ИНСТРУКЦИЯ

по обслуживанию оборудования ЦТП (ИТП)

1. ПОРЯДОК ПОЛЬЗОВАНИЯ ИНСТРУКЦИЕЙ

1. Инструкция должна быть вывешена на рабочем месте.

2. Инструкция выдается под расписку на руки оператору теплового пункта, остальные обязаны расписаться на контрольном экземпляре инструкции.

3. Контрольный экземпляр инструкции должен храниться у главного энергетика (механика) предприятия (организации, учреждения).

2. ОБЩИЕ ПОЛОЖЕНИЯ

1. Оператор теплового пункта находящийся на дежурстве несет ответственность за каждую аварию и за все повреждения или несчастные случаи, происшедшие по причине нарушения правил и инструкций.

2. Оператор теплового пункта непосредственно осуществляет осмотр, подготовку к пуску оборудования центрального теплового пункта, обслуживание и остановку оборудования. При необходимости привлекают других работников предприятия (организации).

3. В ЦТП должна находиться следующая документация:


  • тепломеханического оборудования;

  • электрооборудования;

  • КИП и А;

  • разводящих сетей после ЦТП с присоединенными зданиями и их характеристиками;

б) Температурный график;

в) Сменный журнал.

4. График ППР.

5. Ремонтный журнал.

6. Данная инструкция, должностная инструкция по ТБ и охране труда.

7. Инструкция по эксплуатации автоматики.

8. Инструкция по эксплуатации автоматики включения насосов.

9. Паспорт ЦТП.

В ЦТП должно быть также:

1. Таблица с указанием ответственных за эксплуатацию тепломеханического оборудования, электрооборудования, оборудования КИП и А и их телефонами.

2. На входных дверях табличка с номером ЦТП и указанием его принадлежности.

В ЦТП должен находиться запас эксплуатационных материалов: смазка, сальниковая набивка, паранит и т.д.

В ЦТП должна поддерживаться чистота и порядок, как при эксплуатации, так и при ремонтных работах.

Допуск посторонних лиц в ЦТП возможен только с разрешения руководства или ответственных лиц за исправное состояние и безопасную эксплуатацию ТУ и ТС.

3. Основные технические данные ЦТП

Центральный тепловой пункт - ЦТП предназначается для снабжения теплом систем отопления систем приточной вентиляции, кондиционирования воздуха и централизованного горячего водоснабжения подсоединенных к нему объектов.

ЦТП состоит из объемных элементов-агрегатов заводского изготовления.

Тепломеханическая часть ЦТП собирается из следующих агрегатов:

1. Агрегат теплового узла с водонагревателем горячего водоснабжения.

2. Агрегат водомерного узла с повысительными (хозяйственными) насосами.

3. Агрегат водонагревателя отопления с циркуляционными насосами.

4. Агрегат подпиточных насосов отопления.

5. Агрегат циркуляционных насосов системы горячего водоснабжения.

Источником тепла для ЦТП является __ район ОАО Московской теплосетевой компании с круглосуточной работой тепловых сетей при качественном регулировании. Теплоноситель - перегретая вода с параметрами 150 - 70°С.

ЦТП оборудуется ремонтным освещением при напряжении 36 В, водопроводом, канализацией, приточно-вытяжной вентиляцией, телефоном.

4. Схема центрального теплового пункта

Присоединение ЦТП к тепловым сетям осуществляется следующим образом:

Сетевая вода поступает в межтрубное пространство II-й ступени водоподогревателя горячего водоснабжения, а затем в систему отопления зданий, присоединенных к тепловым сетям по зависимой схеме - через элеваторы. В водоподогревателе отопления сетевая вода, проходя по латунным трубкам, отдает свое тепло местной воде системы отопления, проходящей в межтрубном пространстве.

Вода из обратных трубопроводов систем отопления и из водоподогревателя далее возвращается в наружные тепловые сети.

Водопроводная вода, проходя по трубам водоподогревателя водоснабжения I-й ступени, нагревается обратной водой примерно до 30°С, затем догревается во II-й ступени до 60°С.

В ЦТП для нужд горячего водоснабжения принят к установке скоростной водоподогреватель с латунными трубками диаметром 14-16, длина секции 4,0 м.

Во избежание вскипания нагреваемой воды предусматривается установка приборов автоматики, отключающей подачу сетевой воды при повышении температуры нагреваемой воды выше 60°С и снова включающих подачу сетевой воды при падении температуры ниже 60°С.

Для учета расхода тепла предусмотрен теплосчетчик типа ____________________. Первичные катушки, диаметром ______ мм установлены на прямом и обратном трубопроводах сетевой воды. На линии подпитки системы отопления установлен расходомер типа ____________, диаметром _____ мм.

Для учета расхода воды на горячее водоснабжение предусматривается установка на водопроводной линии, идущей к подогревателю, горячеводного водомера типа ____________, диаметром ____ мм.

Для циркуляции горячей воды в системе горячего водоснабжения устанавливается два насоса (один резервный).

Для циркуляции местной воды системы отопления устанавливается два насоса (один резервный) мощностью в зависимости от теплопотерь и емкости системы.

Подпитка независимой системы отопления осуществляется подпиточными насосами (один резервный).

