Прежде чем описывать устройство и функции ЦТП (центральный тепловой пункт) приведем общее определение тепловых пунктов. Тепловой пункт или сокращенно ТП это комплекс оборудования расположенный в отдельном помещении обеспечивающий отопление и горячее водоснабжение здания или группы зданий. Основное отличие ТП от котельной заключается в том, что в котельной происходит нагрев теплоносителя за счет сгорания топлива, а тепловой пункт работает с нагретым теплоносителем, поступающим из централизованной системы. Нагрев теплоносителя для ТП производят теплогенерирующие предприятия - промышленные котельные и ТЭЦ. ЦТП это тепловой пункт обслуживающий группу зданий , например, микрорайон, поселок городского типа, промышленное предприятие и т.д. Необходимость в ЦТП определяется индивидуально для каждого района на основании технических и экономических расчетов, как правило, возводят один центральный тепловой пункт для группы объектов с расходом теплоты 12-35 МВт.

Для лучшего понимания функций и принципов работы ЦТП дадим краткую характеристику тепловым сетям. Тепловые сети состоят из трубопроводов и обеспечивают транспортировку теплоносителя. Они бывают первичные, соединяющие теплогенерирующие предприятия с тепловыми пунктами и вторичные, соединяющие ЦТП с конечными потребителями. Из этого определения можно сделать вывод, что ЦТП являются посредником между первичными и вторичными тепловыми сетями или теплогенерирующими предприятиями и конечными потребителями. Далее подробно опишем основные функции ЦТП.

Функции центрального теплового пункта (ЦТП)

Как мы уже писали основная функция ЦТП служить посредником между централизованными теплосетями и потребителями, то есть распределение теплоносителя по системам отопления и горячего водоснабжения (ГВС) обслуживаемых зданий, а так же функции обеспечения безопасности, управления и учета.

Подробнее распишем задачи, решаемые центральными тепловыми пунктами:

  • преобразование теплоносителя, например, превращение пара в перегретую воду
  • изменение различных параметров теплоносителя, таких как давление, температура и т. д.
  • управление расходом теплоносителя
  • распределение теплоносителя по системам отопления и горячего водоснабжения
  • водоподготовка для ГВС
  • защита вторичных тепловых сетей от повышения параметров теплоносителя
  • обеспечение отключения отопления или горячего водоснабжения в случае необходимости
  • контроль расхода теплоносителя и других параметров системы, автоматизация и управление

Итак, мы перечислили основные функции ЦТП. Далее постараемся описать устройство тепловых пунктов и установленное в них оборудование.

Устройство ЦТП

Как правило, центральный тепловой пункт - это отдельно стоящее одноэтажное здание с расположенным в нем оборудованием и коммуникациями.

Перечислим основные узлы ЦТП:

  • теплообменник, в ЦТП является аналогом отопительного котла в котельной, т.е. работает в качестве теплогенератора. В теплообменнике происходит нагрев теплоносителя для отопления и ГВС, но не посредством сжигания топлива, а за счёт передачи тепла от теплоносителя в первичной тепловой сети.
  • насосное оборудование, выполняющее различные функции представлено циркуляционными, повысительными, подпиточными и смесительными насосами.
  • клапаны регуляторы давления и температуры
  • грязевые фильтры на вводе и выходе трубопровода из ЦТП
  • запорная арматура (краны для перекрытия различных трубопроводов в случае необходимости)
  • системы контроля и учета расхода теплоты
  • системы электроснабжения
  • системы автоматизации и диспетчеризации

Подводя итог, скажем, что основная причина, по которой возникает необходимость в строительстве ЦТП, является несоответствие параметров теплоносителя поступающего от теплогенерирующих предприятий параметрам теплоносителя в системах потребителей тепла. Температура и давление теплоносителя в магистральном трубопроводе значительно выше, чем должна быть в системах отопления и горячего водоснабжения зданий. Можно сказать, теплоноситель с заданными параметрами является основным продуктом работы ЦТП.

