Под потерей фазы понимают однофазный режим работы электродвигателя в результате отключения питания по одному из проводов трехфазной системы.

Причинами потери фазы электродвигателем могут быть:

Обрыв одного из проводов,

Сгорание одного из предохранителей;

Нарушение контакта в одной из фаз.

В зависимости от обстоятельств, при которых произошла потеря фазы, могут быть разные режимы работы электродвигателя и последствия, сопутствующие этим режимам.

При этом следует принимать во внимание следующие факторы:

Схему соединения обмоток электродвигателя ("звезда" или "треугольник"),

Рабочее состояние двигателя в момент потери фазы (потеря фазы может произойти до или после включения двигателя, во время работы под нагрузкой),

Степень загрузки двигателя и механическую характеристику рабочей машины, число электродвигателей, работающих при потере фазы, и их взаимное влияние.

Здесь следует обратить внимание на особенность рассматриваемого режима. В трехфазном режиме каждая фаза обмотки обтекается током, сдвинутым во времени на одну треть периода. При потере фазы две обмотки обтекаются одним и тем же током, в третьей фазе ток отсутствует.

Несмотря на то, что концы обмоток присоединены к двумя фазным проводам трехфазной системы, токи в обеих обмотках совпадают по времени. Такой режим работы называется однофазным.

Магнитное поле, образованное однофазным током, в отличие от вращающегося поля, образованного трехфазной системой токов, является пульсирующим. Оно изменяется во времени, но не перемещается по окружности статора. На рисунке 1, а показан вектор магнитного потока, создаваемого в двигателе при однофазном режиме. Этот вектор не вращается, а лишь изменяется по величине и знаку. Круговое поле сплющивается до прямой линии.

Рис. 1. Характеристики асинхронного двигателя в однофазном режиме: а - графическое изображение пульсирующего магнитного поля;

б - разложение пульсирующего поля на два вращающихся;

в - механические характеристики асинхронного двигателя в трехфазном (1) и однофазном (2) режимах работы.

Пульсирующее магнитное поле можно рассматривать состоящим из двух вращающихся навстречу друг другу равных по величине полей (рис. 1, б). Каждое поле взаимодействует с обмоткой ротора и образует вращающий момент. Их суммарное действие создает вращающий момент на валу двигателя.

В том случае, когда потеря фазы произошла до включения двигателя в сеть, на неподвижный ротор действуют два магнитных поля, которые образуют два противоположных по знаку, но равных по величине момента. Их сумма будет равна нулю. Поэтому при пуске двигателя в однофазном режиме он не может развернуться даже при отсутствии нагрузки на валу.

Если потеря фазы произошла в то время, когда ротор двигателя вращался, то на его валу образуется вращающий момент. Это можно объяснить следующим образом. Вращающийся ротор по разному взаимодействует с вращающимися навстречу друг другу полями. Одно из них, вращение которого совпадает с вращением ротора, образует положительный (совпадающий по направлению) момент, другое - отрицательный. В отличие от случая с неподвижным ротором эти моменты будут разными по величине. Их разность будет равна моменту на валу двигателя.

На рисунке 1, в показана механическая характеристика двигателя в однофазном и трехфазном режимах работы. При нулевой скорости момент равен нулю, при появлении вращения в любую сторону на валу двигателя возникает момент.

Если отключение одной из фаз произошло во время работы двигателя, когда его скорость была близка к номинальному значению, вращающий момент часто бывает достаточным для продолжения работы с небольшим снижением скорости. В отличие от трехфазного симметричного режима появляется характерное гудение. В остальном внешние проявления аварийного режима не наблюдаются. Человек, не имеющий опыта работы с асинхронными двигателями, может не заметить изменения характера работы электродвигателя.

Переход электродвигателя в однофазный режим сопровождается перераспределением токов и напряжений между фазами. Если обмотки двигателя соединены по схеме "звезда", то после потери фазы образуется схема, показанная на рисунке 2. Две последовательно соединенные обмотки двигателя оказываются включенными на линейное напряжение Uаb, двигатель при этом оказывается в однофазном режиме работы.

Сделаем небольшой расчет, определим токи, протекающие по обмоткам двигателя и сравним их с токами при трехфазном питании.

Рис. 2. Соединение обмоток двигателя по схеме "звезда" после потерн фазы

Так как сопротивления Zа и Zв соединены последовательно, напряжения на фазах А и В будут равны половине линейного:

Приближенно величину тока можно определить исходя из следующих соображений.

Пусковой ток фазы А при потере фазы

Пусковой ток фазы А при трехфазном режиме

где Uao - фазовое напряжение сети.

Отношение пусковых токов:

из соотношения следует, что при потере фазы пусковой ток составляет 86% от величины пускового тока при трехфазном питании. Если учесть, что пусковой ток короткозамкнутого асинхронного двигателя в 6 - 7 раз больше номинального, то получается, что по обмоткам двигателя протекает ток

Iiф = 0,86 х 6 = 5,16 Iн,

т. е. в пять с лишним раз превышающий номинальный. За короткий промежуток времени такой ток перегреет обмотку.

Из приведенного расчета видно, что рассматриваемый режим работы весьма опасен для двигателя и в случае его возникновения защита должна отключить с незначительной выдержкой времени.

Потеря фазы может произойти и после включения двигателя, когда его ротор будет иметь скорость вращения, соответствующую рабочему режиму. Рассмотрим токи и напряжения обмоток в случае перехода в однофазный режим при вращающемся роторе.