В ЦТП установлены три водопроводных повысительных насоса мощностью и напором, зависящим от количества разбираемой воды и этажности зданий. Во избежание повышения давления в местной системе холодного водоснабжения выше 60 м.вод.ст., устанавливаются 2 регулирующих клапана “после себя”.

5. Тепломеханическая часть

1. В агрегат теплового узла с водоподогревателями горячего водоснабжения входят:

а) стальные головные задвижки;

б) стальные задвижки отопления;

в) стальные секционные задвижки, отключающие:

II-ю ступень от системы отопления;

II-ю ступень от первой ступени;

I-ю ступень от системы отопления.

Помимо этого на агрегате методом сварки установлены грязевики на подающей линии и грязевики на обратной линии из систем отопления, манометры, термометрические гильзы с термометрами, пробковые и 3-х ходовые латунные краны, соединительные импульсные трубки, термореле на линии ГВС, автоматика типа ____________________________________.

6. Ежедневный технический осмотр оборудования ЦТП

Оператор теплового пункта должен ежедневно выполнять следующий объем работ:

1. Произвести внешний осмотр всего оборудования.

2. Проверить нет ли подтекания воды через сальники насосов, задвижек и фланцевые соединения трубопроводов, при необходимости подтянуть сальники и фланцевые соединения.

3. Проверить работу резервных и дополнительных насосов путем кратковременного включения их в работу с щита управления.

4. Включить подпиточный насос, проверить работу подпитки местной системы отопления.

5. Проверить работу насосов и электродвигателей на нагрев подшипников, вибрацию и посторонние шумы; при необходимости принять меры по выявлению причин и устранению неисправностей.

6. Проверить на щите управления автоматикой положение переключателей режимов работы и состояние сигнальных ламп; переключатели должны быть установлены в положение “Автоматическое”, на щите должны гореть сигнальные лампы работающих насосов и сигнальная лампа “Питание”.

7. Убедиться в закрытии дверей электрошкафов.

8. Снять показания контрольно-измерительных приборов (каждые ___ часа), записать их в сменный журнал и сравнить о нормативными параметрами:

(давление на прямом и обратном трубопроводах, температуру на прямом и обратном теплопроводах, давление и температуру в местных системах теплопотребления и т.д.).

В случае расхождения параметров принять меры по выявлению и устранению причин.

7. Устройство оборудования ЦТП

Водоподогреватели горячего водоснабжения набираются из отдельных секций в зависимости от нагрузки горячего водоснабжения.

Подогреватели рассчитаны на рабочее давление 10 атм и температуру 150°С и должны подвергаться гидравлическим испытаниям с обеих сторон на 12,5 атм.

К водоподогревателю относится также входной и выходной патрубки и соответствующее количество калачей для соединения трубного пучка. Патрубок для выхода местной нагретой воды имеет штуцер для ввертывания термореле. Отдельные секции водоподогревателя соединяются посредством фланцев и болтов.

Водоподогреватели покрываются изоляцией.

Оператор ЦТП обязан:

1. Следить за плотностью фланцевых соединений водоподогревателей (крепление фланцевых соединений производится постепенным завинчиванием гаек “накрест”).

2. Следить за запорной арматурой, задвижки должны всегда находиться в таком состоянии, чтобы их можно было легко открыть и закрыть. Это достигается периодической смазкой шпинделя, нормальной затяжкой сальника и предотвращением прикипания уплотнительных поверхностей.

3. При появлении течи в сальнике, последний необходимо затягивать.

4. Следить за наружной поверхностью задвижек, вентилей, кранов, поверхность должна быть чистой, а резьба болтов смазана маслом с разведенным в нем графите.

Примечание : обслуживающий персонал должен знать, что запрещается применение добавочных рычагов при открывании и закрывании задвижек.

5. В период летнего ремонта производить снятие калачей, промывку, чистку труб.

Уход за грязевиками.

При необходимости прочистки грязевика:

1. Отключают ЦТП на входе и выходе.

2. Разбалчивают люк, вытаскивают сетки и промывают их. Грязь, скопившуюся, на дне, убирают.

3. Частичные чистки грязевиков осуществляются периодическими продувками незначительных количеств сетевой воды.

Уход за кранами.

1. Не реже одного раза в смену, провернуть латунный кран.

2. При профилактических ремонтах запорные органы кранов очищать и смазывать.

3. Набивать сальники пробковых кранов новой набивкой.

Уход за обратными клапанами.

В случае поломки сетевой шпильки или ушек заслонки клапана необходимо:

1. Закрыть задвижки до и после клапанов.

2. Вскрыть крышку клапана и произвести необходимый ремонт.

3. При обнаружении течи из-под крышки обратного клапана меняется прокладка.

4. При нарушении плотности корпуса обратного клапана заменяют новыми.

Работа насосов и правила их включения и отключения.

Пуск насоса:

Перед началом пуска насоса необходимо:

1. Проверять наличие масла в подшипниках и заполнение насоса водой.

2. Открыть задвижку на всасывающей линии и проверить закрытие задвижки на нагнетательной линии.

3. Проверить исправность пускового устройства электродвигателя.

4. Включить электродвигатель, проверяя при этом направление его вращения.

5. После того, как насос развил нормальное число оборотов и нормальное давление, медленно открывают запорную задвижку на нагнетательной линии.

При работе насоса необходимо:

1. Следить за смазкой подшипников, периодически доливать чистое масло.