Билет №1

1. Источниками энергии, в том числе и тепловой, могут служить вещества, энергетический потенциал которых достаточен для последующего преобразования их энергии в другие ее виды с целью последующего целенаправ­ленного использования. Энергетический потенциал веществ является параметром, позволяющим оценить прин­ципиальную возможность и целесообразность их использования как источников энергии, и выражается в едини­цах энергии: джоулях (Дж) или киловатт (тепловых)-часах [кВт(тепл.) -ч] *.Все источники энергии условно делят на первичные и вторичные (рис. 1.1). Первичными источниками энергии называют вещества, энергетический потенциал которых является следствием природных процесов и не зависит от деятельности человека. К первичным источникам энергии относятся: ископаемые горючие и расщепляющиеся вещества, нагретые до высокой температуры воды недр Земли (термальные воды), Солнце, ветер, реки, моря, океаны и др. Вторичными источниками энергии называют вещества, обладающие определенным энергетическим потенциалом и являющиеся побочными продуктами деятельности человека; например, отработавшие горючие органические вещества, городские отходы, горячий отработанный теплоноситель промышленных производств (газ, вода, пар), нагретые вентиляционные выбросы, отходы сельскохозяйственного производства и др.Первичные источники энергии условно разделяют на невозобновляющиеся, возобновляющиеся и неисчерпае­мые. К ^возобновляющимся первичным источникам энергии относят ископаемые горючие вещества: уголь, нефть, газ, сланец, торф и ископаемые расщепляющиеся вещества: уран и торий. К возобновляющимся первичным источникам энергии относят все возможные источники энергии, являющиеся продуктами непрерывной деятельности Солнца и природных процессов на поверхности Земли: ветер, водные ресурсы, океан, растительные продукты биологической деятельности на Земле (древесину и другие растительные вещества), а также и Солнце. К практически неисчерпаемым первичным источникам энергии относят термальные воды Земли и вещества, которые могут быть источниками получения термоядерной энергии.Ресурсы первичных источников энергии на Земле оцениваются общими запасами каждого источника и его энергетическим потенциалом, т. е. количеством энергии, которая может быть выделена из единицы его массы. Чем выше энергетический потенциал вещества, тем выше эффективность его использования как первичного источника энергии и, как правило, тем большее распространение оно получило при производстве энергии. Так, например, нефть имеет энергетический потенциал, равный 40 000-43 000 МДж на 1 т массы, а природный и попутный газы - от 47 210 до 50 650 МДж на 1 т массы, что в сочетании с их относительно невысокой стоимостью добычи сделало возможным их быстрое распространение в 1960-1970-х годах как первичных источников тепловой энергии.Использование ряда первичных источников энергии до последнего времени сдерживалось либо сложностью тех­нологии преобразования их энергии в тепловую энергию (например, расщепляющиеся вещества), либо относи­тельно низким энергетическим потенциалом первичного источника энергии, что требует больших затрат на полу­чение тепловой энергии нужного потенциала (например, использование солнечной энергии, энергии ветра и др.). Развитие промышленности и научно-производственного потенциала стран мира привело к созданию и реализа­ции процессов производства тепловой энергии из ранее неразрабатывавшихся первичных источников энергии, в том числе к созданию атомных станций теплоснабжения, солнечных генераторов теплоты для теплоснабжения зданий, теплогенераторов на геотермальной энергии.



Принципиальная схема тэс


2.Тепловой пункт (ТП) - комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.Основными задачами ТП являются:

Преобразование вида теплоносителя

Контроль и регулирование параметров теплоносителя

Распределение теплоносителя по системам теплопотребления

Отключение систем теплопотребления

Защита систем теплопотребления от аварийного повышения параметров теплоносителя

Учет расходов теплоносителя и тепла

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Билет №3

Схемы присоединения потребителей к тепловым сетям. Принципиальная схема ИТП

Различают зависимые и независимые схемы присоединения систем отопления:

Независимая (закрытая) схема подключения - схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (перегретая вода), поступающий из тепловой сети, проходит через теплообменник, установленный на тепловом пункте потребителя, где нагревает вторичный теплоноситель, используемый в дальнейшем в системе теплопотребления

Зависимая (открытая) схема подключения - схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (вода) из тепловой сети поступает непосредственно в систему теплопотребления.

Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.

2. Принцип действия МГД-генератора. Схема ТЭС с МГД.

Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Также как и в обычных машинных генераторах, принцип работы МГД-генератора основан на явлении электромагнитной индукции, то есть на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. Но, в отличие от машинных генераторов, в МГД-генераторе проводником является само рабочее тело, в котором при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

Рабочим телом МГД-генератора могут служить следующие среды:

· Электролиты

· Жидкие металлы

· Плазма (ионизированный газ)

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты), в настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля. В таком генераторе может наблюдаться дополнительное электрическое поле, так называемое поле Холла , которое объясняется смещением заряженных частиц между соударениями в сильном магнитном поле в плоскости, перпендикулярной магнитному полю.

Электростанции с магнитогидродинамическими генераторами (МГД-генераторами) . МГД - генераторы планируется сооружать в качестве надстройки к станции типа КЭС. Они используют тепловые потенциалы в 2500-3000 К, недоступные для обычных котлов.

Принципиальная схема ТЭС с МГД - установкой показана на рисунке. Газообразные продукты сгорания топлива, в которые вводится легкоионизируемая присадка (например, К 2 СО 3), направляются в МГД - канал, пронизанный магнитным полем большой напряженности. Кинетическая энергия ионизированных газов в канале преобразуется в электрическую энергию постоянного тока, который, в свою очередь, преобразуется в трехфазный переменный ток и направляется в энергосистему потребителям.

Принципиальная схема КЭС с МГД-генератором:
1 - камера сгорания; 2 – МГД - канал; 3 - магнитная система; 4 - воздухоподогреватель,
5 - парогенератор (котел); 6 - паровые турбины; 7 - компрессор;
8 - конденсатный (питательный) насос.

Билет №4

1.Классификация систем теплоснабжения

Принципиальные схемы систем теплоснабжения по способу подключения к ним систем отопления

По месту выработки теплоты системы теплоснабжения делятся на:

· Централизованные (источник производства тепловой энергии работает на теплоснабжение группы зданий и связан транспортными устройствами с приборами потребления тепла);

· Местные (потребитель и источник теплоснабжения находятся в одном помещении или в непосредственной близости).

По роду теплоносителя в системе:

· Водяные;

· Паровые.

По способу подключения системы отопления к системе теплоснабжения:

· зависимые (теплоноситель, нагреваемый в теплогенераторе и транспортируемый по тепловым сетям, поступает непосредственно в теплопотребляющие приборы);

· независимые (теплоноситель, циркулирующий по тепловым сетям, в теплообменнике нагревает теплоноситель, циркулирующий в системе отопления).

По способу присоединения системы горячего водоснабжения к системе теплоснабжения:

· закрытая (вода на горячее водоснабжение забирается из водопровода и нагревается в теплообменнике сетевой водой);

· Открытая (вода на горячее водоснабжение забирается непосредственно из тепловой сети).

Правильность функционирования обору­дования теплового пункта определяет эконо­мичность использования и подаваемой потре­бителю теплоты, и самого теплоносителя. Тепловой пункт является юридической грани­цей, что предполагает необходимость его оборудования набором контрольно-измерительных приборов, позволяющих определить взаимную ответственность сторон. Схемы и оборудование тепловых пунктов необходимо определять в соответствии не только с тех­ническими характеристиками местных систем теплопотребления, но и обязательно с харак­теристиками внешней тепловой сети, режимом работы ее и теплоисточника.

В разделе 2 рассмотрены схемы присоеди­нения всех трех основных видов местных систем. Рассматривались они раздельно, т. е. считалось, что они присоединены как бы к общему коллектору, давление теплоносите­ля в котором постоянно и не зависит от расхода. Суммарный расход теплоносителя в коллекторе в этом случае равен сумме расходов в ветвях.

Однако тепловые пункты присоединяют­ся не к коллектору теплоисточника, а к тепловой сети, и в этом случае изменение расхода теплоносителя в одной из систем неизбежно отразится на расходе теплоноси­теля в другой.