Величина Za зависит от скорости вращения. При пуске, когда скорость вращения ротора равна нулю, она одинакова как для трехфазного, так и для однофазного режима. В рабочем режиме в зависимости от нагрузки и механической характеристики двигателя скорость вращения может быть разной. Поэтому для анализа токовых нагрузок необходим другой подход.

Будем считать, что как в трехфазном, так и в однофазном режиме двигатель развивает. одинаковую мощность. Независимо от схемы включения электродвигателя рабочая машина требует ту же самую мощность, которая необходима для выполнения технологического процесса.

Полагая мощности на валу двигателя равными для обоих режимов, будем иметь:

при трехфазном режиме

при однофазном режиме

где Ua - фазовое напряжение сети;

Uao - напряжение на фазе А в однофазном режиме,

cos φ3 и cos φ1 - коэффициенты мощности при трехфазном и однофазном режимах соответственно.

Опыты с асинхронным двигателем показывают, что фактически ток возрастает почти вдвое. С некоторым запасом можно считать

I 1a / I 2a = 2.

Для того чтобы судить о степени опасности однофазного режима работы, нужно также знать загрузку двигателя.

Iф = Kз х Iн,

где Kз - коэффициент загрузки двигателя,

Iн - номинальный ток двигателя.

Ток при однофазном режиме

I1ф = 2Kзх Iн,

т. е. ток при однофазном режиме будет зависеть от загрузки двигателя. При номинальной нагрузке он равен двойному номинальному току. При нагрузке менее 50% потеря фазы при соединении обмоток двигателя в "звезду" не создает опасного для обмоток превышения тока. В большинстве случаев коэффициент загрузки двигателя меньше единицы. При его значениях порядка 0,6 - 0,75 следует ожидать небольшого превышения тока (на 20- 50%) по сравнению с номинальным. Это существенно для работы защиты, так как именно в этой области перегрузок она действует недостаточно четко.

Для анализа некоторых способов защиты необходимо знать напряжение на фазах двигателя. При заторможенном роторе напряжение на фазах А и В будет равно половине линейного напряжения Uab, а напряжение на фазе С будет равно нулю.

Иначе распределяется напряжение при вращающемся роторе. Дело в том, что его вращение сопровождается образованием вращающегося магнитного поля, которое, действуя на обмотки статора, наводит в них электродвижущую силу. Величина и фаза этой электродвижущей силы таковы, что при скорости вращения, близкой к синхронной, на обмотках восстанавливается симметричная система трехфазного напряжения, а напряжение нейтрали звезды (точка 0) становится равным нулю. Таким образом, при изменении скорости вращения ротора от нуля до синхронной в однофазном режиме работы напряжение на фазах А и В изменяется от значения, равного половине линейного, до значения, равного фазовому напряжению сети. Например, в системе напряжения 380/220 В напряжение на фазах А и В изменяется в пределах 190 - 220 В. Напряжение Uco изменяется от нуля при заторможенном роторе до фазового напряжения 220 В при синхронной скорости. Что же касается напряжения в точке 0, то оно изменяется от значения Uab/2 - до нуля при синхронной скорости.

Рис. 3. Соединение обмоток электродвигателя по схеме "треугольник" после потери фазы

Если обмотки двигателя соединены по схеме "треугольник", то после потери фазы мы будем иметь схему соединений, показанную на рисунке 3. В этом случае обмотка двигателя с сопротивлением Zab оказывается включенной на линейное напряжение Uab, а обмотка с сопротивлениями Zfc и Zbc - соединенной последовательно и включенной на то же самое линейное напряжение.

В пусковом режиме по обмоткам АВ будет протекать такой же ток, как и при трехфазном варианте, а по обмоткам АС и ВС будет протекать ток в два раза меньший, так как эти обмотки соединены последовательно.

Токи в линейных проводах I"a=I"b будут равны сумме токов в параллельных ветвях:

I"А = I"ab + I"bc = 1,5 Iab

Таким образом, в рассматриваемом случае при потере фазы пусковой ток в одной из фаз будет равен пусковому току при трехфазном питании, а линейный ток возрастает менее интенсивно.

Для расчета токов в случае потери фазы после включения двигателя в работу применим тот же метод, что и для схемы "звезда". Будем считать, что как в трехфазном, так и в однофазном режимах двигатель развивает одинаковую мощность.

В этом режиме работы ток в наиболее нагруженной фазе при потере фазы увеличивается вдвое по сравнению с током при трехфазном питании. Ток в линейном проводе будет равен I"А = 3Iab, а при трехфазном питании Ia = 1,73 Iab.

Здесь важно отметить, что в то время как фазовый ток возрастает в 2 раза, линейный ток увеличивается только в 1,73 раза. Это существенно, так как токовая защита реагирует на линейные токи. Расчеты и выводы относительно влияния коэффициента загрузки на ток однофазного режима при соединении "звезда" остаются в силе и для случая схемы "треугольник".

Напряжения на фазах АС и ВС будут зависеть от скорости вращения ротора. При заторможенном роторе Uac" = Ubc" = Uab/2

При скорости вращения, равной синхронной, восстанавливается симметричная система напряжений, т. е. Uac" = Ubc" = Uab.

Таким образом, напряжения на фазах АС и ВС при изменениях скорости вращения от нуля до синхронной будут меняться от значения, равного половине линейного, до значения, равного линейному напряжению.

Токи и напряжения на фазах двигателя при однофазном режиме зависят также и от числа двигателей.

