Одним из важных вопросов при работе со светодиодами является его подключение к сети переменного тока и высокого напряжения. Известно, что светодиод от сети 220 В напрямую питаться не может. Как правильно собрать схему и обеспечить питание, чтобы решить проблему?

Электрические свойства

Для ответа на поставленный выше вопрос необходимо изучить электрические свойства светодиода.

Его вольт-амперная характеристика представляет собой крутую линию. Это значит, что при увеличении напряжения даже на очень малую величину ток через излучающий полупроводник резко возрастает. Повышение тока ведет за собой разогрев светодиода, в результате чего он может просто сгореть. Эту проблему решают, включая в цепь ограничительный резистор.

У светодиода маленькое значение обратного пробивного напряжения (около 20 вольт), поэтому его нельзя подключать к сети 220 вольт с переменным током. Чтобы исключить протекание тока в противоположном направлении, в цепь необходимо включить диод или навстречу первому светодиоду включить второй. Подключение должно быть параллельным.

Итак, мы знаем, что любая схема подключения светодиода к сети 220 вольт должна содержать резистор и выпрямитель, иначе питание будет невозможным.

Для чего нужна такая схема? Прежде всего, для конструкции индикатора сети. Светодиодная лампочка может быть отличным индикатором, помогающим определять, включен электроприбор в сеть или нет. Ее добавляют в схему выключателей и розеток, чтобы легко находить их в темноте.

Такой индикатор начинает светиться при напряжении всего в несколько вольт. При этом он потребляет минимальное количество электроэнергии за счет малого (несколько мили ампер) тока.

Какой резистор использовать?

Чтобы подобрать оптимальное сопротивление резистора, необходимо воспользоваться законом Ома.

R=(Uсети-Uсв.)/Iсв.ном.

Предположим, мы взяли для индикатора красный светодиод с номинальным значением тока 18мА и прямым напряжением 2,0 Вольт.

(311-2)/0,018=17167 Ом=17 кОм

Объясним, откуда взялось число 311. Это пик синусоиды, по которой меняется напряжение в нашей сети. Не вдаваясь в область математики со всеми ее вычислениями, можно просто сказать, что пиковое напряжение составляет 220*√2.

Иногда встречаются схемы, в которых отсутствует выпрямляющий диод. В этом случае сопротивление необходимо увеличить в несколько раз, чтобы сделать ток меньше и обезопасить индикаторную лампочку от перегорания.

Элементарная схема индикатора тока

Что необходимо для изготовления самого простого индикатора, у которого питание происходит от сети 220 вольт? Вот перечень:

  • обычный индикаторный светодиод любого цвета, какой вам нравится;
  • резистор от 100 до 200 кОм (чем больше сопротивление, тем менее ярко будет светиться лампочка);
  • диод с обратным напряжением 100 Вольт или больше;
  • маломощный паяльник, чтобы не перегреть светодиод.

Поскольку количество деталей минимальное, то плата в монтаже не используется. Подключение индикатора осуществляется параллельно электроприбору.

Для тех, у кого нет желания бегать в поисках диода, производители придумали готовый двухцветный индикатор в виде встроенных в один корпус двух светодиодов разного цвета. Обычно это красный и зеленый цвета. В этом случае количество деталей схемы еще больше уменьшается.

Есть и другие схемы подключения, в которых резистор заменяют конденсатором или применяют диодные мосты, транзисторы и т. д. Но какие бы конструктивные особенности не вносились, основной задачей является выпрямление тока и понижение его до безопасной величины.

Светоиндикация – это неотъемлемая часть электроники, с помощью которой человек легко понимает текущее состояние прибора. В бытовых электронных устройствах роль индикации, выполняет светодиод, установленный во вторичной цепи питания, на выходе трансформатора или стабилизатора. Однако в быту используется и множество простых электронных конструкций, неимеющих преобразователя, индикатор в которых был бы нелишним дополнением. Например, вмонтированный в клавишу настенного выключателя светодиод, стал бы отличным ориентиром расположения выключателя ночью. А светодиод в корпусе удлинителя с розетками будет сигнализировать о наличии его включения в электросеть 220 В.

Ниже представлено несколько простых схем, с помощью которых даже человек с минимальным запасом знаний электротехники сможет подключить светодиод к сети переменного тока.

Схемы подключения

Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя. Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.

Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.

Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.

Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду.

Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности. Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.

Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.

В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.

Расчет резистора для светодиода

Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома: R = U/I, где U – это напряжение питания, I – рабочий ток светодиода. Рассеиваемая резистором мощность равна P = U * I. Эти данные можно рассчитать при помощи .

Важно. Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.

Расчет гасящего конденсатора для светодиода

Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле: C = 3200*I/U, где I – это ток нагрузки, U – напряжение питания. Данная формула является упрощенной, но ее точности достаточно для схем подключения светодиодов с напряжением питания до 20 вольт.

Важно. Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.

Конденсатор лучше использовать керамический типа К10–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.

Это нужно знать

Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания.

Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой. Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей.

Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью. Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.

Читайте так же

Наверное, не ошибусь, если скажу, что более 90% жителей России знающих, что такое светодиодные ленты, на вопрос «можно ли трансформаторы от „галогенок“ использовать для питания светодиодных лент?» ответят «нет, нельзя!». Самым распространенным объяснением станет банальное «электронный трансформатор – это переменный ток, а светодиодам нужен постоянный». Именно так нам говорят в магазинах, именно такой лейтмотив имеют подавляющее большинство «профессиональных» статей на эту тему, чем, в общем-то, и приучили людей тратить заметно больше денег.

Всегда ли это оправдано и как на самом деле ведут себя светодиоды в самых распространенных СД лентах при питании переменным током мы и попробуем узнать в процессе изложения чтения этой статьи.

Сразу оговорюсь, что для обозначения «светодиод» я и далее буду применять само собой напрашивающееся и вполне естественное сокращение СД и намеренно не буду использовать для этого понятия английскую техническую аббревиатуру LED (Light Emitting Diode). В нашей нынешней стране отсутствие какой либо должной технической подготовки менеджеров и продавцов в магазинах уже привело к замусориванию и появлению таких неестественных для технического языка, юродивых для слуха и ужасных в написании буквосочетаний «леды», «led’ы», «ледовые», или как недавно увидел бегущей строкой - «LEDовые светодиоды». Мало того, что «масло – масляное», я просто вторить и плодить это «словомутие» не хочу…

Идейным источником написания исследования стало давнее желание опровергнуть необоснованные и безаппеляционные утверждения о недопустимости питания СД переменным током. В общем-то спорность этого утверждения наверняка бросается в глаза любому специалисту (а равно и «неспециалисту»), понимающему, что светодиод, хоть и излучает свет, есть прежде всего – ДИОД. А это значит, что излучать под воздействием переменного напряжения он все же будет, но только в свой полупериод.

По сути, нам необходимо будет последовательно ответить на три вопроса :

1) Сможет ли ЭТ «запуститься» при подключении нагрузки в виде полупроводниковых диодов;
2) Если ЭТ запустится, не превысит ли импульсное «переменное» электрическое воздействие допустимых параметров отдельных СД в лент. Если все же превысит, то как долго протянет СД в таких условиях;
3) Какова экономическая эффективность от использования ЭТ в конструкциях освещения на светодиодных лентах.

Итак, полгода назад у меня как раз подвернулся удобный для экспериментов случай.

Мне нужно было осветить пространство в ящиках и тумбах столов моей мастерской. После оборудования кухни в моем распоряжении осталось 1,2 метра одноцветной СД ленты общей мощностью около 17 Вт (Aztech 14Ватт/метр) и один электронный трансформатор от «галогенок» - EAC 12V 20-60Вт, самый распространенный и дешевый, купленный за 74 рубля в июле 2014 года. Для начала, чтобы запустить ЭТ, я нагрузил его обыкновенной галогеновой лампой 20 Вт и затем параллельно подключил все 1,2 метра ленты (Рис. 1). Как и ожидалось, лента зажглась. При этом свечение ленты было равномерным, средней яркости, без какого либо заметного глазу мерцания, что неудивительно, т.к. выходной меандр ЭТ промодулирован по амплитуде малозаметной глазу частой 100Гц. В ходе эксперимента отключение лампы в такой схеме тут же приводило к прекращению свечения СД ленты, что говорило о невозможности запуска ЭТ на одной полуволне напряжения. Тогда я разбил ленту на два участка и включил их встречно-параллельно (Рис.2), что по замыслу должно было обеспечить работу выходного каскада ЭТ на обоих полупериодах. При этом, что бы исключить перекос токов противоположного направления и перегрев выходной обмотки ЭТ от появление постоянной составляющей, я обеспечил равенство (по 8 Вт) количества СД в обоих плечах нагрузки. Сразу после подключения по такой схеме (Рис.2) трансформатор благополучно вышел на режим генерации, а обе светодиодные ленты равномерно зажглись и были оставлены на 1 час, за который ни они, ни сам ЭТ совершенно не нагрелись, что свидетельствовало скорее о вполне нормальных электрических режимах, чем нет.

