1.
2.
3.
4.
5.

Теплоснабжающая конструкция большого многоэтажного дома представляет собой сложный механизм, способный эффективно функционировать при условии соблюдения множества параметров элементов, входящих в него. Одним из них считается рабочее давление в системе отопления. От этого значения зависит не только качество передаваемого воздуху тепла, но также надежное и безопасное функционирование обогревательного оборудования.

Давление в системе теплоснабжения многоэтажных зданий должно отвечать определенным требованиям и нормам, установленным и прописанным в СНиПах. При наличии отклонений от требуемых значений возможно возникновение серьезных проблем, вплоть до невозможности эксплуатировать отопительную систему.

Зачем давление в системе

Многих потребителей интересует, зачем давление в системе отопления и что от него зависит. Дело в том, что оно оказывает непосредственное влияние на эффективность и качество обогрева помещений дома. Благодаря рабочему напору удается добиться наибольшей производительности теплоснабжающей системы по причине гарантированного поступления теплоносителя в трубопроводы и радиаторы в каждую квартиру многоэтажного дома.

Виды рабочего давления в отопительной конструкции

Напор в конструкции обогрева многоэтажного строения бывает нескольких видов:
  1. Статическое давление системы отопления является показателем того, с каким усилием объем жидкости в зависимости от высоты воздействует на трубопроводы и радиаторы. При этом при проведении расчетов уровень напора на поверхности жидкости равен нулю.
  2. Динамическое давление возникает в процессе движения жидкого теплоносителя по трубам. Оно воздействует на трубопровод и радиаторы изнутри.
  3. Допустимое (максимальное) рабочее давление в системе отопления – это параметр нормального и безаварийного функционирования теплоснабжающей конструкции.

Показатели нормального давления

Во всех отечественных многоэтажных домах, построенных как несколько десятков лет тому назад, так и в новостройках, система обогрева функционирует по закрытым схемам при помощи принудительного передвижения теплоносителя. Идеальными считаются условия эксплуатации, когда работает система отопления под давлением, равным 8-9,5 атмосферы. Но в старых домах в теплоснабжающей конструкции может наблюдаться потеря давления, а соответственно показатели напора снижаться до отметки 5 -5,5 атмосферы. Читайте также: " ".
Выбирая трубы и радиаторы для замены их в квартире, расположенной в многоэтажном доме, следует учитывать начальные показатели. Иначе отопительное оборудование будет работать нестабильно и даже возможно полное разрушение схемы теплоснабжения, которая стоит немалых денег.

То, какое давление в отопительной системе многоэтажного здания должно быть, диктуют стандарты и другие регулирующие документы.

Как правило, достичь необходимых параметров по ГОСТу невозможно, поскольку на рабочие показатели оказывается влияние со стороны разных факторов:

  1. Мощность оборудования , необходимого для подачи теплоносителя. Параметры давления в отопительной системе многоэтажки определяются на теплопунктах, где происходит нагрев теплоносителя для подачи через трубы в радиаторы.
  2. Состояние оборудования . И на динамическое, и на статическое давление в теплоснабжающей конструкции непосредственно влияет уровень износа элементов котельной таких, как генераторы теплоты и насосов. Немаловажное значение имеет расстояние от дома до теплопункта.
  3. Диаметр трубопроводов в квартире . Если при проведении ремонта своими руками владельцы квартиры установили трубы большего диаметра, чем на входном трубопроводе, то произойдет снижение параметров давления.
  4. Расположение отдельной квартиры в многоэтажке . Безусловно, необходимое значение напора определяют, согласно нормам и требованиям, но на практике немало зависит от того, на каком этаже находится квартира и ее расстояние от общего стояка. Даже когда жилые комнаты располагаются недалеко от стояка, натиск теплоносителя в угловых помещениях всегда ниже, поскольку там часто имеется крайняя точка трубопроводов.
  5. Степень износа труб и батарей . Когда элементы отопительной системы, расположенные в квартире, прослужили не один десяток лет, то некоторого снижения параметров оборудования и производительности не избежать. Когда имеют место подобные проблемы, желательно изначально произвести замену изношенных труб и радиаторов и тогда удастся избежать аварийных ситуаций.

Испытательное давление

Жильцам многоквартирных домов известно, каким образом коммунальные службы совместно со специалистами энергетических компаний проверяют давление теплоносителя в отопительной системе. Обычно они до начала отопительного сезона подают в трубы и батареи теплоноситель под напором, величина которого приближается к критическим отметкам.
Используют давление при испытании системы отопления для того, чтобы протестировать работоспособность всех элементов теплоснабжающей конструкции в экстремальных условиях и выяснить, насколько эффективно будет передаваться тепло от котельной в многоэтажный дом.