2. При повышении температуры подшипников более 60 0 С нужно усиленно подавать смазку для охлаждения и выяснить причину повышения температуры.

3. После каждых 500 часов работы насосов полностью менять в подшипниках грязное масло, а камеры промывать керосином.

Остановка центробежного насоса производится в следующей последовательности:

1. Закрыть задвижку на нагнетательной линии и кран на манометре.

2. Выключить электродвигатель.

3. Закрыть задвижку на всасывающей линии.

4. При переходе на другой насос дождаться полной остановки первого.

Неисправности в работе центробежного насоса.

1. Насос не подает воду (вращение вала в обратном направлении, насос не залит водой, велика высота всасывания).

2. Просачивается вода через сальниковое уплотнение.

3. Не открывается или перекошен обратный клапан на нагнетательном патрубке.

4. Недостаточное напряжение электрической сети (недостаточное число оборотов).

5. Неправильное включение фазы или нет одной фазы (вращение эл. двигателя в обратном направлении, гудение эл. двигателя).

6. Снижен напор насоса (изношено колесо, загрязнение насоса).

Обслуживание систем автоматики и КИП.

Обслуживающий персонал обязан:

1. Периодически продувать импульсные линии и 3-ходовые краны под манометрами и электро-контактными манометрами (ЭКМ).

2. Знать и уметь отключать в шкафу автоматики аварийно-включенный циркуляционный или хозяйственный насос.

3. Уметь заменить импульсные трубки и термореле.

4. Вовремя заливать термометрические гильзы маслом.

5. Следить за исправным состоянием термометров и манометров.

8. Еженедельное техническое обслуживание ЦТП

Провести следующие работы:

1. Очистить оборудование от ржавчины, пыли и подтеков масла;

2. Проверить наличие смазки на шпинделях задвижек, при необходимости смазать.

3. Проверить состояние сальниковых уплотнений задвижек (подтекание воды через сальниковые уплотнения не допускается).

4. На ощупь проверить нагрев корпусов насосов и электродвигателей во время работы насосных агрегатов, в случае, если температура корпуса окажется выше 60-70°С выявить причины, способствующие перегреву и устранить их.

5. Проверить состояние сальниковых уплотнений насоса (при работе насоса вода из сальника должна просачиваться отдельными каплями или тонкой струйкой), при необходимости подтянуть сальниковые уплотнения или заменить сальниковую набивку.

6. Определить по маслоуказателям наличие смазки в масляных ваннах (корпусах подшипников), при необходимости пополнить смазку до установленного уровня.

7. Определить состояние упругих муфт насосных агрегатов прокручиванием (вручную) вала остановленного агрегата, в случае износа резиновых пальцев - заменить их.

8. Проверить надежность крепления насосных агрегатов к рамам, подтянуть болтовые соединения.

9. Проверить работу всех резервных и дополнительных насосов кратковременным включением их в работу путем имитации изменения параметров настройки на ЭКМ или другим методом в ручном режиме.

10. Внешним осмотром проверить надежность заземления всего электрооборудования.

11. Определить работоспособность аварийного освещения ЦТП.

12. Убедиться в отсутствии внутри сборок и электрических шкафов посторонних предметов, а также влаги и коррозии деталей.

13. Установить характер гудения работающих контакторов и магнитных пускателей (чрезмерного гудения, дребезжания не должно быть).

14. Визуально проверить, нет ли перегрева контактных соединений шин и других контактных деталей (подгорания, изменения цвета шин или контактных частей, запаха озона).

15. Определить состояние предохранителей, перегоревшие или нестандартные плавкие предохранители - заменить).

16. Убедиться в целостности манометров и термометров и правильности их показаний.

17. Проверить состояние гильз термометров, при необходимости очистить их от грязи и долить масло.

18. Продуть манометры кратковременным открытием трехходовых кранов.

19. Произвести корректировку настройки тепловой автоматики.

20. Подкрасить оборудование и трубопроводы (при необходимости).

21. Сделать химический анализ сетевой воды с целью определения гидравлической плотности подогревателей (1 раз в месяц).

22. Проверить наличие и ведение технической документации теплового пункта.

23. Установить наличие и исправность защитных диэлектрических и противопожарных средств (защитные средства с истекшими сроками годности или неисправные - заменить).

24. Произвести влажную уборку помещения теплового пункта.

25. Сделать запись в оперативном: журнале о выполнении еженедельного технического обслуживания.

Все замечания и неисправности, выявленные при техническом осмотре и обслуживании, подлежат устранению. После устранения неисправностей убедиться в нормальной работе инженерных систем и оборудования. По окончании технического обслуживания все инженерные системы и оборудование тепловых пунктов должны быть приведены в исходное состояние, обеспечивающее нормальную работу всех систем.

9. Ремонт ЦТП

В соответствии с графиком ППР производятся ремонты: текущие - один раз в три месяца, капитальные не реже одного раза в год.

Водоподогреватели подлежат ежегодной промывке, а при сопротивлении более 0,3 мм.в.ст. механической чистке или кислотной промывке, а затем гидравлическим испытаниям на 12 атм.

10. Оператором теплового пункта запрещено:

1. Открывать эл.шкафы и производить в них ремонтные работы.

2. Отключать зл.двигатели от сети.

3. Производить работы на эл. оборудовании ЦТП.