Рис.4.35. Графики расхода теплоносителя:

а - при подключении потребителей непосредст­венно к коллектору теплоисточника; б - при под­ключении потребителей к тепловой сети

На рис. 4.35 графически показано изме­нение расходов теплоносителя в обоих слу­чаях: на схеме рис. 4.35, а системы отопле­ния и горячего водоснабжения присоеди­нены к коллекторам теплоисточника раздель­но, на схеме рис. 4.35,б те же системы (и с тем же расчетным расходом тепло­носителя) присоединены к наружной тепловой сети, имеющей значительные потери давления. Если в первом случае суммарный расход теплоносителя растет синхронно с расходом на горячее водоснабжение (режимы I , II, III ), то во втором, хотя и имеет место рост расхода теплоносителя, одновременно авто­матически снижается расход на отопление, в результате чего суммарный расход тепло­носителя (в данном примере) составляет при применении схемы рис. 4.35,б 80% расхода при применении схемы рис. 4.35,а. Степень сокращения расхода воды определяет соотно­шение располагаемых напоров: чем больше соотношение, тем больше снижение суммар­ного расхода.

Магистральные тепловые сети рассчиты­ваются на среднесуточную тепловую нагруз­ку, что существенно снижает их диаметры, а следовательно, затраты средств и металла. При применении в сетях повышенных гра­фиков температур воды возможно и дальней­шее снижение расчетного расхода воды в теп­ловой сети и расчет ее диаметров только на нагрузку отопления и приточной венти­ляции.

Максимум горячего водоснабжения мо­жет быть покрыт с помощью аккумулято­ров горячей воды либо путем использо­вания аккумулирующей способности отапливаемых зданий. Поскольку применение акку­муляторов неизбежно вызывает дополнитель­ные капитальные и эксплуатационные затра­ты, то их применение пока ограничено. Тем не менее в ряде случаев применение крупных аккумуляторов в сетях и при групповых тепловых пунктах (ГТП) может быть эффективно.

При использовании аккумулирующей способности отапливаемых зданий имеют место колебания температуры воздуха в по­мещениях (квартирах). Необходимо, чтобы эти колебания не превышали допустимого предела, в качестве которого можно, напри­мер, принять +0,5°С. Температурный режим помещений определяется рядом факторов и поэтому трудно поддается расчету. Наиболее надежным в данном случае является метод эксперимента. В условиях средней полосы РФ длительная эксплуатация показывает возможность применения этого способа по­крытия максимума для подавляющего боль­шинства эксплуатируемых жилых зданий.

Фактическое использование аккумули­рующей способности отапливаемых (в основ­ном жилых) зданий началось с появления в тепловых сетях первых подогревателей горячего водоснабжения. Так, регулировка теплового пункта при параллельной схеме включения подогревателей горячего водо­снабжения (рис. 4.36) производилась таким образом, что в часы максимума водоразбора некоторая часть сетевой воды недодавалась в систему отопления. По этому же принципу работают тепловые пункты при открытом водоразборе. Как при открытой, так и закрытой системе теплоснабжения наиболь­шее снижение расхода в отопительной системе имеет место при температуре сете­вой воды 70 °С (60 °С) и наименьшее (нуле­вое) - при 150°С.

Рис. 4.36. Схема теплового пункта жилого дома с параллельным включением подогре­вателя горячего водоснабжения:

1 - подогреватель горячего водоснабжения; 2 - эле­ватор; 3 4 - цир­куляционный насос; 5 - регулятор температуры от датчика наружной температуры воздуха

Возможность организованного и заранее рассчитанного использования аккумулирую­щей способности жилых зданий реализо­вана в схеме теплового пункта с так называемым предвключенным подогревате­лем горячего водоснабжения (рис. 4.37).

Рис. 4.37. Схема теплового пункта жилого дома с предвключенным подогревателем го­рячего водоснабжения:

1 - подогреватель; 2 - элеватор; 3 - регулятор температуры воды; 4 - регулятор расхода; 5 - циркуляционный насос

Преимуществом предвключенной схемы является возможность работы теплового пункта жилого дома (при отопительном графике в тепловой сети) на постоянном расходе теплоносителя в течение всего отопи­тельного сезона, что делает гидравлический режим тепловой сети стабильным.