Когда подается испытательное давление системы отопления нередко ее элементы приходят в аварийное состояние и требуют ремонта, поскольку изношенные трубы начинают протекать и в радиаторах образуются пробоины. Избежать подобных неприятностей поможет своевременная замена устаревшего отопительного оборудования в квартире.

При проведении испытаний контроль параметров выполняют при помощи специальных приборов, установленных в самой низкой (обычно это подвал) и самой высокой (чердачное помещение) точках многоэтажки. Все произведенные замеры в дальнейшем анализируют специалисты. При наличии отклонений необходимо обнаружить неполадки и немедленно их устранить.

Проверка герметичности системы отопления

Для обеспечения эффективной и надежной работы системы обогрева, не только проверяют давление теплоносителя, но и тестируют оборудование на герметичность. Как это происходит, видно на фото. В результате можно проконтролировать наличие протечек и предотвратить поломку оборудования в самый ответственный момент.

Проверку герметичности осуществляют в два этапа:

  • испытание с использованием холодной воды. Трубопроводы и батареи в многоэтажном здании наполняют теплоносителем, не нагревая его, и замеряют показатели давления. При этом его значение в течение первых 30 минут не может составить менее стандартных 0,06 МПа. Через 2 часа потери не могут быть более 0,02 МПа. При отсутствии порывов отопительная система многоэтажки дальше будет функционировать без проблем;
  • испытание с применением горячего теплоносителя. Отопительную систему тестируют до начала отопительного периода. Воду подают под определенным сдавливанием, его значение должно быть наиболее высоким для оборудования.
Чтобы добиться оптимального значения давления в системе отопления расчет схемы ее обустройства лучше всего доверить специалистам-теплотехникам. Сотрудники таких фирм не только могут произвести соответствующие испытания, но еще и промоют все ее элементы.
Тестирование проводят перед началом запуска отопительного оборудования, иначе цена ошибки бывает слишком дорогостоящей, а, как известно, аварию устранить при минусовых температурах довольно сложно.

От параметров давления в схеме теплоснабжения многоэтажного дома зависит, насколько комфортно можно проживать в каждой комнате. В отличие от собственного домовладения с автономной системой обогрева в многоэтажке у владельцев квартир не имеется возможность самостоятельно регулировать параметры отопительной конструкции, в том числе температуру и подачу теплоносителя.

Но жильцы многоэтажных домов при желании могут установить такие измерительные приборы как манометры в подвале и в случае малейших отклонений давления от нормы сообщать об этом в соответствующие коммунальные службы. Если после всех предпринятых действий потребители по-прежнему недовольны температурой в квартире, возможно, им следует подумать над организацией альтернативного отопления.

Как правило, напор в трубопроводах отечественных многоэтажных зданий не превышает предельные нормы, но все же установка индивидуального манометра не будет лишней.

В статье мы затронем проблемы, связанные с давлением и диагностируемые манометром. Мы построим ее в форме ответов на часто задаваемые вопросы. Обсуждаться будет не только перепад между подачей и обраткой в элеваторном узле, но и падение давления в системе отопления закрытого типа, принцип работы расширительного бака и многое другое.

Давление — не менее важный параметр отопления, чем температура.

Центральное отопление

Как работает элеваторный узел

На входе элеватора стоят задвижки, отсекающие его от теплотрассы. По их ближним к стене дома фланцам проходит раздел зон ответственности между жилищниками и поставщиками тепла. Вторая пара задвижек отсекает элеватор от дома.

Подающий трубопровод всегда вверху, обратка — внизу. Сердце элеваторного узла — узел смешения, в котором расположено сопло. Струя более горячей воды из подающего трубопровода вливается в воду из обратного, вовлекая ее в повторный цикл циркуляции через контур отопления.

Регулируя диаметр отверстия в сопле, можно менять температуру смеси, поступающей в .

Строго говоря, элеватор — не помещение с трубами, а вот этот узел. В нем вода с подачи смешивается с водой обратного трубопровода.

Какой перепад между подающим и обратным трубопроводами трассы

  • В штатном режиме работы он составляет около 2-2,5 атмосфер. Типично в дом поступает 6-7 кгс/см2 на подаче и 3,5-4,5 на обратке.

Обратите внимание: на выходе из ТЭЦ и котельной перепад больше. Его снижают как потери за счет гидравлического сопротивления трасс, так и потребители, каждый из которых представляет собой, упрощенно говоря, перемычку между обеими трубами.

  • Во время испытаний на плотность насосы накачивают в оба трубопровода не менее 10 атмосфер. Испытания проводятся холодной водой при перекрытых входных задвижках всех подключенных к трассе элеваторов.