Часто обрыв фазы происходит из-за перегорания одного из предохранителей на питающем фидере подстанции или распределительного устройства. В результате в однофазном режиме оказывается группа потребителей, взаимно влияющих друг на друга. Распределение токов и напряжений зависит от мощности отдельных двигателей и их нагрузки. Здесь возможны различные варианты. Если мощности электродвигателей равны, а их нагрузка одинакова (например, группа вытяжных вентиляторов), то всю группу двигателей можно заменить одним эквивалентным.

Несимметрия напряжения. Несимметричную систему трехфазных напряжений можно разложить на симметричные составляющие прямой, обратной и нулевой последовательности (см. гл. 2) и проанализировать влияние каждой из них на работу двигателя. ГОСТ допускает несимметрию напряжения (отношение напряжения обратной последовательности к номинальному напряжению) до 2%.

Система напряжений обратной последовательности создает магнитное поле, вращающееся в противоположную относительно ротора сторону с частотой вращения

nобр = 60f1 р = |n1 |.

Вследствие этого скольжение ротора относительно обратного поля sобр = (n1 - n2)/n1 = /n1 ≈ 2,

так как скольжение асинхронного двигателя в установившемся режиме

s ≈ (0,01 ÷ 0,05).

Следовательно, обратное поле создает тормозящий момент Мобр, а токи обратной последовательности создают дополнительные потери, увеличивающие нагревание обмоток и снижающие КПД.

Рис. 4. Зависимости моментов асинхронного двигателя от скольжения.

На рис. 4 показана зависимость моментов асинхронного двигателя от скольжения. Из нее следует, что под влиянием токов обратной последовательности результирующий момент двигателя Мрез снижается и скольжение при том же нагрузочном моменте Мн на валу возрастает.

Рис. 5. Зависимости КПД от асимметрии напряжения для одного из двигателей общего применения мощностью 5,5 кВт.

На рис. 5 показаны зависимости КПД от асимметрии напряжения для одного из двигателей общего применения мощностью 5,5 кВт. При несимметрии напряжения 2% КПД снижается примерно на 2%, а при 4% почти на 5,5%. Следовательно, несимметрия питающего напряжения крайне нежелательна.

Обрыв фазы обмотки статора. При пуске трехфазного асинхронного двигателя с оборванной фазой создаются такие условия, как и в однофазном двигателе (см. § 4.17), т. е. его результирующий момент Мрез = Мпр - Мобр = 0. Если ротор двигателя в момент обрыва находится во вращении, то Мпр > Мо6р и при Мрез > Мн двигатель продолжает вращаться, однако максимальный момент Мmax оказывается существенно меньшим, чем при неповрежденной фазе. При переходе двигателя в однофазный режим частота вращения практически не изменяется, поэтому мощность на валу также остается приблизительно одинаковой.

Но отношение токов в этих режимах

I1 /I3 = (3η3 cos φ3)/(2η1 cos φ1),

где индекс 1 относится к однофазному режиму, а 3 - к трехфазному. Поэтому при условии

η1 = η3 и cos φ1 = cos φ3

ток I1 в однофазном режиме в 1,5 раза больше, чем в трехфазном. В действительности КПД и cos φ в однофазном режиме уменьшаются по сравнению с трехфазным, вследствие чего ток I1 возрастает в еще большей степени. Если двигатель работает при нагрузке, близкой к номинальной, то при обрыве фазы его ток становится значительно больше номинального и двигатель быстро перегревается и «выходит из строя».

Рис. 6. Зависимости моментов асинхронного двигателя от скольжения при обрыве фазы обмотки ротора

Обрыв фазы обмотки ротора. При несимметрии сопротивлений фаз ротора возникает эффект одноосного демпфирования. В результате этого кривая момента двигателя в области s = 0,5 имеет провал. Значение этого провала может оказаться настолько большим, что двигатель при пуске под нагрузкой не достигает номинальной частоты вращения и «застревает» при n2 ≈ 0,5п1 . При обрыве одной из фаз ротора электромагнитный момент в области s = 0,5 отрицательный (рис. 6), вследствие чего двигатель не разгоняется до номинальной частоты вращения даже при пуске без нагрузки.

Работа электродвигателей в неполнофазном режиме в большинстве случаев заканчивается выходом их из строя. Этот аварийный режим работы, возникающий при обрыве или отгорании одной из питающих фаз, характеризуется большим увеличением тока потребления других статорных обмоток, что является причиной их перегрева и межвиткового пробоя, вследствие повреждения изоляции.

Нередко, выход из строя 3х-фазных электродвигателей по причине их эксплуатации в неполнофазном режиме, связан с возникновением последнего, именно во время работы двигателя - когда частота вращения его вала достигла номинального значения.

Так, асинхронный двигатель, мощностью более 1 кВт, включенный в сеть с одной отсутствующей “фазой”, просто не запустится - что будет, наверняка, визуально заметно и явится причиной для проверки питающих фазных напряжений.

В случае-же, возникновения неполнофазности электропитания находящегося в работе двигателя, последний продолжит вращение и единственным внешним признаком неполадок питания можеть быть лишь изменившийся шум, издаваемый электромотором и обнаружить "на слух" неисправность не всегда представляется возможным, даже опытному обслуживащему персоналу.


Преимущество предложенной схемы защиты состоит, прежде всего, в простоте ее реализации; состоящая из 2х магнитных пускателей, она не уступает в надежности своим электронным аналогам.

Отключение питания электродвигателя при возникновении его неполнофазности во время пуска или во время работы в данной схеме обеспечивается отсутствием управляющего напряжения в цепи питания катушки магнитного пускателя KM1.

