При проектировании и эксплуа­тации тепловых сетей наряду с дав­лением широко пользуются также другой единицей гидравлического потенциала - напором. Напор представляет собой давление, выра­женное в линейных единицах (обыч­но метрах) столба той жидкости, ко­торая передается по трубопроводу.

Напор и давление связаны сле­дующей зависимостью

Н = р / ρg, (1)

где H - напор, м;

р - давление теплоносителя, Па;

ρ – плотность теплоносителя, кг/м 3 ;

Аналогичной зависимостью свя­заны между собой падение давления и потеря напора в сети или рас­полагаемый перепад давлений и располагаемый напор (разность на­поров) в сети

ΔΗ= Δр / ρg или h = R / ρg,

где ΔΗ- потеря напора или распо­лагаемый напор, м; р - падение давления или рас­полагаемый перепад дав­лений Па; h и R - удельная потеря напора (безразмерная величина) и удельное падение давле­ния, Па / м.

Полный напор отсчитывается от одного общего условного горизонтального уровня.

Напор, отсчитанный не от услов­ного, общего для всей сети горизон­тального уровня, а от уровня про­кладки оси трубопровода в данной точке, называется пьезометри­ческим напором или пьезо­метрической высотой .

При проектировании и эксплуа­тации разветвленных тепловых сетей, когда приходится учитывать взаимное влияние многочисленных факторов, определяющих гидравли­ческий режим сети: геодезический профиль района, высотность або­нентских зданий, потерю напора в тепловой сети и або­нентских установках и т. д., широко используется пьезометриче­ский график . На пьезометриче­ском графике в определенном мас­штабе нанесены рельеф местности, высоты присоединенных зданий, ве­личина набора в сети. По пьезомет­рическому графику легко опреде­лить напор и распола­гаемый напор в любой точке сети и абонентской системы.

Пьезометрический график благо­даря наглядности позволяет легко ориентироваться в гидравлическом режиме тепловых сетей и местных систем. Проектирование сети без учета пьезометрического графика, особенно в условиях сложного про­филя, может привести к нерацио­нальным схемам присоединения або­нентов, неоп­равданному сооружению насосных подстанций и усложнению эксплуа­тации всей системы теплоснабжения в целом.

Пьезометрический график (график напоров) может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным величинам падений давления на участках сети. На графике в выбранном масштабе нанесены профиль трассы тепло­вой сети; высоты отопительных систем, присоединенных к тепловой сети, условно равные высотам зданий; величины напоров насосов и в любой точке сети при статическом и динамическом режимах.



Условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зда­ний совпадают с отметкой земли. Высшее положение воды в отопи­тельной системе совпадает с верхней отметкой здания.

График строят по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах.

Пример построения графика показан на рис. 1.

Рис. 1. Пьезометрический график двухтрубной водяной тепловой сети.

По горизонталь­ной оси нанесены длины отдельных участков сети, показано взаимное расположение по горизонтали характерных потребителей тепла. Все отсчеты напоров производят от уровня I-I, соответствующего обычно отметке оси сетевых насосов, принимаемой за геодезическую отметку «0».

Под графиком показана принципиальная схема тепловой сети, для которой ведут построения.

Точка А характеризует местоположение источника теплоснаб­жения, вернее, расположение сетевого насоса. Точка L соответствует расположению последнего потребителя тепла, высота отопительной системы которого равна в вертикальном масштабе отрезку LM. Потребитель тепла удален от источника тепла на расстояние, равное в горизонтальном масштабе отрезку AL в метрах.

В точке D имеется ответвление к потребителю Е; высота отопитель­ной системы потребителя характеризуется отрезком EN в вертикальном масштабе. Насос в точке А создает напор в подающей магистрали Н Н, напор в обратной магистрали Н В. Разность напоров Н Н – Н В = Н С на­зывается напором , развиваемым сетевым насосом.

Изменение напоров в подающей магистрали на графике показано наклонной линией А 1 L 1 .

Превышение точки А 1 над L 1 представляет потери напора в подаю­щем теплопроводе от точки А до точки L. Величина потерь напора определяется гидравлическим расчетом и составляет в подающем теплопроводе ΔH 1 = H Н - H L1 , м, и в обратном теплопроводе

ΔH 2 =H L2 – H В, м.

Линия А 2 L 2 показывает характер изменения напоров в обратной магистрали. Изменение напоров в теплопроводах ответвления пока­зано линиями D 1 E 1 и D 2 E 2 .

Разность напоров в подающем и обратном теплопроводах назы­вается располагаемым напором в точке сети.

Напор в подающем теплопроводе в точке К: Н 1 = H К1 - Z, м, где Z - геодезическая высота трубопровода в точке К, м.

Напор в обратном теплопроводе: H 2 = H К2 -Z, м.

Располагаемый напор в точке К:

ΔН К = Н 1 – Н 2 = (Н К1 – Z) – (Н К2 – Z) = Н К1 – Н К2 , м. (2)

По аналогии с формулой (2) располагаемый напор в точке L равен ΔН L1 - Н L2 .

Изменение напоров в теплопроводах, показанных линиями А 1 L 1 и L 2 А 2 , соответствует динамическому режиму системы теплоснабже­ния, т. е. при работающем сетевом насосе и движении теплоносителя. При остановке сетевого насоса и прекращении циркуляции теплоно­сителя напоры в обеих магистралях уравниваются и устанавливаются по верхней отметке наиболее высокой и высоко расположенной системы отопления, присоединенной к тепловой сети по зависимой схеме (при температуре воды до 100 °С).