11. Оператор теплового пункта должен:

1. Вести периодическую запись параметров теплоносителя и горячей воды.

2. Следить за часовым расходом сетевой и горячей воды.

4. Вести запись в журнале выявленных дефектов оборудования.

5. Записывать в журнале, какие насосы работают в настоящее время, какие переключения произошли или произведены оператором теплового пункта.

6. Периодически обходить ЦТП записывать дефекты и параметры в специальном журнале обхода.

7. Совместно с ответственным лицом за исправное состояние и безопасную эксплуатацию ТУ и ТС допускать инспектора “Мосгосэнергонадзора” к проверке работы оборудования ЦТП и технической документации.

12. Прием и сдача дежурства

1. Принимающий смену оператор теплового пункта обязан явиться на дежурство согласно утвержденному графику (в случае болезни он должен заблаговременно, до начала смены, поставить в известность главного энергетика (механика) или инженера.

2. Принимающий смену оператор теплового пункта обязать явиться для приемки смены за 20 минут до начала работы и ознакомиться с записями в журнале со всеми распоряжениями поступившими во время его предыдущего дежурства, с изменениями в графике, с неполадками в работе оборудования.

3. Сдавший смену обязан ознакомить принимающего дежурство с состоянием и режимом работы сдаваемого им оборудования. Необходимо сообщить какие насосы находятся в резерве или в ремонте, какие ремонтные работы производились или будут производиться в ближайшую смену.

4. Сдающий смену обязан произвести уборку в помещении ЦТП и оборудования.

13. Принимающий смену оператор теплового пункта отвечает:

1. За неисправность и неудовлетворительное состояние оборудования предыдущей смены, на неотмеченные записи в журнале при приеме смены.

2. За наличие записей в журнале выявленных дефектов оборудования и за снятие показателей.

Тепловой пункт – комплекс устройств, расположенный в обобщенном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя.

Тепловой пункт является связующим звеном между тепловой сетью и системами потребления теплоты. Системы отопления, вентиляции и горячего водоснабжения производственных, жилых или общественных зданий присоединяются к тепловому пункту. Практика показывает, что существует огромное количество возможных сочетаний схем абонентских присоединений к закрытым и открытым теплосетям водяных и паровых систем центрального теплоснабжения.

Таким образом, основное назначение теплового пункта прием, подготовка теплоносителя и подача его в системы теплопотребления, а также возврат использованного теплоносителя в тепловую сеть. Тепловые пункты бывают центральными и индивидуальными.

Центральный тепловой пункт (ЦТП) – пункт подключения систем теплоснабжения микрорайона к распределительным сетям городской тепловой сети и водопровода и управления системами отопления, вентиляции и водоснабжения зданий.

Центральные тепловые пункты широко применяются на промышленных предприятиях, а также в городских жилых рай онах. Обычно ЦТП размещают в отдельных специальных зданиях. В ЦТП устанавливаются блоки подогревателей горячего водоснабжения (при независимой схеме); групповая смесительная установка сетевой воды; подкачивающие насосы холодной водопроводной воды, а при необходимости и сетевой; регуляторы и контрольно – измерительные приборы (КИП).

При использовании ЦТП уменьшаются затраты на сооружение подогревательной установки горячего водоснабжения, насосных установок и систем автоматического регулирования, но возрастают затраты на сооружение участка тепловой сети между ЦТП и отдельными зданиями, так как вместо двухтрубной сети требуется сооружать четырехтрубную или трехтрубную при тупиковой схеме ГВС. В настоящее время в ЦТП часто размещают не только теплоэнергетическое оборудование, но и водопроводное, насосное противопожарное, электротехническое и низковольтное оборудование, проведя диспетчеризацию и превратив их в энергетические центры обслуживания населения. При этом, после ЦТП прокладываются четырех-, шести-, восьмитрубные распределительные тепловые сети к зданиям, а часто и водопроводные, противопожарные и другие линии и коммуникации .

На рис. 1.3 изображена схема ЦТП, к которому с помощью четырехтрубной сети присоединены потребители отопления и горячего водоснабжения. ЦТП связан с источником прямым (I) и обратным (II) трубопроводами тепловой сети. Отопление осуществляется по подающему (ПО) и обратному (ОО) трубопроводам отопления, а горячее водоснабжение – по подающему (ПГВС) и обратному (ОГВС) трубопроводам ГВС. Сырая вода из водопровода в систему ГВС подается по трубопроводу СВ.


1 – обратный клапан; 2, 7 – подогреватели сырой воды для ГВС; 3 – смесительный насос; 4 – насос системы ГВС; 5 – регулятор отопления; 6 – регулятор температуры горячей воды в системе ГВС; 8, 9 – трубопроводы подачи и рециркуляции горячей воды у потребителей; 10 – смесительный насос – элеватор; 11 – нагревательное устройство отопления.

Для обеспечения постоянной температуры горячей воды в системе ГВС (не ниже 50°С) применяется циркуляционная схема ГВС. Циркуляция производится насосом 4 (рис. 1.3). Во время малого расхода горячей воды (ночное и дневное время) давление воды перед обратным клапаном 1 повышается и возрастает циркуляция воды в системе ГВС. В случае большого водоразбора давление перед клапаном 1 снижается, и уменьшается циркуляционный расход, но возрастает расход воды в подающей линии СВ и стояках 8, поэтому снижается выстывание воды по пути к потребителю.