Какой перепад в системе отопления

Перепад на трассе и перепад в системе отопления — две абсолютно разные вещи. Если давление обратки до и после элеватора не отличается, то вместо подачи в дом поступает смесь, давление которой превышает показания манометра на обратке всего на 0,2- 0,3 кгс/см2. Это соответствует перепаду высоты в 2-3 метра.

Этот перепад тратится на преодоление гидравлического сопротивления розливов, стояков и отопительных приборов. Сопротивление определяется диаметром каналов, по которым движется вода.

Какого диаметра должны быть стояки, розливы и подводки к радиаторам в многоквартирном доме

Точные значения определяются гидравлическим расчетом.

В большинстве современных домов применяются следующие сечения:

  • Розливы отопления делаются из трубы ДУ50 — ДУ80.
  • Для стояков используется труба ДУ20 — ДУ25.
  • Подводка к радиатору делается либо равной диаметру стояка, либо на шаг тоньше.

Нюанс: занижать диаметр подводки относительно стояка при монтаже отопления своими руками можно только при наличии перемычки перед радиатором. Причем врезана она должна быть в более толстую трубу.

На фото — более здравое решение. Диаметр подводки не занижен.

Что делать, если температура обратного трубопровода слишком мала

В таких случаях:

  1. Рассверливается сопло . Его новый диаметр согласуется с поставщиком тепла. Увеличенный диаметр не только поднимет температуру смеси, он увеличит и перепад. Циркуляция через отопительный контур ускорится.
  2. При катастрофической нехватке тепла элеватор разбирается, сопло изымается, а подсос (труба, соединяющая подачу с обраткой) глушится .
    В систему отопления поступает вода из подающего трубопровода напрямую. Температура и перепад давлений резко увеличиваются.

Обратите внимание: это крайняя мера, на которую можно пойти только при риске разморозки отопления. Для нормальной работы ТЭЦ и котельных важна фиксированная температура обратки; заглушив подсос и сняв сопло, мы поднимем ее как минимум на 15-20 градусов.

Что делать, если температура обратки слишком велика

  1. Штатная мера — заварить сопло и рассверлить его заново, уже меньшим диаметром.
  2. Когда нужно срочное решение без остановки отопления — перепад на входе в элеватор уменьшается с помощью запорной арматуры. Это можно сделать входной задвижкой на обратке, контролируя процесс по манометру.
    У этого решения есть три недостатка:
    • Давление в системе отопления вырастет. Мы ведь ограничиваем отток воды; нижнее давление в системе станет ближе к давлению подачи.
    • Износ щечек и штока задвижки резко ускорится: они будут находиться в турбулентном потоке горячей воды с взвесями.
    • Всегда есть вероятность падения изношенных щечек. Если они полностью перекроют воду, отопление (прежде всего подъездное) будет разморожено в течение двух-трех часов.

Зачем нужно большое давление в трассе

Действительно, в частных домах с автономными системами отопления используется избыточное давление всего в 1,5 атмосферы. И, разумеется, большее давление означает, куда большие расходы на более прочные трубы и питание нагнетающих насосов.

Необходимость в большем давлении связана с этажностью многоквартирных домов. Да, для циркуляции нужен минимальный перепад; но ведь воду нужно поднять до уровня перемычки между стояками. Каждая атмосфера избыточного давления соответствует водяному столбу в 10 метров.

Зная давление в трассе, нетрудно вычислить максимальную высоту дома, который может быть отоплен без применения дополнительных насосов. Инструкция по расчету проста: 10 метров умножаются на давление обратки. Давление обратного трубопровода в 4,5 кгс/см2 соответствует водяному столбу в 45 метров, что при высоте одного этажа в 3 метра даст нам 15 этажей.

К слову, горячее водоснабжение подается в многоквартирных домах из того же элеватора — с подачи (при температуре воды не выше 90 С) или обратки. При недостатке давления верхние этажи останутся без воды.

Автономное отопление

Зачем нужен расширительный бачок

Вмещает избыток расширившегося теплоносителя при его нагреве. Без расширительного бака давление может превысить прочность трубы на разрыв. Бак состоит и стальной бочки и мембраны из резины, которая отделяет воздух от воды.

Воздух, в отличие от жидкостей, хорошо сжимается; при увеличении объема теплоносителя на 5% давление в контуре благодаря воздушной емкости вырастет незначительно.

Объем бака обычно берется примерно равным 10% общего объема отопительной системы. Цена этого устройства невелика, так что покупка не будет разорительной.

Правильный монтаж бачка — подводкой вверх. Тогда в него не попадет лишний воздух.