На рис. 1 линия статического напора показана пунктирной го­ризонтальной линией А 3 М.

При гидравлическом расчете па­ровых сетей профиль паропровода можно не учитывать вследствие ма­лой плотности пара. Падение давления на участке паропровода принимается равным разности дав­лений в концевых точках участка.

Для предупреждения ошибочных решений следует до проведения ги­дравлического расчета водяных се­тей наметить возможный характер пьезометрического графика и, ори­ентируясь по нему, выбрать допу­стимые пределы потерь напора, не вызывающие усложнения схемы тепловой сети и абонентских вводов. На основании технико-экономиче­ского расчета следует лишь уточ­нить значение потерь напора, не выходя за пределы, намеченные по пьезометрическому графику. Такой порядок проектирования позволяет учесть технические и технико-эконо­мические особенности проектируе­мого объекта.

При построении пьезометрического графика в период проекти­рования должны соблюдаться следующие условия:

1. Напоры в присоединенных к сети системах теплопотребителей не должны быть больше допустимых. В отопительных абонентских системах допускаемый напор не должен превышать 60 м. Напор 60 м является предельным для обратной магистрали; в подающей магист­рали он может быть выше 60 м, так как его всегда можно уменьшить (сдросселировать) в пределе до величины напора в обратной магист­рали.

2. Обеспечение избыточного (выше атмосферного) напора во всех точках сети и абонентских систем для предупреждения подсоса воз­духа.

3. Обеспечение напоров, соответствующих температуре насыще­ния, в сети для предупреждения вскипания воды. Ни в одной из точек сети напор в подающей магистрали не должен быть ниже статиче­ского напора, т. е. пьезометрический график подающей магистрали не должен пересекать линию статического напора.

4. Минимальное значение напора перед сетевыми насосами должно быть не менее 5-10 м.

5. Напор в местных системах потребителей не должен быть ниже статического самих местных систем (статический напор равен высоте системы). В противном случае возможно опорожнение верхней части систем и засасывание воздуха.

6. В точках присоединения потребителей располагаемые напоры должны соответствовать потерям напора в местных системах при про­пуске теплоносителя в расчетных количествах.

Все эти требования должны вы­полняться как во время работы си­стемы, т. е. при циркуляции воды, так и при прекращении циркуля­ции, т. е. в статическом состоянии системы.

Значение напоров и их распределение по сети дает исходный ма­териал для выбора схем присоединений потребителей тепла. Наиболь­шее значение режим напоров в сети имеет для выбора схем присоеди­нений к тепловой сети систем отопления.

Для анализа работы тепловых сетей, выбора сетевого оборудования, схем подключения абонентов к тепловым сетям необходимо разрабатывать гидравлические режимы водяных тепловых сетей (пьезометрические графики). Они показывают изменение давления по длине трубопроводов и в элементах тепловых сетей. Гидравлические режимы следует разрабатывать для отопительных и неотопительных периодов, а также для аварийных режимов.

Пьезометрический график строят для двух режимов работы: статического, когда сетевой насос не работает, и динамического при работающем сетевом насосе. При статическом режиме циркуляция воды отсутствует, а давление ее во всех точках трубопроводов одинаково. Величина этого давления должна быть достаточной для заполнения местных систем отопления, вентиляции и горячего водоснабжения в случае останова сетевого насоса. На практике статическое давление поддерживается работой подпиточного насоса, подключаемого к всасывающему патрубку сетевого насоса. Соответственно, давление, развиваемое подпиточным насосом, должно быть равно давлению перед сетевым насосом.

При расчете пьезометрического графика необходимо соблюдать следующие условия:

1. Статическое давление в системах теплоснабжения при теплоносителе воде не должно превышать допускаемое давление в оборудовании источника теплоты, в трубопроводах водяных тепловых сетей, в оборудовании тепловых пунктов и в системах отопления, вентиляции и горячего водоснабжения потребителей, непосредственно присоединенных к тепловым сетям.

2. Статическое давление должно обеспечивать заполнение водой систем отопления, вентиляции и горячего водоснабжения потребителей, непосредственно присоединенных к тепловым сетям, в случае останова сетевого насоса.

3. Давление воды в подающих трубопроводах водяных тепловых сетей при работе сетевых насосов должно приниматься исходя из условий невскипания воды при ее максимальной температуре в любой точке подающего трубопровода, в оборудовании источника теплоты и в приборах систем потребителей, непосредственно присоединенных к тепловым сетям.

4. Давление воды в обратных трубопроводах водяных тепловых сетей при работе сетевых насосов должно быть избыточным (не менее 0,05 МПа), не превышать допускаемого давления в системах потребителей и обеспечивать заполнение местных систем (превышать давление, создаваемое столбом воды в системах отопления многоэтажных зданий).

5. Давление и температура воды во всасывающих патрубках сетевых, подпиточных, подкачивающих и смесительных насосов не должны превышать допускаемых по условиям прочности конструкций насосов.

6. Перепад давлений на вводе двухтрубных водяных тепловых сетей в здания при определении напора сетевых насосов (при элеваторном присоединении систем отопления) следует принимать равным расчетным потерям давления на вводе и в местной системе с коэффициентом 1,5, но не менее 0,15 МПа.

