоматического управления. MANUAL (рисунок 47) - окно содержащее панель управления в режиме ручного управления.

TRENDS (рисунок 48) содержит графическое представление значений аналоговых входных сигналов.

Рисунок 44 - Окна диспетчерского пункта

Рисунок 45 - Окна диспетчерского пункта

Рисунок 46 - Окно автоматического управления

Рисунок 47 - Окно в режиме ручного управления

Рисунок 48 - Окно TRENDS

Рисунок 49 - Trend датчика температуры TT

Рисунок 50 - Trend датчика освещения DL

Рисунок 51 - Trend датчика углекислого газа DCO2

Заключение

Во время выполнения курсовой работы закрепил знания по курсу «Средства автоматизации технологического процесса ТЭК», развил навыки проектирования автоматизированных систем управления технологическими объектами, освоил основные свойства микропроцессорных систем, изучил структурное и програмное построение микропроцессорных систем и промышленных контроллеров, закрепил навыки программирования промышленных контроллеров.

В ходе выполнения данной работы произвел выбор конфигурации оборудования с учетом особенностей технологического объекта. Составил блок-схему алгоритма функционирования автоматизированной системы управлением микроклимата и написал програмное обеспечение нижнего уровня на языке STL. Реализовал полную SCADA систему для выбранного технлогического объекта.

Литература

1. А.А. Копесбаева, Е.С Ким. Средства автоматизации технологического процесса ТЭК. Методические указания по выполнению курсовой работы для студентов специальности 5B071600 - Приборостроение.- Алматы: АУЭС, 2016, - 23с.

2. Siemens AG. S7 300 Modul Data. Руководство.

3. Siemens AG. HMI Comfort Panel. Data sheet. Руководство.

4. Siemens AG. Датчик температуры комнатный. Руководство к экпслуатации. Landis & Staefa Division, 1996.

5. Датчики освещенности LP01 / LP02. Техническое описание.

6. Жаров С.А. Основы сетевой безопасности: Криптографические алгоритмы и протоколы. - ВРс.: Винтерфэл, 2012.

Размещено на Allbest.ru

Подобные документы

    Разработка и обоснование функциональной схемы системы автоматического управления технологическим процессом. Расчет мощности электродвигателей. Выбор и компоновка шкафа электроавтоматики. Моделирование программного обеспечения в Logo Soft Comfort v6.0.

    курсовая работа , добавлен 02.04.2013

    Разработка алгоритма автоматизации технологического участка производственного предприятия машиностроительного профиля. Составление программы для реализации релейно-контактной схемы управления объектом на основе программируемого логического контроллера.

    контрольная работа , добавлен 30.04.2012

    Техническое обеспечение, расчет информационно-измерительного канала системы автоматического управления. Методическое обеспечение: описание модели АЦП, спектральный анализ на основе преобразования Фурье. Разработка прикладного программного обеспечения.

    курсовая работа , добавлен 21.05.2010

    Разработка автоматизированной системы управления технологическими процессами очистки, компримирования и осушки нефтяного газа на базе программируемого логического контроллера SLC-500 фирмы Allen Bradley. Расчёт системы автоматического регулирования.

    дипломная работа , добавлен 06.05.2015

    Разработка алгоритмов и блок-схем, описывающих процесс визуализации и модификации поведения нестандартных управляющих элементов. Описание принципов композиции и организации элементов управления, а также описание выбранного стиля и цветовой гаммы.

    курсовая работа , добавлен 22.05.2012

    Особенности работы с последовательным портом в среде Visual Studio. Тестирование работы протокола Modbus RTU в режиме Slave. Описание и технические характеристики программируемого логического контроллера Овен 100. Построение диаграммы передачи фреймов.

    отчет по практике , добавлен 19.07.2015

    Основные методы и уровни дистанционного управления манипуляционными роботами. Разработка программного обеспечения системы терминального управления техническим объектом. Численное моделирование и анализ исполнительной системы робота манипулятора.

    дипломная работа , добавлен 09.06.2009

    Функционально-модульная структура программного обеспечения контроллера домофона. Электронная схема электронного замка, модуля микрофона и динамика. Выбор комбинированного источника питания. Разработка программного модуля. Программа управления домофоном.