Почему в закрытом контуре уменьшается давление

Почему падает давление в системе отопления закрытого типа?

Ведь воде некуда деться!

  • При наличии в системе автоматических воздушников через них будет выходить растворенный на момент заполнения в воде воздух.
    Да, он составляет небольшую часть объема теплоносителя; но ведь большого изменения объема и не нужно, чтобы манометр отметил изменения.
  • Пластиковые и металлопластиковые трубы могут незначительно деформироваться под влиянием давления. В сочетании с высокой температурой воды этот процесс ускорится.
  • В системе отопления падает давление при снижении температуры теплоносителя. Тепловое расширение, помните?
  • Наконец, незначительные утечки легко увидеть лишь в централизованном отоплении по ржавым следам. Вода в замкнутом контуре не столь богата железом, да и трубы в частном доме чаще всего не стальные; поэтому увидеть следы мелких течей в том случае, если вода успевает испаряться, почти невозможно.

Чем опасно падение давления в замкнутом контуре

Выходом из строя котла. В старых моделях без термоконтроля — вплоть до взрыва. В современных старших моделях часто присутствует автоматический контроль не только температуры, но и давления: когда оно падает ниже порогового значения, котел сообщает о неполадке.

В любом случае лучше поддерживать давление в контуре на уровне примерно полутора атмосфер.

Как замедлить падение давления

Чтобы не подпитывать систему отопления раз за разом каждый день, поможет простая мера: поставьте второй расширительный бак большего объема.

Внутренние объемы нескольких бачков суммируются; чем больше суммарное количество воздуха в них — тем меньшее падение давления вызовет уменьшение объема теплоносителя на, скажем, 10 миллилитров в сутки.

Где поставить расширительный бак

В общем-то, большой разницы для мембранного бака нет: он может быть подключен в любой части контура. Производители, однако, рекомендуют подключать его там, где течение воды максимально близко к ламинарному. При наличии в системе я бачок можно смонтировать на прямом участке трубы перед ним.

Заключение

Надеемся, что интересовавший вас вопрос не остался без внимания. Если это не так — возможно, нужный ответ вы сможете найти в видео в конце статьи. Теплых зим!

Давление в системе отопления должно быть в норме – 1,5 – 2,0 атмосферы для частных домов высотностью до 2 этажей. Если давление отличается от указанных пределов, систему нужно «лечить».

В данной статье разберем нюансы работы системы отопления и оборудования котельной. Определимся какое давление нужно поддерживать, как его устанавливать, от чего оно зависит… Вероятно приведенный материал поможет читателям в вопросах связанных с работоспособностью системы отопления и применением оборудования.

Какое давление в системе отопления должно быть

В малоэтажных частных домах рабочее давление системы отопления составляет около 2 атмосфер. Чаще 1,5 – 2,0 атмосферы. Максимальный подъем давления допускается до 3 атмосфер, а выше – должен срабатывать аварийный клапан.

В высотных домах норма давления в пределах 5 – 10 атм. Чаще – 5 – 8 атм. Максимум, на что рассчитаны радиаторы отопления в квартирах высотных домов – 12 атм.

Такое же давление — 12 атм, может находиться и в магистральных трубах теплосетей.

В высотных зданиях на стояках отопления для снижения давления устанавливаются гидравлические редукторы.

Почему давление повышается

Согласно законам физики, при нагреве жидкости или газа их объем увеличивается. Поэтому, если жидкость находится в закрытой системе отопления, то ее давление с ростом температуры будет увеличиваться.

Жидкость не может значительно сжиматься так как газ. Если пространство закрытое, то может произойти большой скачок давления и оболочку разорвет.

В «неправильной» системе отопления закрытого типа так и происходит – разрушается самое слабое звено, например, теплообменник котла, и жидкость находит путь наружу.

В открытых системах отопления – с самотечным движением жидкости (в которых открытый расширительный бак) давление при нагреве не повышается. Оно там задается высотой водяного столба – обычно на 1 – 2 этажа – соответственно до 1 атм. «Лишняя» жидкость просто уходит в бак или сбегает в канализацию.
Но в закрытых системах применяются другое специальное оборудование.

Как нормализуют ситуацию

Чтобы не произошло опасного повышения давления при нагреве теплоносителя, в закрытые системы (с принудительной циркуляцией жидкости), включают обязательные элементы:

  • Расширительный бак – закрытый сосуд, частично заполненный воздухом, который способен значительно сжиматься при повышении давления, освобождая объем для «несжимаемой» жидкости.
  • Предохранительный клапан – прибор открывающий сброс жидкости из системы, если давление в ней достигло установленного максимального давления – обычно 3атм.
  • Манометр – прибор измеряющий и указывающий давление жидкости или газа. Его показаниями руководствуются и при заливке, закачивании системы, контроле работы…

Такое же оборудование должно устанавливаться и на систему горячего водоснабжения в частных домах, в составе которых находится бойлер косвенного нагрева.