При отсутствии автоматического регули­рования в тепловых пунктах стабильность гидравлического режима явилась убедитель­ным аргументом в пользу применения двухступенчатой последовательной схемы включения подогревателей горячего водо­снабжения. Возможности применения этой схемы (рис. 4.38) по сравнению с предвклю­ченной возрастают из-за покрытия определен­ной доли нагрузки горячего водоснабжения за счет использования теплоты обратной воды. Однако применение данной схемы в основном связано с внедрением в тепловых сетях так называемого повышенного графика температур, с помощью которого и может достигаться примерное постоянство расходов теплоносителя на тепловом (например, для жилого дома) пункте.

Рис. 4.38. Схема теплового пункта жилого дома с двухступенчатым последовательным включением подогревателей горячего водо­снабжения:

1,2 - 3 - элеватор; 4 - регулятор температуры воды; 5 - регулятор расхода; 6 - перемычка для переклю­чения на смешанную схему; 7 - циркуляционный насос; 8 - смесительный насос

Как в схеме с предвключенным подогре­вателем, так и в двухступенчатой схеме с последовательным включением подогрева­телей имеет место тесная связь между отпуском теплоты на отопление и горячее водоснабжение, причем приоритет обычно отдается второму.

Более универсальной в этом отношении является двухступенчатая смешанная схема (рис. 4.39), которая может применяться как при нормальном, так и при повышенном отопительном графике и для всех потреби­телей независимо от соотношения нагрузок горячего водоснабжения и отопления. Обяза­тельным элементом обеих схем являются смесительные насосы.

Рис. 4.39. Схема теплового пункта жилого дома с двухступенчатым смешанным вклю­чением подогревателей горячего водоснабже­ния:

1,2 - подогреватели первой и второй ступеней; 3 - элеватор; 4 - регулятор температуры воды; 5 - циркуляционный насос; 6 - смесительный на­сос; 7 - регулятор температуры

Минимальная температура подаваемой воды в тепловой сети со смешанной тепло­вой нагрузкой составляет около 70 °С, что требует ограничения подачи теплоносителя на отопление в периоды высоких темпе­ратур наружного воздуха. В условиях средней полосы РФ эти периоды достаточно продолжительны (до 1000 ч и более) и пере­расход теплоты на отопление (по отноше­нию к годовому) из-за этого может достигать до 3 % и более. Так как современные системы отопления достаточно чувствитель­ны к изменению температурно-гидравлического режима, то для исключения пере­расхода теплоты и соблюдения нормальных санитарных условий в отапливаемых поме­щениях необходимо дополнение всех упомя­нутых схем тепловых пунктов устройствами для регулирования температуры воды, посту­пающей в системы отопления, путем установки смесительного насоса, что обычно и при­меняется в групповых тепловых пунктах. В местных тепловых пунктах при отсутст­вии бесшумных насосов как промежуточное решение может применяться также элеватор с регулируемым соплом. При этом надо учитывать, что такое решение неприемлемо при двухступенчатой последовательной схеме. Необходимость в установке смесительных насосов отпадает при присоединении систем отопления через подогреватели, так как их роль в этом случае выполняют циркуля­ционные насосы, обеспечивающие постоянст­во расхода воды в отопительной сети.

При проектировании схем тепловых пунк­тов в жилых микрорайонах при закрытой системе теплоснабжения основным вопросом является выбор схемы присоединения по­догревателей горячего водоснабжения. Вы­бранная схема определяет расчетные расходы теплоносителя, режим регулирования и пр.

Выбор схемы присоединения прежде всего определяется принятым температурным режи­мом тепловой сети. При работе тепловой сети по отопительному графику выбор схемы присоединения следует производить на основе технико-экономического расчета - путем сравнения параллельной и смешан­ной схем.

Смешанная схема может обеспечить более низкую температуру обратной воды в целом от теплового пункта по сравне­нию с параллельной, что помимо снижения расчетного расхода воды для тепловой сети обеспечивает более экономичную выработку электроэнергии на ТЭЦ. Исходя из этого в практике проектирования при теплоснаб­жении от ТЭЦ (а также при совместной работе котельных с ТЭЦ), предпочтение при отопительном графике температур от­дается смешанной схеме. При коротких тепло­вых сетях от котельных (и поэтому отно­сительно дешевых) результаты технико-экономического сравнения могут быть и дру­гими, т. е. в пользу применения более простой схемы.