По пьезометрическому графику видно что:

1.Напор во всасывающем патрубке сетевого насоса выше 5м во избежание ковитации.

Н вс. = 10м > 5м

2.Линия давления в обратной магистрали расположена выше всех зданий, что обеспечивает заполнение водой всех абонентских систем отопления. Условие выполняется.

3.Напор обратной магистрали не превышает по прочности допустимого

Н доп. = 60 м;

Н обр. = 45,8м;

Н обр. < Н доп.

Условие выполняется.

4.Напор в подающей магистрали Н Г не превышает допустимого давления по прочности труб.

Н доп. тр. = 100 м;

Н под тр. . = 66,7 м;

Н под тр. . < Н доп. тр.

Условие выполняется.

5.Напор в обратной магистрали в статическом и динамическом режимах не превышает по прочности допускаемое давление в элементах систем теплопотребления:

Н обр. = 45,8 м;

Н доп. = 60 м;

Н обр. < Н доп.

Условие выполняется.

6.Давление в подающей магистрали превышает давление насыщения, т.е. условие невскипания для данной температуры теплоносителя равной 150°С соблюдается.



Выбор насосов

Для подбора любого насоса необходимо знать его производительность (подачу) и развиваемое давление (напор). При этом следует учитывать, что требуемые режимы работы (производительность и давление) должны находиться в пределах рабочей области его характеристики. По требуемой подаче и напору на сводном графике полей предварительно выбирают насос нужного типоразмера, а затем по графической характеристике уточняют правильность выбора и определяют все остальные показатели (коэффициент полезного действия, мощность на валу электродвигателя, число оборотов, диаметр рабочего колеса).

Производительность сетевого насоса равна суммарному расходу теплоносителя в тепловой сети на отопление, вентиляцию и горячее водоснабжение.

Давление сетевого насоса, МПа расходуется на преодоление сопротивления системы теплоснабжения

где - потеря давления в сетевом оборудовании котельной, МПа;

Потеря давления в подающей магистрали, МПа;

Потеря давления в обратной магистрали, МПа;

Потеря давления у абонента, МПа.

Потери давления определяем по пьезометрическому графику.

В двухтрубных системах теплоснабжения при наличии круглогодовой нагрузки горячего водоснабжения целесообразна установка не менее двух сетевых насосов с разными характеристиками: один для работы в холодный период с максимальной производительностью, другой – для перекачки воды в системе горячего водоснабжения в теплое время года. Производительность второго насоса:

.

Кроме этого обязательна установка резервного насоса.

Для компенсации утечек воды и поддержания необходимого уровня пьезометрического давления, как при статическом, так и при динамическом режиме, необходима установка подпиточного насоса.

Развиваемое им давление принимается равным давлению во всасывающем патрубке сетевого насоса и определяется положением пьезометрической линии в обратной магистрали. Расход подпиточного насоса, м 3 /ч в зависимости от вида системы теплоснабжения определяется по формулам:

Для подпитки закрытой тепловой сети

;

Для подпитки открытой тепловой сети

,

где V – объем воды в системе теплоснабжения, м 3 ;

Максимальный расход воды на горячее водоснабжение, м 3 /ч.

Объем воды в системе теплоснабжения может быть определен по фактическим размерам труб (длине и диаметру) или по удельным показателям, определяющим объем воды, приходящийся на единицу тепловой мощности. Объем воды определяется для всех элементов системы теплоснабжения: котельной, наружных трубопроводов, местных абонентских систем. Удельные объемы воды, м 3 /МВт можно принять равными:

Для котельной ;

Для наружных трубопроводов ;

Для систем отопления ;

Для систем вентиляции ;

Для систем горячего водоснабжения ;

, , , ;

С учетом изложенного объем воды может быть определен по формуле

где - суммарный расчетный расход теплоты в системе теплоснабжения, МВт;

, , – расчетные расходы теплоты на отопление, вентиляцию и горячее водоснабжение, соответственно, МВт.

Минимальное число рабочих подпиточных насосов принимается равным: в закрытых системах – один, в открытых – два. В обоих случаях предусматривается один резервный насос той же производительности.

В системах теплоснабжения в качестве сетевых циркуляционных и подпиточных насосов могут использоваться насосы следующих типов:

1. СЭ –горизонтальные спирального типа с рабочими колесами двойного входа одноступенчатые. Насосы типа СЭ используют в качестве сетевых в крупных системах теплоснабжения и устанавливают на подающих трубопроводах тепловых сетей для перекачивания перегретой воды с температурой до 180°С и с рабочим давлением на входе насосов от 0,4 до 2,5 МПа.

2. Д –горизонтальные одноступенчатые с полуспиральным подводом жидкости к рабочему колесу. Предназначены для воды с температурой не выше 85°С и максимальным подпором 20 м вод.ст.

3. К – Центробежные насосы консольного типа.

Характеристики насосов для тепловых сетей приведены в справочной литературе .

Расчет сетевого насоса:

Объем перекачиваемой воды для зимних условий:

Объем перекачиваемой воды для летних условий:

, (т/час);

Выбираем два сетевых насоса:

Для зимнего периода два насоса марки Д630-90 с параметрами: диаметр рабочего колеса – 450, номинальная подача – 630 м³/час, полный напор – 63 м, КПД – 75%, Мощность на валу насоса – 365 кВт.

Для летнего периода Д200-95 с параметрами: диаметр рабочего колеса – 240, номинальная подача – 200 м³/час, полный напор – 64 м, КПД – 85%, Мощность на валу насоса – 70 кВт.