предохранительный клапан, воздухоотводчик, манометр.
В настенных котлах данные приборы являются встроенными.

Какой объем у расширительного бака

Недопустимо применять расширительный бак меньшего объема, чем 1/10 от всей системы отопления.
Впрочем, для профессионального расчета объема расширительного бака существует специальная методика. Но на бытовом уровне решается так – не меньше чем 1:10 от залитого в систему отопления теплоносителя. Тогда расширительный бак может компенсировать увеличения объема жидкости от ее нагрева без проблем.

Как узнать, сколько в системе теплоносителя?
Остается только вооружиться геометрическими формулам и справочными данными по применяемому оборудованию. Но на практике, при создании отопления своими руками, без проекта, объем просто считают ведрами при первичной заливке. После чего уже и приобретают подходящий расширительный бачок.

Почему давление в системе отопления снижается

Давление в системе отопления постоянно понижается от первоначального заданного значения. Это понижение может быть весьма малым и не заметным по приборам (манометрам). Или может понижаться значительно.

Большое уменьшение давление может происходить по двум причинам:

  • После заливки жидкости в системе отопления находится воздух. Он будет постепенно стравливаться через автоматические воздухоотводчики (должны присутствовать). Уменьшение давление при этом должно компенсироваться подливкой нового теплоносителя.
  • В системе отопления находится течь, теплоноситель уходит. Но может быть и утечка воздуха из замкнутого расширительного бака.

Не допускается делать автоматическую подпитку водой системы отопления при уменьшении давления. Если присутствует течь, то вода в системе будет постоянно обновляться, что приведет к значительному осадку и выходу всей системы из строя.

Как найти течь в системе отопления

Обычно течь теплоносителя возникает на стыках из-за некачественного монтажа. Достаточно внимательно осмотреть систему и обратить внимание на потеки и рыжие отметины (осадок из воды). Ремонт по «диагнозу».

Но иногда визуально обнаружить трудно. Тогда ищут на слух, — систему сливают и заполняют воздухом под давлением. Характерный свист укажет, где находится «дырочка».

Можно использовать и специальное оборудование — сканер избыточной влажности.

Нужно не забыть и о котле. Наличие течи в теплообменнике, через маленькие трещинки – не редкое явление. Обнаружить «на ходу» не получится – теплоноситель тут же испаряется и уходит вместе с газами. Проверяется при остановленном котле.

Не желательно узлы стыковок располагать в недоступных для осмотра и ремонт местах.
Ознакомьтесь, — .

Как установить давление в системе отопления

Начальное давление в системе отопления устанавливается путем накачивания расширительного бака воздухом, при холодном теплоносителе.
Расширительный бак наполняется воздухом до создания давления в 1,3 – 1,5 атм.
Соответственно, при нагреве, если объем бака подобран правильно, давление может достигать – 2,0 атм.

Расширительный бак оснащен обычным воздушным золотником, как и на автомобиле, и может быть накачан автомобильным насосом или компрессором.

5.5. Пьезометрический график

При проектировании и эксплуатации разветвленных тепловых сетей широко используется пьезометрический график, на котором в конкретном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в сети; по нему легко определить напор () и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

На рис. 5.5 приведены пьезометрический график двухтрубной водяной системы теплоснабжения и принципиальная схема системы. За горизонтальную плоскость отсчета напоров принят уровень I - I , имеющий горизонтальную отметку 0; , график напоров подающей линии сети; , – график напоров обратной линии сети; – полный напор в обратном коллекторе источника теплоснабжения напор, развиваемый сетевым ом 1; Н ст полный напор, развиваемый подпиточным ом, или, что то же, полный статический напор тепловой сети; Н к полный напор в точке К на нагнетательном патрубке а 1; потеря напора сетевой воды в теплоподготовительной установке III ;

Н n 1 – полный напор в подающем коллекторе источника теплоснабжения: . Располагаемый напор сетевой воды на коллекторах . Напор в любой точке тепловой сети, например в точке 3, обозначается следующим образом: – полный напор в точке 3 подающей линии сети; полный напор в точке 3 обратной линии сети.

Если геодезическая высота оси трубопровода над плоскостью отсчета в этой точке сети равна Z 3 , то пьезометрический напор в точке 3 подающей линии , а пьезометрический напор в обратной линии . Располагаемый напор в точке 3 тепловой сети равен разности пьезометрических напоров подающей и обратной линий тепловой сети или, что одно и то же, разно сти полных напоров .