Без фазного напряжения L1 или L2 не невозможно срабатывание KM2, через один из главных контактов которого (вместо него может быть задействован нормально разомкнутый блок-контакт) подается питание на KM1 (“фаза” L3).

Таким образом, отсутствие или исчезновение любой из питающих фаз в сети гарантированно исключит возможность срабатывания KM1 или вернет главные контакты этого пускателя в исходное разомкнутое состояние, отключив двигатель - если одна из “фаз” пропала во время его работы.

Обязательным условием схемы является использование в ней, по крайней мере, одного из магнитных пускателей с катушкой, рабочее напряжение которой составляет 380 В. Это позволит контролировать наличие двух фазных напряжений в сети. Напряжение питания катушки второго пускателя может 220 В. (его для контроля третьей “фазы” будет достаточно) или 380 В.

9 Защита электродвигателя от неполнофазных режимов

9.1 Требования ПУЭ к защите от неполнофазных режимов

9.1.1 Как известно, неполнофазные режимы работы трехфазных электродвигателей приводит к недопустимому разогреву зубцов ротора, пазовых клиньев и бандажных колец.

Согласно требованиям ПУЭ для электродвигателей, которые защищены от токов КЗ предохранителями, не имеющими вспомогательных контактов для сигнализации об их перегорании, должна быть предусмотрена защита от перегрузки в двух фазах.

9.2 Защита от неполнофазных режимов в терминалах БМРЗ

9.2.1 При работе электродвигателя в неполнофазном режиме значения токов прямой и обратной последовательности равны, а ток в каждой из двух рабочих фаз в этом режиме составляет от 1,6 до 2,5 .

Защита от неполнофазных режимов срабатывает при выполнении двух условий:

· токи в двух фазах питания двигателя превышают 1,6 Iном.дв ;

· значение тока обратной последовательности превышает 30% от тока прямой последовательности.

Время срабатывания защиты на отключение электродвигателя выбирают из диапазона от 0,5 с до 1 с и отстраивают от времени ликвидации неполнофазного режима системами защиты и автоматики внешнего электроснабжения.

В терминалах БМРЗ-ДА и БМРЗ-ДД значение тока определяется по значениям фазных токов. Для использования защиты от неполнофазных режимов, предусмотренных в этих терминалах, необходимо наличие ТТ в каждой фазе питания двигателя.

В терминалах БМРЗ-УЗД и БМРЗ-ДВА предусмотрена возможность вычисления тока по токам двух фаз и току . Таким образом, защиту от неполнофазного режима в этих терминалах можно реализовать при наличии ТТ в двух фазах питания двигателя.

Если значение тока превышает 30% от тока прямой последовательности, а значения фазных токов электродвигателя не превышают 1,6 Iном.дв , то это свидетельствует о наличии нарушений во вторичных токовых цепях ТТ.

Симметричная трехфазная система напряжений характеризуется одинаковыми по модулю и фазе напряжениями во всех трех фазах. При несимметричных режимах напряжения в разных фазах не равны.

Несимметричные режимы в электрических сетях возникают по следующим причинам:

1) неодинаковые нагрузки в различных фазах,

2) неполнофазная работа линий или других элементов в сети,

3) различные параметры линий в разных фазах.

Наиболее часто несимметрия напряжений возникает из-за неравенства нагрузок фаз. В городских и сельских сетях 0,38 кВ несимметрия напряжений вызывается в основном подключением однофазных осветительных и бытовых электроприемников малой мощности. Количество таких однофазных ЭП велико, и их нужно равномерно распределять по фазам для уменьшения несимметрии.

В сетях высокого напряжения несимметрия вызывается, как правило, наличием мощных однофазных электроприемников, а в ряде случаев и трехфазных электроприемников с неодинаковым потреблением в фазах. К последним относятся дуговые сталеплавильные печи. Основные источники несимметрии в промышленных сетях 0,38-10 кВ - это однофазные термические установки, руднотермические печи, индукционные плавильные печи, печи сопротивления и различные нагревательные установки. Кроме того, несимметричные электроприемники - это сварочные аппараты различной мощности. Тяговые подстанции электрифицированного на переменном токе железнодорожного транспорта являются мощным источником несимметрии, так как электровозы - однофазные электроприемники. Мощность отдельных однофазных электроприемников в настоящее время достигает нескольких мегаватт.

Различают два вида несимметрии: систематическую и вероятностную, или случайную. Систематическая несимметрия обусловлена неравномерной постоянной перегруз- кой одной из фаз, вероятностная несимметрия соответствует непостоянным нагрузкам, при которых в разное время пе- регружаются разные фазы в зависимости от случайных факторов (перемежающаяся несимметрия).

Неполнофазная работа элементов сети вызывается кратковременным отключением одной или двух фаз при коротких замыканиях либо более длительным отключением при пофазных ремонтах. Одиночную линию можно оборудовать устройствами пофазного управления, которые отключают поврежденную фазу линии в тех случаях, когда действие АПВ оказывается неуспешным из-за устойчивого короткого замыкания.

В подавляющем большинстве устойчивые короткие замыкания однофазные. При этом отключение поврежденной фазы приводит к со-хранению двух других фаз линии в работе.

В сети с заземленной нейтралью электроснабжение по неполнофазной линии может оказаться допустимым и позволяет отказаться от строительства второй цепи линии. Неполнофазные режимы могут возникать и при отключении трансформаторов.

В некоторых случаях для группы, составленной из однофазных трансформаторов, при аварийном отключении одной фазы может оказаться допустимым электроснабжение по двум фазам. В этом случае не требуется установка резервной фазы, особенно при наличии двух групп однофазных трансформаторов на подстанции.