Также предусматривается один резервный насос марки Д630-90 и один резервный марки Д200-95.

Расчет подпиточного насоса:

, (МПа);

Объем перекачиваемой воды:

, (м³), , (м³),

, (м³), , (м³);

, (т/ч);

Выбираем подпиточный насос К20/30 с параметрами: диаметр рабочего колеса – 162, номинальная подача – 20 м³/час, полный напор – 30 м, КПД – 64%, Мощность на валу насоса – 2,7 кВт.

Предусматривается резервный насос такой же марки.

Пьезометрический график разрабатывают для двух режимов. Во - первых, для статического режима, когда в системе теплоснабжения от­сутствует циркуляция воды. Считают, что система заполнена водой с температурой 100°С, тем самым исключается необходимость поддержа­ния избыточного давления в теплопроводах во избежание вскипания теплоносителя. Во-вторых, для гидродинамического режима - при на­личии циркуляции теплоносителя в системе.

Разработку графика начинают со статического режима. Первона­чально изыскивают возможность такого расположения на графике ли­нии полного статического давления, чтобы всех абонентов можно было присоединить к тепловой сети по зависимой схеме. Для этого статиче­ское давление не должно превышать допустимого из условия прочности абонентских установок и должно обеспечивать заполнение водой мест-" ных систем. Наличие общей статической зоны для всей системы тепло­снабжения упрощает ее эксплуатацию и повышает ее надежность. Уста­новить единый уровень статического давления удается лишь при спо­койном рельефе местности теплоснабжаемого района. При наличии зна­чительной разности геодезических отметок земли установление общей
статической зоны оказывается невозможным по следующим причинам. Наинизшее положение уровня статического давления определяется из условий заполнения водой местных систем и обеспечения в верхних точках систем наиболее высоких зданий, расположенных в зоне наиболь­ших геодезических отметок, избыточного давления не менее 0,05 МПа. Такое давление оказывается недопустимо высоким для зданий, располо­женных в той части района, который имеет наиболее низкие геодезиче­ские отметки. При таких условиях возникает необходимость разделения системы теплоснабжения на две статические зоны. Одна зона для части теплоснабжаемого района с низкими геодезическими отметками, дру­гая - с высокими.

На рис. 8 9 показаны пьезометрический график и принципиальная схема системы теплоснабжения района, имеющего значительную раз­ность геодезических отметок уровня земли (40 м). Часть района, при­легающая к источнику теплоснабжения, имеет нулевые геодезические отметки, в периферийной части района отметки составляют 40 м. Высо­та зданий 30 и 45 м. Для возможности заполнения водой систем отопле­ния зданий III я IV, расположенных на отметке 40 м и создания в верх­них точках систем избыточного напора в 5 м уровень полного статиче­ского напора должен быть расположен на отметке 75 м (линия S2- S2). В этом случае статический напор будет равен 35 м. Однако напор в 75 м недопустим для зданий I и II, расположенных на нулевой отметке Для них допустимое наивысшее положение уровня полного статическогр

Ляторы РДДС (10) и РД2 (9), ДЯ 0 пґ,-напор, срабатываемый на клапане регулятора РДДС

При гидродинамическом режиме, I-IV - абоненты, / - бак подпиточной воды, 2, 3 - подпиточный насос н регулятор подпитки нижней зоны, 4 - предвключенный насос, 5 - теплофикационные па­роводяные подогреватели, 6 - сетевой насос, 7 - пиковый водогрейный , 8, 9 - подпиточный насос и регулятор подпитки верхней зоны, 10 - регулятор давления «до себя» РДДС 11 - обрат­ный клапан давления соответствует отметке 60 м. Таким образом, в рассматривае­мых условиях установить общую статическую зону для всей системы теплоснабжения нельзя.

Возможным решением является разделение системы теплоснабжения на две зоны с различными уровнями полных статических напоров - на нижнюю с уровнем в 50 м (линия 5] -Si) и верхнюю с уровнем в 75 м (линия S2-S2). При таком решении всех потребителей можно при­соединить к системе теплоснабжения по зависимой схеме, так как стати­ческие напоры в нижней и верхней зонах находятся в допустимых гра­ницах. .

Чтобы при прекращении циркуляции воды в системе уровни статиче­ских давлений установились в соответствии с принятыми двумя зрнами, в месте их соединения располагают разделительное устройство (см. рис. 8.9, б). Это устройство защищает тепловую сеть от повышенного давления при остановке циркуляционных насосов, автоматически рассе­кая ее на две гидравлически независимые зоны: верхнюю и нижнюю.

При остановке циркуляционных насосов падение давления в обрат­ном трубопроводе верхней зоны предотвращает регулятор давления «до себя» РДДС 10, поддерживающий постоянным заданный напор Ярддс в точке отбора импульса. При падении давления он закрывает­ся. Падение давления в подающей линии предотвращает установленный на ней обратный клапан 11, который также закрывается. Таким обра­зом, РДДС и обратный клапан рассекают теплосеть на две зоны. Для подпитки верхней зоны установлены подпиточный насос 8, который за­бирает воду из"нижней зоны и подает б верхнюю, и регулятор подпитки 9. Напор, развиваемый насосом, равен разности гидростатических напо­ров верхней и нижней зон. Подпитку нижней зоны оссуществляет подпи­точный насос 2 и регулятор подпитки 3.