При повышенном графике температур в закрытых системах теплоснабжения схема присоединения может быть смешанной или последовательной двухступенчатой.

Сравнение, выполненное различными ор­ганизациями на примерах автоматизации центральных тепловых пунктов, показывает, что обе схемы в условиях нормальной работы источника теплоснабжения примерно равноэкономичны.

Небольшим преимуществом последова­тельной схемы является возможность работы без смесительного насоса в течение 75 % продолжительности отопительного сезона, что давало прежде некоторые обоснования отказаться от насосов; при смешанной схеме насос должен работать весь сезон.

Преимуществом смешанной схемы яв­ляется возможность полного автоматического выключения систем отопления, что невоз­можно получить в последовательной схеме, так как вода из подогревателя второй сту­пени попадает в систему отопления. Оба указанных обстоятельства не являются ре­шающими. Важным показателем схем являет­ся их работа в критических ситуациях.

Такими ситуациями могут быть снижение температуры воды в ТЭЦ против графика (например, из-за временного недостатка топ­лива) либо повреждение одного из участ­ков магистральной тепловой сети при нали­чии резервирующих перемычек.

В первом случае схемы могут реагиро­вать примерно одинаково, во втором - по-разному. Имеется возможность 100%-го резервирования потребителей до t н = –15 °С без увеличения диаметров тепловых магистралей и перемы­чек между ними. Для этого при сокра­щении подачи теплоносителя на ТЭЦ одно­временно соответственно повышается темпе­ратура подаваемой воды. Автоматизирован­ные смешанные схемы (при обязательном наличии смесительных насосов) на это прореагируют сокращением расхода сетевой воды, что и обеспечит восстановление нор­мального гидравлического режима во всей сети. Такая компенсация одного параметра другим полезна и в других случаях, так как позволяет в определенных пределах проводить, например, ремонтные работы на тепловых магистралях в отопительный сезон, а также локализовать известные несоот­ветствия температуры подаваемой воды по­требителям, расположенным в разном удале­нии от ТЭЦ.

Если автоматизация регулирования схем с последовательным включением подогре­вателей горячего водоснабжения предусмат­ривает постоянство расхода теплоносителя из тепловой сети, возможность компен­сации расхода теплоносителя его темпера­турой в этом случае исключается. Не приходится доказывать всю целесообразность (в проектировании, монтаже и особенно в эксплуатации) применения единообразной схе­мы присоединения. С этой точки зрения несомненное преимущество имеет двухступен­чатая смешанная схема, которая может применяться независимо от графика температур в тепловой сети и соотношения нагрузок горячего водоснабжения и отопления.

Рис. 4.40. Схема теплового пункта жилого дома при открытой системе теплоснабжения:

1 - регулятор (смеситель) температуры воды; 2 - элеватор; 3 - обратный клапан; 4 - дроссельная шайба

Схемы присоединения жилых зданий при открытой системе теплоснабжения значи­тельно проще описанных (рис. 4.40). Эконо­мичная и надежная работа таких пунктов может быть обеспечена лишь при наличии и надежной работе авторегулятора темпера­туры воды, ручное переключение потреби­телей к подающей или обратной линии не обеспечивает необходимой температуры воды. К тому же система горячего водо­снабжения, подключенная к подающей линии и отключенная от обратной, работает под давлением подающего теплопровода. При­веденные соображения о выборе схем тепло­вых пунктов в одинаковой степени относятся как к местным тепловым пунктам (МТП) в зда­ниях, так и к групповым, которые могут обеспечивать теплоснабжение целых микро­районов.

Чем больше мощность теплоисточника и радиус действия тепловых сетей, тем прин­ципиально более сложными должны стано­виться схемы МТП, поскольку вырастают абсолютные давления, усложняется гидравли­ческий режим, начинает сказываться тран­спортное запаздывание. Так, в схемах МТП появляется необходимость применения на­сосов, средств защиты и сложной аппара­туры авторегулирования. Все это не только удорожает сооружение МТП, но и услож­няет их обслуживание. Наиболее рациональ­ным способом упрощения схем МТП является сооружение групповых тепловых пунктов (в виде ГТП), в которых и должно разме­щаться дополнительное сложное оборудова­ние и приборы. Этот способ наиболее применим в жилых микрорайонах, в которых характеристики систем отопления и горячего водоснабжения и, следовательно, схемы МТП однотипны.