Неравенство параметров линий по фазам имеет место, например, при отсутствии транспозиции на линиях или удлиненных ее циклах. Транспозиционные опоры ненадежны и являются источниками аварий. Уменьшение числа транспозиционных опор на линии уменьшает ее повреждаемость и повышает надежность. В этом случае ухудшается выравнивание параметров фаз линии, для которого обычно и при-меняется транспозиция.



План:

    Введение
  • 1 Режимы работы
  • 2 Режимы работы (подробно)
  • 3 Способы соединения обмоток
  • 4 Работа в однофазной сети
  • 5 Работа в случае пропадания одной фазы
  • 6 Электрозащита

Введение

Трёхфазный двигатель

Трёхфазный двигатель - электродвигатель, который конструктивно предназначен для питания от трехфазной сети переменного тока.

Представляет собой машину переменного тока, состоящую из статора с тремя обмотками, магнитные поля которых сдвинуты в пространстве на 120° и при подаче трехфазного напряжения образуют вращающееся магнитное поле в магнитной цепи машины, и из ротора - различной конструкции - вращающегося строго со скоростью поля статора (Синхронный двигатель) или несколько медленнее его (Асинхронный двигатель).

Наибольшее распространение в технике и промышленности получил асинхронный трёхфазный электродвигатель с короткозамкнутой обмоткой ротора , также называемой «беличье колесо». Под выражением "трехфазный двигатель" обычно подразумевается именно этот тип двигателя, и именно он описывается далее в статье.

Принцип работы двух и многофазных двигателей был разработан Николой Теслой и запатентован. Доливо-Добровольский усовершенствовал конструкцию электродвигателя и предложил использовать три фазы вместо двух, используемых Н. Теслой. Усовершенствование основано на том, что сумма двух синусоид равной частоты различающихся по фазе дают в сумме синусоиду, это дает возможность использовать три провода (в четвертом "нулевом" проводе ток близок к нулю) при трех фазной системе против четырех необходимых проводов при двухфазной системе токов. Некоторое время усовершенствование Доливо-Добровольского было ограниченно патентом Н.Теслы, который к тому времени успел его продать Д. Вестингаузу.


1. Режимы работы

Асинхронный двигатель, согласно принципу обратимости электрических машин, может работать как в двигательном, так и в генераторном режимах. Для работы асинхронного двигателя в любом режиме требуется источник реактивной мощности.

В двигательном режиме при подключении двигателя к трехфазной сети переменного тока в обмотке статора образуется вращающееся магнитное поле, под действием которого в короткозамкнутой обмотке ротора наводятся токи, образующие электромагнитный момент вращения, стремящийся провернуть ротор вокруг его оси. Ротор преодолевает момент нагрузки на валу и начинает вращаться, достигая подсинхронной скорости (она же и будет номинальной с учетом момента нагрузки на валу двигателя).

В генераторном режиме при наличии источника реактивной мощности, создающего поток возбуждения, асинхронная машина способна генерировать активную мощность.


2. Режимы работы (подробно)

Пуск - вектор результирующего магнитное поля статора равномерно вращается с частотой питающей сети, делённой на количество отдельных обмоток каждой фазы (в простейшем случае - по одной). Таким образом, через любое сечение ротора проходит магнитный поток, изменяющийся во времени по синусу. Изменение магнитного потока в роторе порождает в его обмотках ЭДС. Так как обмотки замкнуты накоротко и сделаны из проводника большого сечения ("беличье колесо"), ток в обмотках ротора достигает значительных величин и, в свою очередь, создаёт магнитное поле. Так как ЭДС в обмотках пропорциональна скорости изменения магнитного потока (то есть - производной по времени от синусной зависимости - косинусу), наведённая ЭДС беличьего колеса и соответственно результирующее магнитное поле (вектор) ротора на 90 градусов "опережает" вектора статора (если смотреть на направления векторов и направление их вращения). Взаимодействие магнитных полей создаёт вращающий момент ротора.

Электроэнергия, подводимая к электродвигателю в режиме пуска и полного торможения, тратится на перемагничивание ротора и статора, а также на активное сопротивление току в обмотке ротора. (Эквивалентно работе понижающего трансформатора с коротким замыканием вторичной обмотки).

Холостой ход - после начала движения, с увеличением оборотов ротора, его скорость относительно вектора магнитного поля статора будет уменьшаться. Соответственно будет уменьшаться и скорость изменения магнитного потока через (любое) сечение ротора, соответственно уменьшится наведённая ЭДС и результирующий магнитный момент ротора. В отсутствие сил сопротивления (идеальный холостой ход) угловая скорость ротора будет равна угловой скорости магнитного поля статора, соответственно разница скоростей, наведённая ЭДС и результирующее магнитное поле ротора будут равны нулю.

Электроэнергия, подводимая к электродвигателю в режиме холостого хода, не потребляется (индуктивная нагрузка). Эквивалентно работе понижающего трансформатора на холостом ходу (или короткозамкнутыми вторичными обмотками, расположенными вдоль сердечника)

Двигательный режим - среднее между полным торможением и холостым ходом. Полезная нагрузка и механические потери не позволяют ротору достичь скорости магнитного поля статора, возникающее их относительное скольжение наводит некоторую ЭДС и соответствующее магнитное поле ротора, которое своим взаимодействием с полем статора компенсирует тормозной момент на валу.