Регулятор РДДС настроен на напор Ярддс (см. рис. 8.9, а). Ha этот же напор настроен регулятор подпитки РД2.

При гидродинамическом режиме регулятор РДДС поддерживает напор на том же уровне. В начале сети подпиточный насос с регулято­ром поддерживают напор Hoi. Разность этих напоров тратится на преодоление гидравлических сопротивлений в обратном трубопроводе между разделительным устройством и циркуляционным насосом источ­ника тепла, остальная часть напора срабатывается в дроссельной под­станции на клапане РДДС. На рис. 8.9, а эта часть напора показана величиной АЯрддс. Дроссельная подстанция при гидродинамическом режиме позволяет поддерживать давление в обратной линии верхней зоны не ниже принятого уровня статического давления S2 - S2.

Пьезометрические линии, соответствующие гидродинамическому ре­жиму, показаны на рис. 8.9,а. Наибольшее давление в обратном трубо­проводе у потребителя IV составляет 90-40 = 50 м, что допустимо. На пор в обратной линии нижней зоны также находится в допустимых гра­ницах.

В подающем трубопроводе максимальный напор после источника тепла равен 160 м, что не превышает допустимого из условия прочности* труб. Минимальный пьезометрический напор в подающем трубопроводе 110 м, что обеспечивает невскипание высокотемпературного теплоноси­теля, так как при расчетной температуре 150°С минимальное допустимое давление равно 40 м.

Таким образом, разработанный для статического и гидродинамиче­ского режимов пьезометрический график обеспечивает возможность при­соединения всех абонентов по зависимой схеме.

Другим возможным решением гидростатического режима системы теплоснабжения, показанной на рис. 8.9, является присоединение часта абонентов по независимой схеме. Здесь могут быть два варианта. Пер­вый вариант - установить общий уровень статического давления на от-
метке 50 м (линия Si - Si), а здания, расположенные на верхних геоде­зических отметках, присоединить по независимой схеме. В этом случае статический напор в водоводяных отопительных подогревателях зданий верхней зоны со стороны греющего теплоносителя составит 50-40= = 10 м, а со стороны нагреваемого теплоносителя определится высотой зданий. Второй вариант - установить общий уровень статического дав­ления на отметке 75 м (линия S2 - Ss) с присоединением зданий верх­ней зоны по зависимой схеме, а зданий нижней зоны - по независимой. В этом случае статический напор в водоводяных подогревателях со сто­роны греющего теплоносителя будет равен 75 м, т. е. меньше допустимой величины (100 м).

При спокойном рельефе местности, но большой протяженности теп­ловых сетей возникает необходимость в установке насосных подкачива­ющих подстанций на подающей и обратной линиях. Это связано с тем, что допустимые потери давления в подающем и обратном трубопроводах оказываются недостаточными для обеспечения оптимальных гидравли­ческих уклонов, а их увеличение путем установки циркуляционных насо­сов, развивающих большие напоры, невозможно из условия прочности трубопроводов и . При установке подкачивающих подстан­ций по трассе тепловой сети увеличивается общий напор насосов, обе­спечивающий циркуляцию воды в системе, увеличиваются гидравличе­ские уклоны при неизменном положении верхней и нижней границ напо­ров в подающем и обратном трубопроводах. Установка подкачивающих подстанций позволяет также увеличить пропускную способность дейст­вующей системы теплоснабжения.

На рис. 8.10 вверху приведен пьезометрический график тепловой сети большой протяженности, а внизу показано расположение источника тепла, трубопроводов и подкачивающих станций. Если при сохранении нагрузки тепловой сети и уклонов пьезометрических линий ограничиться только установкой циркуляционных насосов на станции, тогда они должны развивать напор 140+40 + 40 = 220 м. Максимальный пьезомет­рический напор в начале сети составит 210 м, что недопустимо из усло­вия прочности трубопроводов. Такой пьезометрический график показан на рис. 8.10 пунктиром. Напор в обратной линии в конце магистрали составляет 100 м, что не позволяет присоединять потребителей по зави­симой схеме. Этот напор является предельным при независимом при-

Рис. 8.10. Пьезо­метрический гра. фик тепловой се­ти большой про­тяженности

1 - источник тепла;

2 - место расположе­ния подкачивающих насосов на подаю­щем и обратном теп­лопроводах; 3 - кон­цевой абонент; S - S - линия полного статического напора; #„, Н Н,

Н п. и н. п

Напоры, раз­виваемые насосами: сетевым, подпиточ­ным, подкачивающим на подающей линии, подкачивающим на обратной линии;

И3 - высота зданий
соединении. При установке насосных подстанций напор циркуляционного* насоса источника тепла снижается до 140 м, а максимальный напор в начале сети до 130 м, т. е. до допустимого. При этом снижение напора в подающем трубопроводе между источником тепла и насосной подстан­цией не вызывает недопустимого снижения напора в концевой части се­ти. Подкачивающие насосы повышают в этой зоне напор с 80 до 120 м. В результате такого решения напор в подающем трубопроводе изменя­ется в пределах от 80 до 130 м.

Подстанция на обратной линии снижает давление в концевой части сети между подстанцией и абонентом 3. В этой зоне напор в обратной линии не превышает допустимой величины в 60 м.

Таким образом, в результате установки подкачивающих насосных подстанций на тепловой сети большой протяженности удается выдер­жать расположение пьезометрических линий как в подающем, так и в обратном трубопроводах в допустимых границах при сохранении эконо­мически обоснованного удельного падения давления.