    курсовая работа , добавлен 29.03.2017

    Идентификация объекта управления на основе экспериментальных данных. Синтез информационно-управляющей системы и анализ ее характеристик: аналогового регулятора Смита и его цифровое перепроектирование, адаптация. Выбор микропроцессорного контроллера.

    курсовая работа , добавлен 16.10.2013

    Структура микропроцессорной системы, алгоритм ее управления и передачи сигналов. Карта распределения адресов. Разработка электрической принципиальной схемы и выбор элементной базы. Расчет потребляемого тока, блока питания, программного обеспечения.

Установка автоматической системы управления освещением является одним из самых эффективных методов повышения энергоэффективности для офисов, производственных или торговых помещений, городских улиц и парков.

Для начала давайте определимся с формулировками. Что такое «система управления освещением» ? Это интеллектуальная сеть, которая позволяет обеспечить необходимое (заданное) количество света в тех местах, где это необходимо и в тот момент, когда это нужно. Она включает в себя светильники, датчики и прочие вспомогательные устройства, объединенные в единую интеллектуальную структуру, которая может работать в автономном режиме либо в режиме ручного управления. Системы автоматического управления светом часто встречаются под названием «умное освещение».

Системы автоматического управления светодиодным освещением от DURAY

Основные сферы, в которых на сегодняшний день применяются системы управления:

  • управление светильниками одной комнаты, одного офисного помещения;
  • управление любым количеством светильников в офисных зданиях, на производственных предприятиях, в жилых комплексах, торгово-развлекательных и спортивных центрах;
  • управление освещением городских улиц и парков.

0 - 10V Dimming System

Одна из базовых систем управления освещением. Диммер 1-10В (0-10В) управляет источниками питания каждого светильника путем передачи сигнала низкого напряжения 1-10В (0-10В) постоянного тока. При минимальном уровне напряжения устройство будет выключено, либо станет работать с минимальным уровнем светового потока, это зависит от применяемой модели источника питания. При 10 В светодиодный светильник будет работать на 100% яркости, давая свой номинальный световой поток.

Такая система управления может применяться для поддержания оптимального уровня яркости светильников в зависимости от уровня естественного освещения. В светильниках производства АО «Дюрэй» в качестве регулятора яркости может использоваться потенциометр 100 кОм.

PUSH Dimming System

Управление освещением в отдельной комнате / офисном помещении

Является одним из базовых типов димминга, предлагаемых на рынке. Подходит для использования в помещениях малого и среднего размера. Эта система проста и не требует применения специальных цифровых контроллеров. Для работы системы PUSH Dim необходим кнопочный переключатель типа «нормально открытый» («normally open»). При коротком нажатии светильник включается или выключается, а при длительном меняет яркость в большую или меньшую сторону.

DALI Easy

Управление группой светильников в отдельной комнате / офисном помещении

Открытый протокол DALI специально разработан для гибкой настройки систем управления освещением. На его основе можно внедрять системы практически любой сложности, с очень широким набором функций и сценариев работы.

Одним из преимуществ протокола DALI является устойчивость к аналоговым помехам (которые характерны для систем управления по 0-10В), благодаря большой амплитуде цифрового управляющего сигнала, что важно для корректной работы управляемого светильника. Другой плюс системы в том, что она не требует дополнительного реле, управляющего включением светильника. Управление осуществляется только по цифровой шине DALI, без дополнительных устройств, что несколько упрощает систему управления и снижает ее конечную стоимость.

Устройства DALI делятся на контроллеры (ведущие) и подчиненные (ведомые). Обмен командами по сети инициируется контроллерами, подчиненные устройства отвечают на их запросы. Максимальное количество подключаемых устройств DALI не превышает 64 (в зависимости от источника питания).

DALI no limits

Управление системой освещения с любым количеством светильников

Система управления освещением DALI может быть интегрирована в другие системы автоматизации зданий.

Каждая линия DALI допускает использование до 64 независимых устройств. Для построения более масштабных систем требуется использование DALI-роутеров, которые позволяют объединять неограниченное количество устройств DALI.

Система разделяется на разные управляемые группы, подгруппы в зависимости от конкретных задач. Конфигурация оборудования в них может содержать разнообразные устройства для автоматизации освещения всего здания: блоки питания и контроллеры DALI, DALI-роутеры, датчики присутствия и освещенности, DALI-реле, кнопочные интерфейсы DALI и т.д.