Располагаемый напор в тепловой сети в узле присоединения абонента Д:

Потеря напора в обратной линии на этом участке тепловой сети

При гидравлическом расчете паровых сетей профиль паропровода можно не учитывать вследствие малой плотности пара. Падение давления на участке паропровода принимается равным разности давлений в концевых точках участка. Правильное определение потери напора, или падения давления в трубопроводах, имеет первостепенное значение для выбора их диаметров и организации надежного гидравлического режима сети.

Для предупреждения ошибочных решений следует до проведения гидравлического расчета водяной тепловой сети наметить возможный уровень статических напоров, а также линии предельно допустимых максимальных и минимальных гидродинамических напоров в системе и, ориентируясь по ним, выбрать характер пьезометрического графика из условия, что при любом ожидаемом режиме работы напоры в любой точке системы теплоснабжения не выходят за допустимые пределы. На основе технико-экономического расчета следует лишь уточнить значения потерь напора, не выходя за пределы, намеченные по пьезометрическому графику. Такой порядок проектирования позволяет учесть технические и экономические особенности проектируемого объекта.

Основные требования к режиму давлений водяных тепловых сетей из условия надежности работы системы теплоснабжения сводятся к следующему:

1) не разрешается превышение допустимых давлений в оборудовании источника, тепловой сети и абонентских установок. Допустимое избыточное (сверх атмосферного) в стальных трубопроводах и арматуре тепловых сетей зависит от применяемого сортамента труб и в большинстве случаев составляет 1,6–2,5 МПа;

2) обеспечение избыточного (сверх атмосферного) давления во всех элементах системы теплоснабжения для предупреждения кавитации ов (сетевых, подпиточных, смесительных) и защиты системы теплоснабжения от подсоса воздуха. Невыполнение этого требования приводит к коррозии оборудования и нарушению циркуляции воды. В качестве минимального значения избыточного давления принимают 0,05 МПа (5 м вод. ст.);

3) обеспечение не вскипания сетевой воды при гидродинамическом режиме системы теплоснабжения, т.е. при циркуляции воды в системе.

Во всех точках системы теплоснабжения должно поддерживаться , превышающее насыщенного водяного пара при максимальной температуре сетевой воды в системе.

Общие принципы гидравлического расчета трубопроводов систем водяного отопления подробно изложены в разделе Системы водяного отопления . Они же применимы и для расчета теплопроводов тепловых сетей, но с учетом некоторых их особенностей. Так в расчетах теплопроводов принимаются турбулентное движение воды (скорость воды больше 0,5 м/с, пара - больше 20-30 м/с, т.е. квадратичная область расчета), значения эквивалентной шероховатости внутренней поверхности стальных труб больших диаметров, мм, принимают для: паропроводов - k = 0,2; водяной сети - k = 0,5; конденсатопроводов - k = 0,5-1,0.

Расчетные расходы теплоносителя по отдельным участкам теплосети определяются как сумма расходов отдельных абонентов с учетом схемы присоединения подогреватели ГВС. Кроме того, необходимо знать оптимальные удельные падения давления в трубопроводах, которые предварительно определяются технико-экономическим расчетом. Обычно их принимают равными 0,3-0,6 кПа (3-6 кгс/м 2) для магистральных тепловых сетей и до 2 кПа (20 кгс/м 2) - для ответвлений.

При гидравлическом расчете решаются следующие задачи: 1) определение диаметров трубопроводов; 2) определение падения давления-напора; 3) определение действующих напоров в различных точках сети; 4) определение допустимых давлений в трубопроводах при различных режимах работы и состояниях теплосети.

При проведении гидравлических расчетов используются схемы и геодезический профиль теплотрассы, с указанием размещения источников теплоснабжения, потребителей теплоты и расчетных нагрузок. Для ускорения и упрощения расчетов вместо таблиц используются логарифмические номограммы гидравлического расчета (рис. 1), а в последние годы - компьютерные расчетные и графические программы.

Рисунок 1.

ПЬЕЗОМЕТРИЧЕСКИЙ ГРАФИК

При проектировании и в эксплуатационной практике для учета взаимного влияния геодезического профиля района, высоты абонентских систем, действующих напоров в тепловой сети широко пользуются пьезометрическими графиками. По ним нетрудно определить напор (давление) и располагаемое давление в любой точке сети и в абонентской системе для динамического и статического состояния системы. Рассмотрим построение пьезометрического графика, при этом будем считать, что напор и давление, падение давления и потеря напора связаны следующими зависимостями: Н = р/γ, м (Па/м); ∆Н = ∆р/ γ, м (Па/м); и h = R/ γ (Па), где Н и ∆Н - напор и потеря напора, м (Па/м); р и ∆р - давление и падение давления, кгс/м 2 (Па); γ - массовая плотность теплоносителя, кг/м 3 ; h и R - удельная потеря напора (безразмерная величина) и удельное падение давления, кгс/м 2 (Па/м).