Устройство индивидуальных тепловых пунктов (ИТП) обязательно в каждом жилом и общественном здании независимо от наличия ЦТП, при этом в ИТП предусматриваются только те функции, которые необходимы для присоединения систем потребления теплоты данного здания и не предусмотрены в ЦТП.

ИТП – пункт подключения систем отопления, вентиляции и водоснабжения здания к распределительным сетям системы теплоснабжения микрорайона.

При теплоснабжении от котельной мощностью 35 МВт и менее рекомендуется предусматривать в зданиях только ИТП. В промышленных зданиях проектируются только ЦТП.

Любая из применяемых на практике схем присоединения потребителей теплоты к тепловым сетям должна обеспечивать минимальные расходы воды в тепловых сетях, экономию теплоты за счет применения регуляторов расхода и ограничителей максимального расхода сетевой воды, корректирующих насосов или элеваторов с автоматическим регулированием, снижающих температуру воды, поступающей в системы отопления, вентиляции и кондиционирования воздуха.

Здравствуйте! Тепловой пункт является узлом управления систем теплоснабжения. В нем предусмотрены такие функции, как учет расхода тепла и распределение теплоносителя по отдельным системам отопления, ГВС и вентиляции. С этой точки зрения тепловые пункты подразделяются на индивидуальные тепловые пункты (ИТП) и центральные тепловые пункты (ЦТП). ИТП обслуживает отдельные здания, либо часть здания, если велика тепловая нагрузка на здание. Про устройство ИТП я писал . Центральный же тепловой пункт (ЦТП) обслуживает группу зданий. Располагают ЦТП чаще в отдельно стоящем здании. Тепловая нагрузка жилых зданий и зданий соцкультбыта, подключенных от ЦТП составляет, как правило, от 2-3 Гкал/час и выше.

В здании центрального теплового пункта смонтированы приборы учета тепловой энергии, и приборы контроля (манометры, термометры). Также здесь располагают водоподогреватели, циркуляционно-повысительные насосы отопления. Очень часто в ЦТП спутником отопления проложены сети холодного водоснабжения, и расположены насосы ХВС.

Основными показателями для работы ЦТП являются:

1. Температура tгвс горячего водоснабжения

2. Температура t1сетевой воды на отопление

3. Давление в зданиях во внутренних системах отопления и ГВС

4. Обеспечение температуры обратной сетевой воды t2 в пределах утвержденного температурного графика отпуска тепла (контроль за перегревом по t2)

5. Обеспечение нормальной работы регуляторов давления, расхода, температуры в ЦТП.

Центральные тепловые пункты предъявляют к теплоисточникам (котельным и ТЭЦ) ряд требований, а именно:

а) Обеспечение температуры в подающем трубопроводе t1 согласно утвержденного температурного графика отпуска тепла.

б) Обеспечение необходимого расчетного расхода воды на отопление и ГВС в соответствии с согласованными режимами работы тепловых сетей.

Центральный тепловой пункт служит важным узлом управления, регулирования и контроля внутренних систем теплоснабжения присоединенных к нему зданий. Выше я уже писал, что от правильной работы ЦТП зависит обеспечение необходимой температуры внутренней помещений. Также от нормальной работы ЦТП зависит температура горячего водоснабжения, и возвращение к теплоисточнику обратной сетевой воды с температурой t2 не выше, чем по температурному графику теплоснабжения.

Основными задачами наладки центрального теплового пункта (ЦТП) являются:

1. Настройка регуляторов температуры

2. Настройка регуляторов расхода

3. Проверка производительности и нормальной работы водоподогревателей

4. Регулировка и контроль работы циркуляционно – повысительных насосов

В заключение можно сказать, что ЦТП – это важнейший элемент схемы тепловых сетей, узловая точка подключения систем тепловодоснабжения зданий к распределительным сетям теплоснабжения и часто водопровода и управления системами отопления, вентиляции, холодного и горячего водоснабжения зданий.

Тепловой пункт (ТП) - это комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Тепловой пункт и присоединённое здание

Назначение

Основными задачами ТП являются:

  • Преобразование вида теплоносителя
  • Контроль и регулирование параметров теплоносителя
  • Распределение теплоносителя по системам теплопотребления
  • Отключение систем теплопотребления
  • Защита систем теплопотребления от аварийного повышения параметров теплоносителя
  • Учет расходов теплоносителя и тепла

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых, определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП. Различают следующие виды ТП :

  • Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • Блочный тепловой пункт (БТП). Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Источники тепла и системы транспорта тепловой энергии

Источником тепла для ТП служат теплогенерирующие предприятия (котельные , теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей. Тепловые сети подразделяются на первичные магистральные теплосети , соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети, соединяющие ТП с конечными потребителями. Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом .

Магистральные тепловые сети, как правило, имеют большую протяженность (удаление от источника тепла до 10 км и более). Для строительства магистральных сетей используют стальные трубопроводы диаметром до 1400 мм. В условиях, когда имеется несколько теплогенерирующих предприятий, на магистральных теплопроводах делаются закольцовки, объединяющие их в одну сеть. Это позволяет увеличить надёжность снабжения тепловых пунктов, а, в конечном счёте, потребителей теплом. Например, в городах, в случае аварии на магистрали или местной котельной, теплоснабжение может взять на себя котельная соседнего района. Также, в некоторых случаях, общая сеть даёт возможность распределять нагрузку между теплогенерирующими предприятиями. В качестве теплоносителя в магистральных теплосетях используется специально подготовленная вода . При подготовке в ней нормируются показатели карбонатной жёсткости, содержания кислорода, содержания железа и показатель pH. Неподготовленная для использования в тепловых сетях (в том числе водопроводная, питьевая) вода непригодна для использования в качестве теплоносителя, так как при высоких температурах, вследствие образования отложений и коррозии, будет вызывать повышенный износ трубопроводов и оборудования. Конструкция ТП предотвращает попадание относительно жёсткой водопроводной воды в магистральные теплосети.

Вторичные тепловые сети имеют сравнительно небольшую протяженность (удаление ТП от потребителя до 500 метров) и в городских условиях ограничиваются одним или парой кварталов. Диаметры трубопроводов вторичных сетей, как правило, находятся в пределах от 50 до 150 мм. При строительстве вторичных тепловых сетей могут использоваться как стальные, так и полимерные трубопроводы. Использование полимерных трубопроводов наиболее предпочтительно, особенно для систем горячего водоснабжения, так как жёсткая водопроводная вода в сочетании с повышенной температурой приводит к интенсивной коррозии и преждевременному выходу из строя стальных трубопроводов. В случае с индивидуальным тепловым пунктом, вторичные тепловые сети могут отсутствовать.

Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети .

Системы потребления тепловой энергии

В типичном ТП имеются следующие системы снабжения потребителей тепловой энергией:

Принципиальная схема теплового пункта

Схема ТП зависит с одной стороны от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях, на котельных и ТЭЦ существуют системы подпитки , источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего, часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру, вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Правильность функционирования обору­дования теплового пункта определяет эконо­мичность использования и подаваемой потре­бителю теплоты, и самого теплоносителя. Тепловой пункт является юридической грани­цей, что предполагает необходимость его оборудования набором контрольно-измерительных приборов, позволяющих определить взаимную ответственность сторон. Схемы и оборудование тепловых пунктов необходимо определять в соответствии не только с тех­ническими характеристиками местных систем теплопотребления, но и обязательно с харак­теристиками внешней тепловой сети, режимом работы ее и теплоисточника.

В разделе 2 рассмотрены схемы присоеди­нения всех трех основных видов местных систем. Рассматривались они раздельно, т. е. считалось, что они присоединены как бы к общему коллектору, давление теплоносите­ля в котором постоянно и не зависит от расхода. Суммарный расход теплоносителя в коллекторе в этом случае равен сумме расходов в ветвях.

Однако тепловые пункты присоединяют­ся не к коллектору теплоисточника, а к тепловой сети, и в этом случае изменение расхода теплоносителя в одной из систем неизбежно отразится на расходе теплоноси­теля в другой.

Рис.4.35. Графики расхода теплоносителя:

а - при подключении потребителей непосредст­венно к коллектору теплоисточника; б - при под­ключении потребителей к тепловой сети

На рис. 4.35 графически показано изме­нение расходов теплоносителя в обоих слу­чаях: на схеме рис. 4.35, а системы отопле­ния и горячего водоснабжения присоеди­нены к коллекторам теплоисточника раздель­но, на схеме рис. 4.35,б те же системы (и с тем же расчетным расходом тепло­носителя) присоединены к наружной тепловой сети, имеющей значительные потери давления. Если в первом случае суммарный расход теплоносителя растет синхронно с расходом на горячее водоснабжение (режимы I , II, III ), то во втором, хотя и имеет место рост расхода теплоносителя, одновременно авто­матически снижается расход на отопление, в результате чего суммарный расход тепло­носителя (в данном примере) составляет при применении схемы рис. 4.35,б 80% расхода при применении схемы рис. 4.35,а. Степень сокращения расхода воды определяет соотно­шение располагаемых напоров: чем больше соотношение, тем больше снижение суммар­ного расхода.

Магистральные тепловые сети рассчиты­ваются на среднесуточную тепловую нагруз­ку, что существенно снижает их диаметры, а следовательно, затраты средств и металла. При применении в сетях повышенных гра­фиков температур воды возможно и дальней­шее снижение расчетного расхода воды в теп­ловой сети и расчет ее диаметров только на нагрузку отопления и приточной венти­ляции.

Максимум горячего водоснабжения мо­жет быть покрыт с помощью аккумулято­ров горячей воды либо путем использо­вания аккумулирующей способности отапливаемых зданий. Поскольку применение акку­муляторов неизбежно вызывает дополнитель­ные капитальные и эксплуатационные затра­ты, то их применение пока ограничено. Тем не менее в ряде случаев применение крупных аккумуляторов в сетях и при групповых тепловых пунктах (ГТП) может быть эффективно.

При использовании аккумулирующей способности отапливаемых зданий имеют место колебания температуры воздуха в по­мещениях (квартирах). Необходимо, чтобы эти колебания не превышали допустимого предела, в качестве которого можно, напри­мер, принять +0,5°С. Температурный режим помещений определяется рядом факторов и поэтому трудно поддается расчету. Наиболее надежным в данном случае является метод эксперимента. В условиях средней полосы РФ длительная эксплуатация показывает возможность применения этого способа по­крытия максимума для подавляющего боль­шинства эксплуатируемых жилых зданий.