Итак, ответ на первый вопрос, - запустится ли ЭТ при замене галогеновых ламп на светодиод – положительный. Да, запустится! Если обеспечить встречно-параллельное включение лент как на Рисунке 2.

И забегая вперед...

Забегая вперед, скажу, что как показал дальнейший эксперимент, ЭТ с паспортной минимальной мощностью запуска в 20 Вт, благополучно запускался даже при 10 Вт суммарной светодиодной нагрузки (по 5 Вт в каждом плече).


Идем дальше. Теперь пробуем найти ответ на второй вопрос нашего исследования. Но сейчас нам одних опытов мало, потребуется знание из ТЭРЦиЭ (Теории электро-радиоцепей и элементов), которое в итоге позволит нам предположить: можно ли долговременно питать СД ленты в таком режиме без серьезного ущерба для их долговечности, если вообще рассуждать об ущербе?

Начнем с устройства СД ленты. Лента состоит из соединенных параллельно рабочих участков (Рис.3) из трех излучателей (обозначены на схеме - E) представляющих собой три отдельных светодиода под общим слоем люминофора. Каждый диод (на схеме - D) излучателя последовательно соединен в триады с диодами из других излучателей и резистором, устанавливающим расчетную рабочую точку диодов (См. Рис. 4).

Резистор в триаде подобран таким образом, что бы при питании от 12 В и расчетной рабочей точке диода Uпр =3,3 В, Iпр = 14 мА на нем гасился избыток напряжения около 2 Вольт.

Между прочим, интересно...

Такая компоновка триады надежна и практична, ибо в случае выхода из строя одиночного СД в триаде, ни один из излучателей полностью не отключится, а продолжит гореть, хоть и с меньшей на треть яркостью. Можно конечно создать триаду на базе одиночного излучателя (и такие ленты встречаются в продаже). В них, рабочим участком определяющим её нарезку будет фрагмент с одиночным излучателем и резистором, но в таком случае, выход из строя одиночного СД в триаде приведет к потере свечения целым излучателем, что будет сразу заметно в любом светильнике.

Покопавшись у производителей SMD светодиодов несложно найти и электрические параметры примененных СД:

Для полноты полученного исследования я дополнительно снял вольтамперную характеристику (ВАХ) рабочего участка ленты (Рис.5), а и путем несложного пересчета получил ВАХ для отдельного СД (Рис.6).

Надеюсь вы...

Надеюсь вы не сомневаетесь, что это можно было сделать и физически, и результаты бы совпали.



Рис.5

Приведенные на рисунках ВАХ не требуют дополнительных пояснений. Добавлю только, что при напряжении менее 2,35 В на отдельном СД его свечение полностью отсутствует, что соответствует напряжению питания рабочего участка около 7 В., а напряжение питания в 15,5 Вольт на ленте является полностью безопасным, т.к. ток через отдельный светодиод не превышает нормальных эксплуатационных 30 мА.

Однако все эти численные выражения рабочих параметров актуальны только для постоянного тока. Мы собираемся испытывать диод при воздействии переменного напряжения, т.е. импульсного напряжения разных направлений. Однако при таком питании предельно допустимые значения токов и напряжений на диоде могут быть в разы, а то и в десятки раз больше пределов для постоянного тока (это общеизвестно и сомневающиеся менеджеры могут почитать лекции по ТЭРЦ) – все зависит от длительности и периодичности воздействия. Но вот беда: выходное напряжение ЭТ имеет достаточно сложную форму, что не позволяет математически достоверно описать его в пределах данной статьи, а ТТХ на светодиоды не снабжены разделом абсолютных значений для импульсных режимов работы. Хотя там, правда, имеется один параметр (Iпр имп), но для какой длительности импульса он актуален – не ясно, для какой скважности воздействия это применимо, тоже можно только догадываться.

Все дело в том....