Механическая характеристика асинхронного двигателя является "жёсткой", то есть при незначительном уменьшении оборотов крутящий момент двигателя возрастает очень сильно - "стремится поддерживать номинальные обороты". Это хорошее свойство для приводов, требующих поддержания заданной скорости независимо от нагрузки (транспортёры, погрузчики, подъёмники, вентиляторы).

Электроэнергия, подводимая к электродвигателю в двигательном режиме, потребляется (частью, обозначаемой "косинус фи") на совершение полезной работы и нагрев двигателя, остальная часть возвращается в сеть как индуктивная нагрузка. "Косинус фи" зависит от нагрузки на двигатель, на холостом ходу он близок к нулю. В характеристике двигателя указывается "косинус фи" для номинальной нагрузки.

Генераторный режим возникает при принудительном увеличении оборотов выше "идеального холостого хода". При наличии источника реактивной мощности, создающего поток возбуждения, магнитное поле ротора наводит ЭДС в обмотках статора и двигатель превращается в источник активной мощности (электрической).


3. Способы соединения обмоток

  • Звезда - начала всех обмоток соединяются вместе и соединяются с "нулем" подводимого напряжения. Концы обмоток подключаются к "фазам" трёхфазной сети. На схеме изображения обмоток напоминают звезду (катушки по радиусу направлены из центра).
  • Треугольник - начало одной обмотки соединяется с концом следующей - по кругу. Места соединения обмоток подключаются к "фазам" трёхфазного напряжения. "Нулевого" выхода такая схема не имеет. На схеме обмотки соединены в треугольник.

Схемы не имеют особых преимуществ друг перед другом, однако "звезда" требует большего фазового напряжения, чем "треугольник" (для работы в номинальном режиме). Поэтому в характеристике трёхфазного двигателя указывают два номинальных напряжения через дробь (как правило, это 220/380 или 127/220 вольт).

Работающие по схеме "треугольник" двигатели можно соединять по схеме "звезда" на время пуска (для снижения пускового тока) посредством специальных пусковых реле.

Начала и концы обмоток выведены на колодку "два на три" вывода так, что:

  • для соединения в "звезду" требуется соединить весь один ряд из трёх выводов - это будет центр ("ноль"), остальные выводы подключаются к фазам.
  • для соединения в "треугольник" требуется соединить попарно все три ряда по два провода и подключить их к фазам.

Для смены направления вращения трехфазного электродвигателя необходимо поменять местами любые две фазы из трех в месте подключения питания к двигателю.


4. Работа в однофазной сети

Может работать в однофазной сети с потерей мощности (не нагруженный на номинальную мощность). При этом для запуска необходим механический сдвиг ротора, либо фазосдвигающая цепь, которая обычно строится или из ёмкости или из индуктивности или из трансформатора.

При однофазном запуске на одну из обмоток подаётся напряжение (ток) через ёмкость или индуктивность, которая сдвигает фазу тока:

Вперёд на 90° - при включении в цепь емкости,

Назад на 90° - при включении в цепь индуктивности,

(без учёта потерь). После запуска напряжение с фазосдвигающей обмотки снимать нельзя. Снятии с фазосдвигающей обмотки напряжения эквивалентно работе трёхфазного двигателя с обрывом одной из фаз, так же при возрастании, даже не очень значительном, тормозного момента на валу двигатель остановится и сгорит.

В некоторых случаях, при питании от однофазной сети, запуск осуществляется вручную проворотом ротора. После проворота ротора двигатель работает самостоятельно.

Трёхфазный двигатель приспособлен к трёхфазной сети, а к однофазной сети лучше подходит двухфазный двигатель со сдвигом фазы во второй обмотке либо через конденсатор (конденсаторные двигатели), либо через индуктивность.


5. Работа в случае пропадания одной фазы

Запуск возможен только в случае соединения обмоток "звездой" с подключением нулевого провода (что не является обязательным для работы). Если нагрузка не позволит двигателю запуститься и развить номинальные обороты, то из-за увеличения тока в обмотках и уменьшения охлаждения он выйдет из строя через несколько минут (перегрев, пробой изоляции и короткое замыкание).

Продолжение работы будет при любом типе соединения обмоток, но так как при этом перестаёт поступать примерно половина энергии, то продолжительная работа возможна только при загрузке двигателя значительно менее чем на 50%. При большей (номинальной) нагрузке увеличение тока в работающих фазах неминуемо вызовет перегрев обмоток с дальнейшим пробоем изоляции и коротким замыканием. Это одна из частых причин преждевременного выхода из строя асинхронных двигателей.