В случае понижения рельефа местности от источника тепла сущест­венно возрастает давление в обратной линии периферийной зоны района и оно может выйти за допустимые границы. Для снижения давления в этой части обратной линии на ней устанавливают подкачивающую на­сосную подстанцию. Такой случай показан на рис. 8.11. Если не уста­навливать насосной подстанции на обратной линии, тогда напор у кон­цевого абонента 3 будет равен 60 + 30 = 90 м, что не позволит осущест­вить зависимое присоединение. Пьезометрические линии подающего и обратного теплопроводов для системы б. ез подкачивающей подстанции при развиваемом циркуляционным насосом напоре 130 + 30=160 м по­казаны на рис. 8.11 пунктиром. Максимальный напор в подающей линии оказывается равным 140+30=170 м, т. е. превышает допустимый (160 м). В результате установки на обратном теплопроводе подкачива­ющих насосов пьезометрическая линия подающего теплопровода экви­дистантно опускается на 30 м, а давление в Обратном теплопроводе между насосной подстанцией и концевым абонентом оказывается в зоне

Рис. 8 12. Пьезометрический график тепловой сети при значительно снижающемся рельефе местности от источника тепла и разделении системы на две статические зоны л - пьезометрический график, б-принципиальная схема системы теплоснабжения; /-IV - або­ненты; Si - Si - линия полного статического напора в верхней зоне; S2 - Sj - линия полного Статического напора в нижней зоне; 1 - автомат рассечки; 2 - подкачивающий насос; 3 - регу­лятор подпитки Нижней зоны

Лить систему на две статические зоны: верхнюю вблизи источника и нижнюю на дериферии. Такой случай показан на рис. 8.12. Чтобы сни­зить давление в обратной линии в концевой части магистрали в точке М установлена насосная подкачивающая подстанция. Насосы развивают напор в 40 м. Это позволяет снизить напор, развиваемый сетевыми на­сосами, до 85 м и соответственно снизить давление в подающей линии.

Тепловая сеть разделена на две статические зоны: верхнюю вблизи источника тепла с пьезометрическим напором в 50 м и нижнюю в пери­ферийной части сети с пьезометрическим напором в 50 м. Для разделения сети при остановке насосов на две статические зоны на подающей линии установлен автомат рассечки 1, а на обратной линии - обратный кла­пан. При остановке насосов давление в трубопроводах начинает вырав­ниваться и растет давление в обратном трубопроводе на участке от на­сосной подстанции до концевой точки IV. Рост давления передается по импульсной трубке к регулятору, управляющему клапаном рассечки, клапан закрывается и гидравлически разобщает подающую линию на две зоны. Переток воды из верхней зоны в нижнюю предотвращает об­ратный клапан, установленный на обратной линии. В результате при статическом режиме сеть будет разделена на две зоны с уровнями Si - Si и S2 - 52.

Поддержание статического уровня верхней зоны обеспечивает под - питочное устройство источника тепла. Поддержание статического уровня нижней зоны обеспечивает двухимпульсный дроссельный клапан 3. Основным импульсом является давление в обратной линии, разрешаю­щим - давление в подающей линии нижней зоны.

Гидравлический расчет тепловых сетей, выполняемый для подбора дроссельных устройств и разработки эксплуатационного режима, производится в целях определения потерь давления в трубопроводах тепловой сети от источника теплоты до каждого потребителя при фактических тепловых нагрузках и существующей тепловой схеме сети.

При гидравлическом расчёте трубопроводов определяют расчётный расход сетевой воды, складывающийся из расчётных расходов на отопление. Перед гидравлическим расчётом составляют расчётную схему тепловой сети с нанесением на ней длин и диаметров трубопроводов, местных сопротивлений и расчётных расходов теплоносителя по всем участкам тепловой сети. Выбирают расчётную магистраль. За расчётную магистраль принимают направление движения теплоносителя от котельной до одного из абонентов, причём этот абонент должен быть наиболее удаленным.

В настоящей дипломной работе гидравлический расчёт тепловой сети выполнен на ЭВМ с применением системы электронных таблиц «Excel».

Суммарные потери напора в трубопроводе определяются по формуле:

где Н л - линейные потери напора на участке, м;

Н м - потери напора в местных сопротивлениях, м;

R л - удельное линейное падение напора, кг/м 2 м;

l уч - длинна расчетного участка, м;

а - осреднённый коэффициент местных потерь;

1 экв - эквивалентная длина местных сопротивлений, м;

l np - приведенная длина рассчитываемого участка трубопровода, м;

р - плотность теплоносителя, кг/м 3 ,Удельное падение давления от трения:

где - коэффициент гидравлического трения;

Скорость воды в трубопроводе, м/с;

g - ускорение свободного падения, м/с 2 ;

р - плотность теплоносителя, кг/м 3 ;

d - внутренний диаметр трубопровода, м;

Коэффициент гидравлического трения при Re < Re пр - рассчитывается по формуле Альтшуля:

где К э - абсолютная эквивалентная шероховатость в водяных сетях принимается 0,001м при существующей схеме), 0,0005 м (при проектируемой схеме);

Re - действительный критерий Рейнольдса, Re>>68.

Скорость воды в трубопроводе вычисляется и одного из основных уравнения - уравнения неразрывности

где G сет - расход сетевой воды на участке, кг/сек;

d вн - внутренний диаметр трубопровода, м.