Преимущество данной системы – это ее масштабируемость, возможность управления освещением по шине DALI от отдельных помещений до всего здания. Система позволяет управлять неограниченным числом светильников и создавать сценарии работы для них.

В статье мы разобрали основные системы управления освещением. Более подробную информацию можно получить у специалистов компании Дюрэй по тел. 8-800-500-2808 или .

Система управления освещением – комплекс технологических решений, способный обеспечивать нужное количество света в нужное время и в нужном месте. Автоматизация системы освещения является одним из трех главных механизмов, направленных на оптимизацию освещения – наряду с переходом на энергоэффективные лампы и правильным расположением осветительных приборов. Какое устройство и особенности автоматизации?

Что входит в состав системы?

Автоматическое управление освещением включает в себя комплекс высокотехнологических устройств, которые способны работать в автоматизированном и автоматическом режиме, то есть без участия человека. Конструкция системы состоит не только из осветительных приборов, но и из датчиков и вспомогательных устройств. В любой момент можно подключить новые внешние устройства, ведь система масштабируема. Перечень оборудования:

    Умные выключатели, которые способны включаться и выключаться как в обычном ручном режиме, так и после соответствующих команд с пульта управления. Есть механические и сенсорные выключатели.

    Умные диммеры – устройства, предназначенные для плавного изменения мощности осветительных приборов. Иными словами, используются для автоматизированного редактирования яркости освещения.

    Умные лампы – имеют возможность включаться и выключаться в автоматическом режиме, а также плавно изменять яркость своего свечения. Некоторые модели способны менять цвет и температуру.

    Светодиодные ленты – имеют те же возможности, что и смарт-лампы. При этом они отличаются меньшим энергопотреблением, повышенной безопасностью использования, а также длительным сроком службы.

Не меньшую роль в автоматизации системы освещения играют датчики, которые следят за изменениями в среде. В рассматриваемых схемах наибольшей востребованностью пользуются сенсоры, реагирующие на движение, присутствие, открытие и закрытие дверей, окон, на изменение уровня освещения. Также автоматизация может успешно взаимодействовать с другими системами здания, в том числе с пожарной сигнализацией или же с ОВК.

Принцип работы схемы

Главным устройством в системе является центральный контроллер. Именно сюда приходят все сигналы с пульта управления или мобильного приложения. Именно здесь обрабатываются входные сигналы со внешних датчиков. Здесь же формируются команды, которые отправляются исполнительному оборудованию – светильникам, RGB светодиодным лентам и другим. От характеристик центрального контроллера зависят возможности системы.

После того, как подключенные к центральному контроллеру датчики регистрируют изменение окружающей среды, на контроллер приходят сигналы. Они интерпретируются, и на основе заданных сценариев устройство отправляет команды на осветительное оборудование. Также возможна работа системы в автоматизированном и ручном режиме, когда пользователь самостоятельно отправляет команды системе в режиме реального времени.

Разновидности систем

Схемы автоматизированного управления светом классифицируются по различным признакам. Один из них, это тип подключения. Все многообразие рассматриваемых решений можно разделить на две большие категории:

    Проводные. Постепенно уходящий в прошлое вариант, который отличается достаточно сложным монтажом. Установка такого решения рационально лишь в том случае, если это происходит на стадии ремонта или строительства дома. В противном случае затраты времени и материалов будут велики.

    Беспроводные. Более удобный и простой в установке вариант, который не требует прокладывать десятки метров кабелей по всему дому. Достаточно разместить исполнительные устройства и датчики в нужных местах, после чего настроить беспроводное соединение оборудования с центральным контроллером.

Какой из представленных вариантов выбрать? Для уже готовых квартир и домов рекомендуется второй вариант, пусть и по более высокой стоимости. Если хочется сэкономить, и при этом не пугает сложный монтаж, можно приобрести и установить проводную автоматизацию освещения. Они отличаются более низкой стоимостью.

Внутреннее и уличное освещение

Еще одна классификация, которая затрагивает системы автоматизации света – разделение по размещению:

    Внутреннее. Для внутреннего освещения нет строгих требований к прочности и устойчивости, поэтому можно приобретать электрооборудование с любой степенью защиты корпуса. В первую очередь при выборе таких приборов надо обращать внимание на характеристики, и только потом на стоимость.