Страница 15 из 30

НЕИСПРАВНОСТИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ И СПОСОБЫ ИХ УСТРАНЕНИЯ
Работа асинхронного двигателя при неноминальных условиях
Отклонение напряжения питающей сети от номинального значения. Напряжение сельских электрических сетей колеблется в значительных пределах. Допускается отклонение напряжения у потребителей ±7,5%.
При пониженном напряжении сети уменьшается намагничивающий ток двигателя (ток холостого хода), снижается частота вращения ротора, увеличивается скольжение, растет роторный ток.
При пуске двигателя под нагрузкой резко уменьшаются пусковой и максимальный моменты и двигатель может не развернуться. Величина статорного тока при значительных нагрузках двигателя обыкновенно увеличивается, что ведет к перегреву обмоток статора и ротора. При значительном понижении напряжения двигатель может остановиться, при этом он потребляет очень большой ток.
При повышенном напряжении сети увеличивается намагничивающий ток двигателя (ток холостого хода), что ведет к перегреву активной стали статора; несколько увеличивается частота вращения; уменьшается скольжение; уменьшается роторный ток. Пусковой и максимальный моменты двигателя возрастают.
При значительных повышениях напряжения двигатель на холостом ходу потребляет ток, близкий к номинальному, а под нагрузкой величина статорного тока может быть выше номинального значения. Коэффициент мощности двигателя уменьшается, обмотка статора перегревается за счет теплопередачи от чрезмерно нагретой активной стали и от протекающего по ней тока.
Из сказанного следует, что отклонение напряжения сети от номинального значения чаще всего приводит к перегреву обмотки двигателя, перегрев обмотки в сильной степени сокращает срок службы изоляции. В конечном счете происходит пробой изоляции между обмоткой и корпусом, между фазами статора или между витками.
При отклонениях напряжения необходимо уменьшить нагрузку, чтобы ток статора был номинальным. В некоторых случаях можно увеличить или уменьшить напряжение путем перестановки анцапфного переключателя трансформатора. Иногда приходится увеличивать сечение проводов питающей сети.
Асимметрия напряжения питающей сети. При неравномерной нагрузке фаз сети напряжение становится асимметричным - неодинаковым между отдельными фазами. Асимметрия напряжения приводит к тому, что токи в фазах обмотки статора электродвигателя резко отличаются один от другого. Фаза с большим током может перегреваться выше допустимых пределов даже при небольшой асимметрии напряжения. Кроме того, перегревается активная сталь ротора двигателя. Асимметрия напряжения мало влияет на момент двигателя и на частоту вращения. Асимметрию напряжения можно обнаружить с помощью вольтметра, а также измерением величины тока в отдельных фазах двигателя, например токоизмерительными клещами. При асимметрии напряжения необходимо уменьшить нагрузку на электродвигатели и устранить неравномерную нагрузку фазы.
Обрыв фазы питающей сети. При обрыве фазы сети работающие трехфазные двигатели переходят в однофазный режим.
Если нагрузка двигателя до обрыва фазы была не более 60% номинальной, то двигатель продолжает работать с несколько худшими энергетическими показателями, частота вращения ротора уменьшается незначительно, температура обмоток находится в допустимых пределах. При больших нагрузках обмотка двигателя чрезмерно перегревается, а в отдельных случаях ротор двигателя останавливается и по двум фазам обмотки статора течет большой ток. Двигатель после остановки не может быть запущен даже на холостом ходу, так как в двигателе при однофазном токе получается пульсирующее магнитное поле. Обрыв одной из фаз питающей сети чаще всего бывает вследствие перегорания плавкой вставки, защищающей двигатель. При подозрении на обрыв одной из фаз сети следует двигатель остановить и пустить его вновь на холостом ходу. Если фаза оборвана, то двигатель гудит и не разворачивается.
Отсутствующую фазу можно найти с помощью вольтметра. Для этого питающие провода отключают от двигателя и ставят gод напряжение, вольтметр следует включать между линейными проводами: первым и вторым, вторым и третьим, третьим и первым. Вольтметр покажет напряжение из трех включений только один раз на целых проводах.
При обрыве фазы питающей сети все двигатели останавливают и принимают меры к восстановлению нормального напряжения.

Прежде чем рассматривать проблемы, связанные с запуском трехфазных электродвигателей, обычно используемых для привода различных устройств в холодильных машинах, представляется полезным напомнить некоторые общие положения.
Вначале давайте будем помнить о том, что никогда не следует запускать двигатель только для того, чтобы удовлетворить собственное любопытство и посмотреть, как он работает - любой запуск двигателя требует потребления электроэнергии, за которую нужно платить деньги. Энергия, потребляемая двигателем, всегда должна расходоваться с пользой, например, приводить в движение какое-либо устройство (компрессор, вентилятор, насос и т.п.).
Теперь рассмотрим небольшой двигатель и попробуем расшифровать надписи на шильдике этого двигателя {см. рис. 62.1).
Ph 3 - W 375: указанная надпись означает, что данный двигатель является трехфазным и способен обеспечить выходную мощность на валу 375 Вт.
220 / 380 V: эта надпись означает, что двигатель рассчитан на работу при двух возможных значениях напряжения в сети переменного трехфазного тока - 220 В с подключением обмоток статора по схеме "треугольник" (А) и 380 В с подключением по схеме "звезда" (Y).
1,7 / 1 А: при номинальной нагрузке рабочий ток двигателя должен быть равен 1,7 А для схемы "треугольник" (напряжение сети 220 В) и 1 А для схемы "звезда" (напряжение сети 380 В) (см. рис. 62.2).
Допустим, что данный двигатель используют для привода компрессора. Вспомним, что если меняется давление нагнетания, то потребная мощность на валу компрессора и ток, потребляемый двигателем, также будут меняться (см. раздел 10 "Влияние величины давления нагнетания на силу тока, потребляемого электромотором компрессора "). Если давление нагнетания растет, сила тока также увеличивается, и наоборот.
Рис. 62.2.
Следовательно, действительная сила тока, потребляемого двигателем в данный момент, редко совпадает с силой тока, указанной на шильдике. Вместе с тем, сила тока, потребляемого двигателем, ни при каких обстоятельствах не должна превосходить величину, указанную на шильдике (см. раздел 55 "Различные проблемы электрооборудования ").
Очевидно, что ток, потребляемый двигателем, будет равен 1 А только тогда, когда при напряжении в сети 380 В и подключении обмоток по схеме "звезда" потребная мощность на валу компрессора будет в точности равна 375 Вт (см. рис 62.3).
Рис. 62.3.
Точно также ток, потребляемый двигателем, будет равен 1,7 А только тогда, когда при напряжении в сети 220 В (такое напряжение в сети трехфазного тока в настоящее время встречается довольно редко) и соединении обмоток по схеме "треугольник" потребная мощность на валу компрессора составит точно 375 Вт