Длина прямолинейного участка трубопровода диаметром d вн, линейное падение давления, на котором равно падению давления в местных сопротивлениях, является эквивалентной длиной местных сопротивлений:

Где - сумма коэффициентов местных сопротивлений.

При нахождении коэффициентов местных сопротивлений нам необходимо знать расположение всех углов поворотов трассы, задвижек и прочей арматуры. За не имением такой информации, в связи с большой протяжённостью теплотрассы, большим количеством объектов теплопотребления гидравлический расчет будет выполнен без учёта местных сопротивлений. Осредненный коэффициент местных потерь a как и было указано принимаем равный 0,1. Весь гидравлический расчёт был выполнен с учётом этого правила.

Приведенная длина участка тепловой сети вычисляется по формуле:

Стабилизацию гидравлического режима, поглощение избыточных напоров на тепловых пунктах при отсутствии автоматических регуляторов производят с помощью постоянных сопротивлений - дроссельных диафрагм.

Дроссельные диафрагмы устанавливают перед системами теплопотребления или обратном трубопроводе или на обоих трубопроводах в зависимости от необходимого для системы гидравлического режима.

Диаметр отверстия дроссельной диафрагмы определяют по формуле:

где G - расчетный расход воды через дроссельную диафрагму, т/ч;

Н - напор, дросселируемой диафрагмой, м.

Дросселируемый в диафрагме напор находят как разность между располагаемым напором перед системой теплопотребления или отдельным теплоприемником и гидравлическим сопротивлением системы (с учетом сопротивления установленных в ней дроссельных устройств) или сопротивлением теплообменника. При расчетном диаметре диафрагмы менее 2,5 мм избыточный напор дросселируют в двух диафрагмах, устанавливая их последовательно (на расстоянии не менее 10 диаметров трубопровода) либо на подающем и обратном трубопроводах. Во избежание засорения не следует устанавливать дроссельные диафрагмы с диаметром отверстия менее 2,5 мм. Дроссельные диафрагмы, как правило, устанавливают во фланцевых соединениях (на тепловом пункте после грязевика) между запорной арматурой, что позволяет заменять их без спуска воды из системы.

Расчеты производилось с помощью электронных таблиц Excel для Windows.

К гидравлическому режиму данной тепловой сети предъявляются следующие требования:

а) напор в обратном трубопроводе должен обеспечивать залив верхних приборов систем отопления и не превышать допустимое рабочее давление в местных системах. В системах отопления рассчитываемых зданий установлены чугунные секционные радиаторы с допустимым рабочим давлением 60 м.вод.ст.;

б) давление воды во всасывающих патрубках сетевых и подпиточных насосов не должно превышать допустимого по условиям прочности конструкции насосов и быть не ниже 0,5 кгс/см 2 ;

в) давление воды в обратных трубопроводах тепловой сети во избежании подсоса воздуха должно быть не менее 0,5 кгс/см 2 ;

г) давление в подающем трубопроводе при работе сетевых насосов должно быть таким, чтобы не происходило кипение воды при ее максимальной температуре в любой точке подающего трубопровода, в оборудовании источника тепла и в приборах систем теплопотребителей, непосредственно присоединенных к тепловым сетям, при этом давление в оборудовании источника тепла и тепловой сети не должно превышать допустимых пределов их прочности;

д) статическое давление в системе теплоснабжения должно быть таким, чтобы в трубопроводах в случае остановки сетевых насосов, обеспечило залив верхних отопительных приборов в зданиях и не разрушило нижние приборы.

е) перепад давлений на тепловых пунктах потребителей должен быть не меньше гидравлического сопротивления систем теплопотребления, с учетом потерь давления в дроссельных диафрагмах и в соплах элеваторов;

Исходя из этих требований, минимальное положение линии статического пьезометра должно быть на 3-5 метров выше наиболее высоко расположенных приборов, а максимальное значение не превышать 80 м.

Для учета взаимного влияния рельефа местности, высоты абонентских систем, потерь давления в тепловых сетях и ряда требований в процессе разработки гидравлического режима тепловой сети необходимо строить пьезометрический график. На пьезометрическом графике величины гидравлического потенциала выражены в единицах напора.

Пьезометрический график представляет собой графическое изображение напоров в тепловой сети относительно рельефа местности, на которой она расположена. На пьезометрическом графике в определенном масштабе наносят рельеф местности, высоту присоединенных зданий величины напоров в сети. На горизонтальной оси графика откладывают длину сети, а на вертикальной оси графика напоры. Линии напоров в сети наносят как для рабочего, так и для статического режимов.

Пьезометрический график

Пьезометрический график представляет собой графическое изображение напоров в тепловой сети относительно местности, на которой она проложена. На пьезометрическом графике в определенном масштабе наносят рельеф местности, высоту присоединенных зданий, величины напоров в сети. На горизонтальной оси графика откладывают длину сети, а на вертикальной оси - напоры. Пьезометрический график строят следующим образом:

1) принимая за ноль отметку самой низкой точки тепловой сети, наносят профиль местности по трассе основной магистрали и ответвлений, отметки земли которых отличаются от отметок магистрали. На профиле проставляют высоты присоединенных зданий;

2) наносят линию, определяющую статический напор в системе (статический режим). Если давление в отдельных точках системы превышает пределы прочности, необходимо предусмотреть подключение отдельных потребителей по независимой схеме или деление тепловых сетей на зоны с выбором для каждой зоны своей линии статического напора. В узлах деления устанавливают автоматические устройства рассечки и подпитки тепловой сети;

3) наносят линию напоров обратной магистрали пьезометрического графика. Уклон линии определяют на основании гидравлического расчета тепловой сети. Высоту расположения линии напоров на графике выбирают с учетом вышеприведенных требований к гидравлическому режиму. При неровном профиле трассы не всегда возможно одновременно выполнять требования заполнения верхних точек систем теплопотребления, не превысив допустимые давления. В этих случаях выбирают режим, соответствующий прочности нагревательных приборов, а отдельные системы, залив которых не будет обеспечен вследствие низкого расположения.