Тепловой пункт (ТП) - комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Назначение тепловых пунктов:

  • преобразование вида теплоносителя или его параметров;
  • контроль параметров теплоносителя;
  • учет тепловых нагрузок, расходов теплоносителя и конденсата;
  • регулирование расхода теплоносителя и распределение по системам потребления теплоты (через распределительные сети в ЦТП или непосредственно в системы ИТП);
  • защита местных систем от аварийного повышения параметров теплоносителя;
  • заполнение и подпитка систем потребления теплоты;
  • сбор, охлаждение, возврат конденсата и контроль его качества;
  • аккумулирование теплоты;
  • водоподготовка для систем горячего водоснабжения.

В тепловом пункте в зависимости от его назначения и местных условий могут осуществляться все перечисленные мероприятия или только их часть. Приборы контроля параметров теплоносителя и учета расхода теплоты следует предусматривать во всех тепловых пунктах.

Устройство ИТП ввода обязательно для каждого здания независимо от наличия ЦТП, при этом в ИТП предусматриваются только те мероприятия, которые необходимы для присоединения данного здания и не предусмотрены в ЦТП.

В закрытых и открытых системах теплоснабжения необходимость устройства ЦТП для жилых и общественных зданий должна быть обоснована технико-экономическим расчетом.

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП.

Различают следующие виды тепловых пунктов:

  • . Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • . Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Центральные и индивидуальные тепловые пункты

Центральный тепловой пункт (ЦТП) позволяет сосредоточить все наиболее дорогостоящее и требующее систематического и квалифицированного наблюдения оборудования в удобных для обслуживания отдельно стоящих зданиях и благодаря этому значительно упростить последующие индивидуальные тепловые пункты (ИТП) в зданиях. Здания общественного назначения, размещаемые в жилых микрорайонах, - школы, детские учреждения должны иметь самостоятельные ИТП, оборудованные регуляторами. ЦТП должны размещаться на границах микрорайонов (кварталов) между магистральными, распределительными сетями и квартальными.

При водяном теплоносителе оборудование тепловых пунктов состоит из циркуляционных (сетевых) насосов, водо-водяных теплообменников, аккумуляторов горячей воды, повысительных насосов, приборов для регулирования и контроля параметров теплоносителя, приборов и устройств для защиты от коррозии и накипеобразования местных установок горячего водоснабжения, приборами для учета расхода теплоты, а также автоматическими устройствами для регулирования отпуска теплоты и поддержания заданных параметров теплоносителя в абонентских установках.

Принципиальная схема теплового пункта

Схема теплового пункта зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Тепловые пункты промышленных предприятий

Промышленное предприятие должно, как правило, иметь один центральный тепловой пункт (ЦТП) для регистрации, учета и распределения теплоносителя, получаемого из тепловой сети. Количество и размещение вторичных (цеховых) тепловых пунктов (ИТП) определяется размерами и взаимным размещением отдельных цехов предприятия. ЦТП предприятия должен быть размещен в отдельном помещении; на крупных предприятиях, особенно при получении кроме горячей воды также и пара, - в самостоятельном здании.

Предприятие может иметь цехи как с однородным характером внутренних тепловыделений (удельный вес в общей нагрузке), так и с разным. В первом случае температурный режим всех зданий определяется в ЦТП, во втором – различным и устанавливаться на ИТП. Температурный график для промышленных предприятий должен отличаться от бытового, по которому обычно работают городские теплосети. Для подгонки температурного режима в тепловых пунктах предприятий должны устанавливаться смесительные насосы, которые при единообразии характера тепловыделений по цехам могут быть установлены в одном ЦТП, при отсутствии единообразия – в ИТП.

Проектирование тепловых систем промышленных предприятий должно проводиться с обязательным использованием вторичных энергоресурсов, под которыми понимаются:

  • отходящие от печей горячие газы;
  • продукты технологических процессов (нагретые слитки, шлаки, раскаленный кокс и пр.);
  • низкотемпературные энергоресурсы в виде отработавшего пара, горячей воды от различных охлаждающих устройств и производственные тепловыделения.