    Уличное. В этом случае рекомендуется использовать устойчивое к механическим воздействиям и плохим погодным условиям оборудование. Это пригодится в случае, если датчики и светильники попадут под пристальное внимание вандалов. Степень защищенности корпуса устройств должна быть не ниже IP65.

Сегодня в продаже можно найти большой выбор вандалостойкого оборудования, причем по сносным ценам.

Управление освещением

Главным достоинством автоматического управления освещением является способность контроля осветительных приборов или сразу их групп при помощи единого интерфейса управления. Зачастую это настенная панель, на которой есть дисплей с отображением данных о работе осветительной системы, а также с пользовательским интерфейсом управления. Возможно управление осветительными приборами и с отдельных выключателей.

Еще один популярный вариант автоматизированного управления осветительными системами предполагает использование пультов дистанционной связи. На таких пультах есть все необходимые кнопки, на некоторых есть и дисплей, отображающий информацию о состоянии подключенных осветительных приборов. Пульты передают информацию на единый интерфейс управления, используя для этого ИК-излучатели, или модуль связи Bluetooth.

Наконец, не менее распространенный способ управления автоматическим освещением – получение и передача сигналов при помощи мобильного приложения, установленного на планшете или смартфоне. При помощи таких приложений можно задавать и редактировать уже готовые сценарии освещения, причем управлять работой домашних осветительных приборов можно на большом расстоянии от самого дома, если есть шлюз Gateway.

Варианты готовых сценариев

У автоматического управления освещением существует множество сценариев, которые позволяют один раз запрограммировать контроллер, и больше не тратить время на постоянные настройки освещения. Для того, чтобы работа большинства сценариев была возможна, требуется наличие датчиков. Некоторые программы:

Механизм

Сценарии

Пусковое устройство

Расписание

Включение света в заданное время

Выключение света в нужное время

Включение отдельных источников

Активация осветительного прибора через определенное время после включения

Астрографик

Включение света спустя час после рассвета

Включение света за час до заката

Присутствие или отсутствие людей

Активация освещения в случае, если в помещение заходит человек

Выключение света после того, как комнату покинут люди

Датчик движения
Датчик присутствия

Уровень естественного освещения

Активация освещения при низком уровне естественного света

Поддерживание уровня освещения на одном и том же уровне

Датчик освещения

Открывание и закрывание дверей

Включение либо отключение света при открытии, либо закрытии двери соответственно

Датчик открытия

Также можно настроить сценарии, в которых инициирующим механизмом будет сигнал от внешнего источника. Например, при срабатывании пожарной сигнализации умный дом даст всем светильникам на включении. Либо при регистрации несанкционированного проникновения все лампы начинают моргать, привлекая внимание.

Преимущества и недостатки

Высокая востребованность систем автоматического управления освещением обусловлена множеством плюсов такой технологии. Возможность управления всем светом в доме из одного места – не единственное достоинство этого решения. Стоит отметить и другие преимущества, которые открываются владельцам умного освещения:

    Экономия электрической энергии. Настройка освещения таким образом, чтобы при покидании людьми помещения свет выключался, позволяет значительно снизить потребление электроэнергии приборами.

    Масштабируемость и универсальность. В любой момент к системе контроля за освещением реально подключить дополнительные датчики, осветительные приборы и другое электрическое оборудование.

    Простота настройки и управления. Обращаться с рассматриваемой технологией можно, даже не имея большого опыта. Пользовательский интерфейс пультов отличается интуитивностью, а также простотой.

    Увеличение продолжительности срока службы ламп. Этот положительный эффект достигается за счет снижения энергопотребления электрическим оборудованием, и его более правильным контролем.

    Простой монтаж беспроводных систем. Установка беспроводной схемы контроля светом не требует никаких ремонтных работ и больших затрат времени. Нужно лишь разместить устройства на их местах.

Некоторым людям может показаться, что недостаток рассматриваемой технологии заключается в ее высокой стоимости. Однако нужно учитывать, что использование таких решений положительно сказывается на экономии, и в не самом далеком будущем установка такой схемы вполне может окупиться. Также не стоит забывать, что покупка и монтаж автоматизированного освещения – это выгодная инвестиция в свой комфорт, безопасность.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png