Все дело в том, что p-n переход полупроводника при работе от переменного (импульсного) тока работает с переменной нагрузкой. Токовые периоды, вызывающие нагрев и работу светодиода по излучению световых волн сменяются паузами покоя (при которых ток через переход не течет) и в которых полупроводник остывает. И вопрос здесь уже не столько в абсолютном значении тока через полупроводник, а сколько в том, успеет ли полупроводник в период безтоковой паузы остыть настолько, что бы скомпенсировать нагрев произошедший в токовый период. Т.е. не допустить теплового пробоя.
Здесь, я хочу напомнить «физику» отказа полупроводника. Это нам позволит понять суть происходящих процессов. Она, физика, в общем-то известна, но все же своими словами: долговечность любого прибора определяется его отказоустойчивостью. Отказы диодов при штатной эксплуатации происходят в случае теплового, либо электрического пробоя.

Электрический пробой, как правило, возникает при превышении допустимого обратного напряжения (Uобр). При этом диод теряет свойство односторенней проводимости и начинает проводить в обе стороны. В большинстве случаев электрический пробой обратим и работоспособность прибора восстанавливается.

А вот тепловой пробой, напротив, необратим и возникает при избыточном токе прямого (реже обратного, возникшего уже после электрического пробоя) направления и влечет за собой разрушительного изменения в кристалле полупроводника в результате сильного локального перегрева p-n перехода, неспособного пропустить через себя большое количество заряженных частиц.

Суть здесь такова, что пока не созданы условия для возникновения теплового пробоя – полупроводник работает. Повторюсь, что в общем то не важно какое абсолютное значение имеет ток через него протекающий. Он может быть очень большим! Главное, что бы наш диод не успел перегреться. В паспорте на любой диод указываются два максимально допустимых параметра: Максимальный прямой ток Iпр mzx и Максмальное обратное напряжение U обр макс, для длительного воздействия постоянным током, которые при стандартных условиях эксплуатации гарантированно не приведут ни к электрическому, ни к тепловому пробою.

Поэтому для исследования степени воздействия переменного напряжения ЭТ на светодиоды мы оттолкнемся от постулата, что любое длительное импульсное воздействие тока можно привести к такому значению постоянного тока, при котором работа, совершаемая светодиодом под воздействием импульсного тока, будет идентична работе при постоянно токе.

Как же мы оценим производимую светодиодом работу? Да очень просто. Светодиод под действием протекающего через него тока совершает работу по выделению световой энергии и тепловой. А эти два параметра мы как раз очень легко можем замерить и сравнить для обоих видов тока, а значит определить, как сильно нагружает светодиод выходное напряжение ЭТ по сравнению со стандартным 12 В стабилизатором.

Для оценки световой энергии излучаемой отдельным рабочим участком СД ленты я снял зависимость освещенности от напряжения питания. Освещенность замерялась на расстоянии 10 см от излучателей (Рис 7).

Таким образом, на данном этапе, у нас все готово для того, что бы получить ответ на второй и третий вопросы нашего исследования.
Приступим.
Для начала исследуем выходное напряжение нашего ЭТ:

Сразу скажу, что использовать бытовой электронный тестер-ампервольтметр для измерения амплитуды напряжения такой формы нельзя. Он рассчитан на измерение строго гармонического колебаний, а в нашем случае он будет очень сильно врать, ибо мы имеем дело с переменным импульсным напряжением промодулированным по амплитуде током удвоенной промышленной частоты. Частота модуляции 100 Гц, частота заполнения: 10КГц – двунаправленный меандр, амплитуда сигнала Uа = 18 Вольт. Отдельных выбросов амплитудой более 18 В осциллограф не зафиксировал. Так как заполнение меандр, то действующее значение напряжения будет целиком подчиняться закону модулирующего сигнала, а поэтому в нашем случае Uдейст =Uа/√2= 18/1,41 = 12,7В. Именно поэтому в паспорте на ЭТ указано, что выходное напряжение составляет ~12В.