Фактическое использование аккумули­рующей способности отапливаемых (в основ­ном жилых) зданий началось с появления в тепловых сетях первых подогревателей горячего водоснабжения. Так, регулировка теплового пункта при параллельной схеме включения подогревателей горячего водо­снабжения (рис. 4.36) производилась таким образом, что в часы максимума водоразбора некоторая часть сетевой воды недодавалась в систему отопления. По этому же принципу работают тепловые пункты при открытом водоразборе. Как при открытой, так и закрытой системе теплоснабжения наиболь­шее снижение расхода в отопительной системе имеет место при температуре сете­вой воды 70 °С (60 °С) и наименьшее (нуле­вое) - при 150°С.

Рис. 4.36. Схема теплового пункта жилого дома с параллельным включением подогре­вателя горячего водоснабжения:

1 - подогреватель горячего водоснабжения; 2 - эле­ватор; 3 4 - цир­куляционный насос; 5 - регулятор температуры от датчика наружной температуры воздуха

Возможность организованного и заранее рассчитанного использования аккумулирую­щей способности жилых зданий реализо­вана в схеме теплового пункта с так называемым предвключенным подогревате­лем горячего водоснабжения (рис. 4.37).

Рис. 4.37. Схема теплового пункта жилого дома с предвключенным подогревателем го­рячего водоснабжения:

1 - подогреватель; 2 - элеватор; 3 - регулятор температуры воды; 4 - регулятор расхода; 5 - циркуляционный насос

Преимуществом предвключенной схемы является возможность работы теплового пункта жилого дома (при отопительном графике в тепловой сети) на постоянном расходе теплоносителя в течение всего отопи­тельного сезона, что делает гидравлический режим тепловой сети стабильным.

При отсутствии автоматического регули­рования в тепловых пунктах стабильность гидравлического режима явилась убедитель­ным аргументом в пользу применения двухступенчатой последовательной схемы включения подогревателей горячего водо­снабжения. Возможности применения этой схемы (рис. 4.38) по сравнению с предвклю­ченной возрастают из-за покрытия определен­ной доли нагрузки горячего водоснабжения за счет использования теплоты обратной воды. Однако применение данной схемы в основном связано с внедрением в тепловых сетях так называемого повышенного графика температур, с помощью которого и может достигаться примерное постоянство расходов теплоносителя на тепловом (например, для жилого дома) пункте.

Рис. 4.38. Схема теплового пункта жилого дома с двухступенчатым последовательным включением подогревателей горячего водо­снабжения:

1,2 - 3 - элеватор; 4 - регулятор температуры воды; 5 - регулятор расхода; 6 - перемычка для переклю­чения на смешанную схему; 7 - циркуляционный насос; 8 - смесительный насос

Как в схеме с предвключенным подогре­вателем, так и в двухступенчатой схеме с последовательным включением подогрева­телей имеет место тесная связь между отпуском теплоты на отопление и горячее водоснабжение, причем приоритет обычно отдается второму.

Более универсальной в этом отношении является двухступенчатая смешанная схема (рис. 4.39), которая может применяться как при нормальном, так и при повышенном отопительном графике и для всех потреби­телей независимо от соотношения нагрузок горячего водоснабжения и отопления. Обяза­тельным элементом обеих схем являются смесительные насосы.

Рис. 4.39. Схема теплового пункта жилого дома с двухступенчатым смешанным вклю­чением подогревателей горячего водоснабже­ния:

1,2 - подогреватели первой и второй ступеней; 3 - элеватор; 4 - регулятор температуры воды; 5 - циркуляционный насос; 6 - смесительный на­сос; 7 - регулятор температуры

Минимальная температура подаваемой воды в тепловой сети со смешанной тепло­вой нагрузкой составляет около 70 °С, что требует ограничения подачи теплоносителя на отопление в периоды высоких темпе­ратур наружного воздуха. В условиях средней полосы РФ эти периоды достаточно продолжительны (до 1000 ч и более) и пере­расход теплоты на отопление (по отноше­нию к годовому) из-за этого может достигать до 3 % и более. Так как современные системы отопления достаточно чувствитель­ны к изменению температурно-гидравлического режима, то для исключения пере­расхода теплоты и соблюдения нормальных санитарных условий в отапливаемых поме­щениях необходимо дополнение всех упомя­нутых схем тепловых пунктов устройствами для регулирования температуры воды, посту­пающей в системы отопления, путем установки смесительного насоса, что обычно и при­меняется в групповых тепловых пунктах. В местных тепловых пунктах при отсутст­вии бесшумных насосов как промежуточное решение может применяться также элеватор с регулируемым соплом. При этом надо учитывать, что такое решение неприемлемо при двухступенчатой последовательной схеме. Необходимость в установке смесительных насосов отпадает при присоединении систем отопления через подогреватели, так как их роль в этом случае выполняют циркуля­ционные насосы, обеспечивающие постоянст­во расхода воды в отопительной сети.

При проектировании схем тепловых пунк­тов в жилых микрорайонах при закрытой системе теплоснабжения основным вопросом является выбор схемы присоединения по­догревателей горячего водоснабжения. Вы­бранная схема определяет расчетные расходы теплоносителя, режим регулирования и пр.