Для теплоснабжения обычно используются энергоресурсы третьей группы, которые имеют температуры в пределах от 40 до 130°С. Предпочтительным является их использование для нужд ГВС, поскольку эта нагрузка имеет круглогодичный характер.

Тепловой пункт отопительной системы – это место, где магистраль поставщика горячей воды соединяется с системой отопления жилого дома, а также производится подсчет потребленной тепловой энергии.

Узлы подключения системы к источнику тепловой энергии бывают двух типов:

  1. Одноконтурные;
  2. Двухконтурные.

Одноконтурный тепловой пункт – это наиболее распространенный тип подключения потребителя к источнику тепловой энергии. В этом случае для системы отопления дома используется непосредственное соединение с магистралью горячего водоснабжения.

Одноконтурный тепловой пункт имеет одну характерную деталь – его схема предусматривает трубопровод, соединяющий прямую и обратную магистрали, который называется элеватор. Назначение элеватора в системе отопления стоит рассмотреть подробнее.

У котельных системы отопления есть три стандартных режима работы, различающихся температурой теплоносителя (прямого/обратного):

  • 150/70;
  • 130/70;
  • 90–95/70.

Использование перегретого пара в качестве теплоносителя для системы отопления жилого дома не допускается. Поэтому, если по погодным условиям котельная поставляет горячую воду температурой в 150 °C, ее требуется охладить перед подачей в стояки отопления жилого дома. Для этого используется элеватор, через который «обратка» попадает в прямую магистраль.

Элеватор открывается ручным или электрическим (автоматическим) приводом. В его магистраль может быть включен дополнительный циркуляционный насос, но обычно это устройство делают особой формы – с участком резкого сужения магистрали, после которой идет конусообразное расширение. За счет этого оно работает как инжекторный насос, закачивая воду из обратки.

Двухконтурный тепловой пункт

В этом случае теплоносители двух контуров системы не смешиваются. Для передачи тепла от одного контура другому используется теплообменник, обычно пластинчатый. Схема двухконтурного теплового пункта приведена ниже.

Пластинчатый теплообменник – это устройство, состоящее из ряда полых пластин, по одним из которых прокачивается нагревающая жидкость, а по другим – нагреваемая. У них очень высокий коэффициент полезного действия, они надежны и неприхотливы. Количество отбираемого тепла регулируется изменением числа взаимодействующих друг с другом пластин, поэтому забор охлажденной воды из обратной магистрали не требуется.

Как оборудовать тепловой пункт

H2_2

Цифрами здесь обозначены следующие узлы и элементы:

  • 1 - трехходовый кран;
  • 2 - задвижка;
  • 3 - пробковый кран;
  • 4, 12 - грязевики;
  • 5 - обратный клапан;
  • 6 - дроссельная шайба;
  • 7 - V-штуцер для термометра;
  • 8 - термометр;
  • 9 - манометр;
  • 10 - элеватор;
  • 11 - тепломер;
  • 13 - водомер;
  • 14 - регулятор расхода воды;
  • 15 - регулятор подпара;
  • 16 - вентили;
  • 17 - обводная линия.

Установка приборов теплового учета

Пункт приборов теплового учета включает:

  • Термодатчики (устанавливаются в прямую и обратную магистрали);
  • Расходомеры;
  • Тепловычислитель.

Приборы теплового учета устанавливаются как можно ближе к ведомственной границе, чтобы предприятие-поставщик не высчитывало теплопотери по некорректным методикам. Лучше всего, чтобы тепловые узлы и расходомеры имели на своих входах и выходах задвижки или вентили, тогда их ремонт и профилактика не будут вызывать трудностей.

Совет! Перед расходомером должен быть участок магистрали без изменения диаметров, дополнительных врезок и устройств, чтобы уменьшить турбулентность потока. Это увеличит точность измерения и упростит работу узла.

Тепловой вычислитель, получающий данные от термодатчиков и расходомеров, устанавливается в отдельном запирающемся шкафу. Современные модели этого устройства оборудованы модемами и могут соединяться по каналам Wi-Fi и Bluetooth в локальную сеть, предоставляя возможность получать данные дистанционно, без личного визита на узлы теплового учета.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png