При построении пьезометрического графика в динамическом режиме за начало координат принимают ось сетевых насосов; взяв эту точку за условный нуль, строят профиль местности по трассе основной магистрали и по характерным ответвлениям (отметки которых отличаются от отметок основной магистрали). На профиле в масштабе вычерчивают высоты присоединяемых зданий, затем, приняв предварительно напор на всасывающей стороне коллектора сетевых насосов Н вс = 10-15 м, наносится горизонталь А 2 Б 4 (рис. 2, а). От точки А 2 откладывают по оси абсцисс длины расчетных участков теплопроводов (с нарастающим итогом), а по оси ординат из концевых точек расчетных участков - потери напора Σ∆Н на этих участках. Соединив верхние точки этих отрезков, получим ломаную линию А 2 Б 2 , которая и будет пьезометрической линией обратной магистрали. Каждый вертикальный отрезок от условного уровня А 2 Б 4 до пьезометрической линии А 2 Б 2 обозначает собой потери напора в обратной магистрали от соответствующей точки до циркуляционной насосной на ТЭЦ. От точки Б 2 в масштабе откладывается вверх необходимый располагаемый напор для абонента в конце магистрали ∆Н аб, который принимается равным 15-20 м и более. Полученный отрезок Б 1 Б 2 характеризует напор в конце подающей магистрали. От точки Б 1 откладывается вверх потеря напора в подающем трубопроводе ∆Н п и проводится горизонтальная линия Б 3 А 1 .

Рисунок 2. а - построение пьезометрического графика; б - пьезометрический график двухтрубной тепловой сети

От линии А 1 Б 3 вниз откладываются потери напора на участке подающей линии от источника теплоты до конца отдельных расчетных участков, и строится аналогично предыдущему пьезометрическая линия A 1 B 1 подающей магистрали.

При закрытых системах ЦТС и равных диаметрах труб подающей и обратной линий пьезометрическая линия A 1 B 1 является зеркальным отображением линии А 2 Б 2 . От точки А, откладывается вверх потеря напора в бойлерной ТЭЦ или в контуре котельной ∆Н б (10-20 м). Давление в подающем коллекторе будет Н н, в обратном - Н вс, а напор сетевых насосов - Н с.н.

Важно отметить, что при непосредственном присоединении местных систем обратный трубопровод теплосети гидравлически связан с местной системой, при этом давление в обратном трубопроводе целиком передается местной системе и наоборот.

При первоначальном построении пьезометрического графика напор на всасывающем коллекторе сетевых насосов Н вс был принят произвольно. Перемещение пьезометрического графика параллельно самому себе вверх или вниз позволяет принять любые давления на всасывающей стороне сетевых насосов и соответственно в местных системах.

При выборе положения пьезометрического графика необходимо исходить из следующих условий:

1. Давление (напор) в любой точке обратной магистрали не должно быть выше допускаемого рабочего давления в местных системах, для новых систем отопления (с конвекторами) рабочее давление 0,1 МПа (10 м вод. ст.), для систем с чугунными радиаторами 0,5-0,6 МПа (50-60 м вод. ст.).

2. Давление в обратном трубопроводе должно обеспечить залив водой верхних линий и приборов местных систем отопления.

3. Давление в обратной магистрали во избежание образования вакуума не должно быть ниже 0,05-0,1 МПа (5-10 м вод. ст.).

4. Давление на всасывающей стороне сетевого насоса не должно быть ниже 0,05 МПа (5 м вод. ст.).

5. Давление в любой точке подающего трубопровода должно быть выше давления вскипания при максимальной (расчетной) температуре теплоносителя.

6. Располагаемый напор в конечной точке сети должен быть равен или больше расчетной потери напора на абонентском вводе при расчетном пропуске теплоносителя.

7. В летний период давление в подающей и обратной магистралях принимают больше статического давления в системе ГВС.

Статическое состояние системы ЦТ. При остановке сетевых насосов и прекращении циркуляции воды в системе ЦТ она переходит из динамического состояния в статическое. В этом случае давления в подающей и обратной линиях теплосети выровняются, пьезометрические линии сливаются в одну - линию статического давления, и на графике она займет промежуточное положение, определяемое давлением подпиточного устройства источника СЦТ.