Выбор схемы присоединения прежде всего определяется принятым температурным режи­мом тепловой сети. При работе тепловой сети по отопительному графику выбор схемы присоединения следует производить на основе технико-экономического расчета - путем сравнения параллельной и смешан­ной схем.

Смешанная схема может обеспечить более низкую температуру обратной воды в целом от теплового пункта по сравне­нию с параллельной, что помимо снижения расчетного расхода воды для тепловой сети обеспечивает более экономичную выработку электроэнергии на ТЭЦ. Исходя из этого в практике проектирования при теплоснаб­жении от ТЭЦ (а также при совместной работе котельных с ТЭЦ), предпочтение при отопительном графике температур от­дается смешанной схеме. При коротких тепло­вых сетях от котельных (и поэтому отно­сительно дешевых) результаты технико-экономического сравнения могут быть и дру­гими, т. е. в пользу применения более простой схемы.

При повышенном графике температур в закрытых системах теплоснабжения схема присоединения может быть смешанной или последовательной двухступенчатой.

Сравнение, выполненное различными ор­ганизациями на примерах автоматизации центральных тепловых пунктов, показывает, что обе схемы в условиях нормальной работы источника теплоснабжения примерно равноэкономичны.

Небольшим преимуществом последова­тельной схемы является возможность работы без смесительного насоса в течение 75 % продолжительности отопительного сезона, что давало прежде некоторые обоснования отказаться от насосов; при смешанной схеме насос должен работать весь сезон.

Преимуществом смешанной схемы яв­ляется возможность полного автоматического выключения систем отопления, что невоз­можно получить в последовательной схеме, так как вода из подогревателя второй сту­пени попадает в систему отопления. Оба указанных обстоятельства не являются ре­шающими. Важным показателем схем являет­ся их работа в критических ситуациях.

Такими ситуациями могут быть снижение температуры воды в ТЭЦ против графика (например, из-за временного недостатка топ­лива) либо повреждение одного из участ­ков магистральной тепловой сети при нали­чии резервирующих перемычек.

В первом случае схемы могут реагиро­вать примерно одинаково, во втором - по-разному. Имеется возможность 100%-го резервирования потребителей до t н = –15 °С без увеличения диаметров тепловых магистралей и перемы­чек между ними. Для этого при сокра­щении подачи теплоносителя на ТЭЦ одно­временно соответственно повышается темпе­ратура подаваемой воды. Автоматизирован­ные смешанные схемы (при обязательном наличии смесительных насосов) на это прореагируют сокращением расхода сетевой воды, что и обеспечит восстановление нор­мального гидравлического режима во всей сети. Такая компенсация одного параметра другим полезна и в других случаях, так как позволяет в определенных пределах проводить, например, ремонтные работы на тепловых магистралях в отопительный сезон, а также локализовать известные несоот­ветствия температуры подаваемой воды по­требителям, расположенным в разном удале­нии от ТЭЦ.

Если автоматизация регулирования схем с последовательным включением подогре­вателей горячего водоснабжения предусмат­ривает постоянство расхода теплоносителя из тепловой сети, возможность компен­сации расхода теплоносителя его темпера­турой в этом случае исключается. Не приходится доказывать всю целесообразность (в проектировании, монтаже и особенно в эксплуатации) применения единообразной схе­мы присоединения. С этой точки зрения несомненное преимущество имеет двухступен­чатая смешанная схема, которая может применяться независимо от графика температур в тепловой сети и соотношения нагрузок горячего водоснабжения и отопления.

Рис. 4.40. Схема теплового пункта жилого дома при открытой системе теплоснабжения:

1 - регулятор (смеситель) температуры воды; 2 - элеватор; 3 - обратный клапан; 4 - дроссельная шайба

Схемы присоединения жилых зданий при открытой системе теплоснабжения значи­тельно проще описанных (рис. 4.40). Эконо­мичная и надежная работа таких пунктов может быть обеспечена лишь при наличии и надежной работе авторегулятора темпера­туры воды, ручное переключение потреби­телей к подающей или обратной линии не обеспечивает необходимой температуры воды. К тому же система горячего водо­снабжения, подключенная к подающей линии и отключенная от обратной, работает под давлением подающего теплопровода. При­веденные соображения о выборе схем тепло­вых пунктов в одинаковой степени относятся как к местным тепловым пунктам (МТП) в зда­ниях, так и к групповым, которые могут обеспечивать теплоснабжение целых микро­районов.

Чем больше мощность теплоисточника и радиус действия тепловых сетей, тем прин­ципиально более сложными должны стано­виться схемы МТП, поскольку вырастают абсолютные давления, усложняется гидравли­ческий режим, начинает сказываться тран­спортное запаздывание. Так, в схемах МТП появляется необходимость применения на­сосов, средств защиты и сложной аппара­туры авторегулирования. Все это не только удорожает сооружение МТП, но и услож­няет их обслуживание. Наиболее рациональ­ным способом упрощения схем МТП является сооружение групповых тепловых пунктов (в виде ГТП), в которых и должно разме­щаться дополнительное сложное оборудова­ние и приборы. Этот способ наиболее применим в жилых микрорайонах, в которых характеристики систем отопления и горячего водоснабжения и, следовательно, схемы МТП однотипны.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png