Линия пьезометрического графика обратного трубопровода магистрали в точке пересечения с ординатой, соответствующей началу теплосети, определяет необходимый напор в обратном трубопроводе водоподогревательной установки (на входе сетевого насоса);

4) наносят линию подающей магистрали пьезометрического графика. Уклон линии определяют на основании гидравлического расчета тепловой сети. При выборе положения пьезометрического графика учитывают предъявляемые к гидравлическому режиму требования и гидравлические характеристики сетевого насоса. Линия пьезометрического графика подающего трубопровода в точке пересечения с ординатой, соответствующей началу теплосети, определяет требуемый напор на выходе из подогревательной установки. Напор в любой точке тепловой сети определяется величиной отрезка между данной точкой и линией пьезометрического графика подающей или обратной магистрали.

Из пьезометрического графика видно, что статический напор на вводах из котельной составляет ДН=20 м.в.ст.

При проектировании и эксплуатации разветвленных тепловых сетей, для учета взаимного влияния профиля района, высот присоединяемых зданий, потерь давления в тепловой сети и абонентских установках, используется график. По пьезометрическому графику легко определяется давление и располагаемый перепад давлений в любой точке тепловой сети.

На основании пьезометрического графика выбирается схема присоединения абонентских установок, подбираются повысительные насосы, подпиточные насосы и автоматические устройства.

График давления разрабатывается для состояний покоя системы (гидростатический режим) и динамического режима.

Динамический режим характеризуется линией потерь напора в подающем и обратном трубопроводе, на основании гидравлического расчета сети, и определяется работой сетевых насосов.

Гидростатический режим поддерживается подпиточными насосами в период отключения сетевых насосов.

К водяным тепловым сетям присоединены абоненты, имеющие различные тепловые нагрузки. Они могут быть расположены на различных геодезических отметках и иметь различную высоту. Системы отопления абонентов могут быть рассчитаны на работу с различными температурами воды. В этих случаях необходимо заранее определять давления или напоры в любой точке тепловой сети.

Для этого строится пьезометрический график или график напоров тепловой сети, на котором в определенном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в тепловой сети; по нему легко определить напор (давление) и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

Кроме определения напоров в любой точке сети и по пьезометрическому графику можно проверить соответствие предельных давлений в тепловой сети прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединения потребителей к тепловой сети и подбирается оборудование тепловых сетей (сетевые и подпиточныенасосы, автоматические регуляторы давления и т. п.). График стоится при двух режимах работы тепловых сетей -- статическом и динамическом.

Статический режим характеризуется давлениями в сети при неработающих сетевых, но включенных подпиточных насосах. Циркуляция воды в сети отсутствует. При этом подпиточные насосы должны развивать напор, обеспечивающий невскипаемость воды в тепловой сети.

Динамический режим характеризуется давлениями, возникающими в тепловой сети и в системах потребителей теплоты при работающих сетевых насосах, обеспечивающих циркуляцию воды в системе.

Пьезометрический график разрабатывается для основной магистрали теплосети и протяженных ответвлений. Он может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках тепловой сети.

График строится по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах, на горизонтальной -длины участков тепловой сети.

При построении условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зданий совпадают с отметкой земли. Высшее положение воды в отопительных системах совпадает с верхней отметкой здания.

Полный напор в нагнетательном патрубке сетевого насоса соответствует отрезку Н н. Полный напор на обратном коллекторе источника теплоснабжения соответствует отрезку Н o .

Напор, развиваемый сетевым насосом, соответствует вертикальному отрезку Н С =Н H -Н 0 , потери напора в теплоподготовительной установке источника теплоснабжения (в сетевых подогревателях или водогрейных котлах) соответствуют вертикальному отрезку Н Т. Таким образом, напор на подающем коллекторе источника теплоснабжения соответствует вертикальному отрезку Н ит =Н с -.

Методика построения графика:

  • 1) Строится магистраль, условно ее отметка совпадает с отметкой земли;
  • 2) На профиле трассы в принятом масштабе вычерчиваются высоты присоединения зданий;
  • 3) Строится линия статического напора, из условий заполнения водой отопительных установок и создания в их верхних точках избыточного давления (запас напора 5 м выше самого высокого здания);
  • 4) Пьезометрическое давление в обратном трубопроводе тепловой сети не должно быть меньше 5 м в. ст. во избежание образования вакуума и подсоса воздуха.

График выполняется на миллиметровке формата 297 х 420. Для построения применять следующие масштабы:

Горизонтальный - 1:1000, 1:500; вертикальный - 1см - 5м.

Определить располагаемый напор для каждой УТ (тепловой камеры):

Нрасп. = Нподающ.тр. - Нобратн.тр.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png