Глядя на эпюры и сопоставляя их с ТТХ и ВАХ становится ясно, что при действии прямого тока на СД, мы едва ли выйдем за пределы допустимых параметров. Заявленный предельный прямой импульсный ток для одиночного СД в 60 мА достижим только при Uпр > 3,9 В, т.е. при напряжении питания на ленте более 20 В (см. вольт-амперные характеристики), но таких значений мы, как видим все равно не достигаем. С другой стороны, легко видно, что длительность воздействия напряжения свыше упомянутых и совершено безопасных 15,5 В (при которых ток через СД не более 30 мА) составляет не более 8% от общего времени питания от рассматриваемого ЭТ. Думаю едвали это опасно для СД. Ок. Запомним. Проверим чуть позже.
Теперь прикинем, не выйдем ли мы за пределы допустимого обратного напряжения и при воздействии обратного полупериода напряжения. В этом случае сопротивлением R в триаде можно пренебречь, Uа (18В) равномерно распределится по СД в триаде, и амплитудное значение напряжения на диода составит 6 В, что больше заявленных 5В. Но, длительность превышения опять не превысит 8% от общего времени работы СД, и второе, что меня очень сильно смутило, это то, что допустимое обратное напряжение, во всех даташитах как то уж очень подозрительно одинаково для разных серий светодиодов. Оно всегда равно 5В. Ок. Запомним и это и начнем подводить первые итоги.

Итак, теоретически, при прямом полупериоде мы не должны превысить прямых токов для СД, а при обратном полупериоде, превышение заявленного допустимого обратного напряжения мало, - как по продолжительности воздействия, так и по абсолютному значению.

Ну что, же теперь пора проверить наши выводы на практике. Давайте практически оценим световую и тепловую отдачу. Если свет и тепло выделяемые лентой не превысят тех, что выделяются при питании от стандартного источника питания для СД лент, то значит наш положительный теоретический вывод будет подтвержден.

Запитав ленту от ЭТ встречно параллельно измеряем светоотдачу единичного рабочего участка ленты из трех излучаетелей и сравниваем значения с характеристикой на Рис. 7. Люксметр фиксирует значения на уровне 970-990 люкс, что соответствует питанию ленты от источника напряжения чуть ниже 10 В!!! Нагрев ленты оказался ничтожны и через 1 час работы не превысил 35 градусов Цельсия, при температуре окружающего воздуха 25°C. В аналогичных условиях, но при питании постоянным током Uпр=12В, лента нагревалас до 49°C, а создаваемая освещенность составляла около 2000 Люкс. Эти результаты совершенно однозначно говорят о том, что несмотря на все маркетологические увещевания, полупроводник при питании от ЭТ работает в недогруженном режиме и ожидать его скорой смерти едва ли приходится. Кстати, посмотрев на Рис. 9, и произведя замеры площадей фигур светло синего и кирпичного цветов можно понять, почему именно СД светятся так, будто питаются от 10В. Дело в том, что светло-синяя фигура характеризует условия, при которых СД лента совершает полезную работу (помним, что это происходит при Uпит > 7 Вольт). Светло-коричневая фигура за вычетом светло-синей – это условия, при которых СД лента простаивает – не работает! Соотношение их площадей как раз 10 к 8. Все сходится, однако, хе-хе.

И тем не менее, на фоне положительного ответа второй вопрос нашего исследования, мысль о пусть и незначительном, но все же превышении допустимого обратного напряжения мне не давала покоя. Короче, я решил по жесткому: подключил ленту к источнику постоянного тока и плавно увеличивая обратное напряжение стал ожидать, когда же миллиамперметр зафиксирует электрический пробой. Доведя обратное напряжение на отдельном светодиоде почти до 20 Вольт я так и не добился пробоя. Обратный ток при этом не превышал 15 мкА. Оставив все это дело почти на сутки – я убедился, что ничего с излучателями не случилось, а уж видимо от коротких импульсных воздействий 6В против 5В и подавно ничего не должно произойти в обозримой перспективе.

ЛикБез > Разное, но полезное

Как запитать светодиод от сети 220 В.
Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину - в обратную) к нему приложится полное амплитудное напряжение сети - 315 вольт! Откуда такая цифра? 220 В - это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так - вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение - не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I - необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.
Наиболее распространённые ошибки при подключении светодиодов
1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться - в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды
Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален - напряжение питания такого светодиода может лежать в пределах от З до 14 вольт - для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.
Отличительные качества мигающих сеетодиодое:
Малые размеры
Компактное устройство световой сигнализации
Широкий диапазон питающего напряжения (вплоть до 14 вольт)
Различный цвет излучения.
В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно - 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию - мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.
Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.
Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2).

В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора - он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.
Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.
Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.
Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png