Давление подпиточного устройства устанавливается персоналом станции или по наивысшей точке трубопровода местной системы, непосредственно присоединенной к теплосети, или по давлению паров перегретой воды в высшей точке трубопровода. Так, например, при расчетной температуре теплоносителя Т 1 = 150 °С давление в высшей точке трубопровода с перегретой водой установится равным 0,38 МПа (38 м вод. ст.), а при Т 1 = 130 °С - 0,18 МПа (18 м вод. ст.).

Однако во всех случаях статическое давление в низкорасположенных абонентских системах не должно превышать допускаемого рабочего давления 0,5-0,6 МПа (5-6 атм). При его превышении эти системы следует переводить на независимую схему присоединения. Понижение статического давления в тепловых сетях может быть осуществлено путем автоматического отключения от сети высоких зданий.

В аварийных случаях, при полной потере электроснабжения станции (остановка сетевых и подпиточных насосов), произойдет прекращение циркуляции и подпитки, при этом давления в обеих линиях теплосети выровняются по линии статического давления, которое начнет медленно, постепенно понижаться в связи с утечкой сетевой воды через неплотности и охлаждения ее в трубопроводах. В этом случае возможно вскипание перегретой воды в трубопроводах с образованием паровых пробок. Возобновление циркуляции воды в таких случаях может привести к сильным гидравлическим ударам в трубопроводах с возможным повреждением арматуры, нагревательных приборов и др. Во избежание такого явления циркуляцию воды в системе ЦТ следует начать только после восстановления путем подпитки теплосети давления в трубопроводах на уровне не ниже статического.

Для обеспечения надежной работы тепловых сетей и местных систем необходимо ограничить возможные колебания давления в тепловой сети допустимыми пределами. Для поддержания требуемого уровня давлений в тепловой сети и местных системах в одной точке тепловой сети (а при сложных условиях рельефа - в нескольких точках) искусственно сохраняют постоянное давление при всех режимах работы сети и при статике с помощью подпиточного устройства.

Точки, в которых давление поддерживается постоянным, называются нейтральными точками системы. Как правило, закрепление давления осуществляется на обратной линии. В этом случае нейтральная точка располагается в месте пересечения обратного пьезометра с линией статического давления (точка НТ на рис. 2, б), поддержание постоянного давления в нейтральной точке и восполнение утечки теплоносителя осуществляются подпиточными насосами ТЭЦ или РТС, КТС через автоматизированное подпиточное устройство. На линии подпитки устанавливаются автоматы-регуляторы, работающие по принципу регуляторов «после себя» и «до себя» (рис. 3).

Рисунок 3. 1 - сетевой насос; 2 - подпиточный насос; 3 - подогреватель сетевой воды; 4 - клапан регулятора подпитки

Напоры сетевых насосов Н с.н принимаются равными сумме гидравлических потерь напора (при максимальном - расчетном расходе воды): в подающем и обратном трубопроводах тепловой сети, в системе абонента (включая вводы в здание), в бойлерной установке ТЭЦ, пиковых котлах ее или в котельной. На источниках теплоты должно быть не менее двух сетевых и двух подпиточных насосов, из которых - по одному резервному.

Величина подпитки закрытых систем теплоснабжения принимается равной 0,25 % объема воды в трубопроводах тепловых сетей и в абонентских системах, присоединенных к теплосети, ч.

При схемах с непосредственным водоразбором величина подпитки принимается равной сумме расчетного расхода воды на ГВС и величины утечки в размере 0,25 % вместимости системы. Вместимость теплофикационных систем определяется по фактическим диаметрам и длинам трубопроводов или по укрупненным нормативам, м 3 /МВт:

Сложившаяся по признаку собственности разобщенность в организации эксплуатации и управления системами теплоснабжения городов самым отрицательным образом сказывается как на техническом уровне их функционирования, так и на их экономической эффективности. Выше отмечалось, что эксплуатацией каждой конкретной системы теплоснабжения занимается несколько организаций (подчас «дочерних» от основной). Однако специфика систем ЦТ, в первую очередь тепловых сетей, определяется жесткой связью технологических процессов их функционирования, едиными гидравлическими и тепловыми режимами. Гидравлический режим системы теплоснабжения, являющийся определяющим фактором функционирования системы, по своей природе крайне неустойчив, что делает системы теплоснабжения трудноуправляемыми по сравнению с другими городскими инженерными системами (электро-, газо-, водоснабжение).

Ни одно из звеньев систем ЦТ (источник теплоты, магистральные и распределительные сети, тепловые пункты) самостоятельно не может обеспечить требуемые технологические режимы функционирования системы в целом, а, следовательно, и конечный результат - надежное и качественное теплоснабжение потребителей. Идеальной в этом смысле является организационная структура, при которой источники теплоснабжения и тепловые сети находятся в ведении одного предприятия-структуры.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png