Хотя целью нашего пособия не явлляется проведение расчетов, напомним, что мощность, потребляемая трехфазным электродвигателем из сети переменного тока, может быть найдена по формуле:

Не рискуя сильно ошибиться, можно принять, что для небольших двигателей коэффициент мощности coscp = 0,8. С учетом этого можно найти значение мощности, потребляемой нашим двигателем из сети переменного тока в соответствии с данными, указанными на шиль-дике
При напряжении в сети трехфазного тока 220 В (и подключении обмоток по схеме "треугольник") потребляемый ток равен 1,7 А. Следовательно, потребляемая мощность составит: 220 х 1,7 х л/3 х 0,8 = 520 Вт.
При напряжении в сети трехфазного тока 380 В (и подключении обмоток по схеме "звезда") потребляемый ток равен 1 А. Следовательно, потреблляемая мощность составит: 380 х 1 х VI х 0,8 = 520 Вт.
Из этих расчетов можно сделать два любопытных вывода 3 х 380 V *х»
1) Двигатель потребляет (округленно) и выдает одну и ту же мощность независимо от напряжения сети (естественно, выбор подключения обмоток - "звезда" или "треугольник" - должен соответствовать напряжению, иначе двигатель либо сгорит, либо его вал будет вращаться с пониженным числом оборотов). Ниже мы разовьем эту тему более подробно.

2) Потребляемая из сети мощность (здесь 520 Вт) больше, чем полезная мощность на валу (здесь 375 Вт), значение которой указано на шильдике. Значение мощности, указанное на шильдике, соответствует максимальному значению, которое может быть достигнуто на валу данного двигателя.
В последнем выводе не будем забывать, что обмотки статора двигателя представляют собой обыкновенные медные провода. При пропускании через них электрического тока они нагреваются точно так же, как любой электронагревательный прибор. Следовательно, часть подведенной к двигателю электрической энергии тратится не на вращение ротора двигателя, а на нежелательный нагрев обмоток: эта часть энергии представляет собой потери.

В нашем примере двигатель потребляет из сети 520 Вт, а на валу выдает только 375 Вт. Отсюда следует, что потери, составляющие 520 - 375 = 145 Вт, служат только тому, чтобы нагревать окружающую среду
Напомним, что коэффициент полезного действия (КПД) г] двигателя равен отношению полезной мощности на валу к мощности, потребляемой из сети. В нашем примере КПД г] = 375 / 520 = 0,72.
Это означает, что только 72% энергии, потребляемой нашим двигателем, расходуется на совершение полезной работы. Это указывает также на то, что 28% энергии, потребляемой из сети (и, следовательно, оплачиваемой нами), рассеивается, не принося никакой пользы.

Теперь вернемся к проблеме подключения обмоток трехфазного двигателя. Тип двигателя, рассматриваемый в нашем примере, в настоящее время является наиболее распространенным в Европе. Осматривая клеммную коробку этого двигателя, можно увидеть 6 клемм, условно обозначенных буквами U-V-W и Z-X-Y
ВНИМАНИЕ: клеммы нижнего ряда имеют обозначения, не соответствующие алфавитному порядку следования букв (то есть не XYZ, a ZXY - буква X находится в середине).
Теперь, если мы с помощью омметра проверим порядок подключения обмоток к этим клеммам, то получим картину, представленную на рис. 62.9.
В данном двигателе, широко используемом в европейском оборудовании, имеются три обмотки, подключенные изготовителем двигателя к следующим клеммам: U-X; V-Y; W-Z.

Внимание! В исправном двигателе все три обмотки абсолютно одинаковы. Поэтому сопро-msH тивление обмоток, измеренное между клеммами при U-X; V-Y; W-Z при снятых клеммах должно быть одним и тем же (в противном случае в обмотках либо произошел обрыв, либо короткое замыкание).
Напомним, что сопротивление измеренное между клеммами верхнего ряда U и V, V и W, W и U, должно быть равно бесконечности, так же, как и для нижнего ряда (в противном случае можно говорить о том, что между двумя соседними обмотки есть короткое замыкание). Кроме того, сопротивление, измеренное между каждой из клемм и корпусом двигателя, также должно быть равно бесконечности (в противном случае, можно говорить о замыкании обмотки на массу). Все эти неисправности были рассмотрены нами в разделе 53 "Однофазные двигатели".

Например, при напряжении в сети 220 В трехфазного переменного тока обмотки двигателя должны быть подключены к сети по схеме "треугольник". Для этого с помощью перемычек следует соединить попарно клеммы U-Z, V-X и W-Y соответственно.
Зная, что концы обмоток подключены к клеммам U-X, V-Y и W-Z определить, в какой последовательности запитываются обмотки при их подключении по схеме "треугольник" (при напряжении в сети трехфазного тока 220 В).

Решение на следующей странице...

Решение упражнения 1
Подключение по схеме "треугольник".

При подключении по схеме "треугольник" в соответствии с рис. 62.10 видно, что фаза L1 подводится к клемме U, а клеммы Z и U соединены перемычкой.
Концы одной обмотки подключены к клеммам Z и W, другой - к клеммам U и X. Таким образом, подключение фазы L1 выглядит так, как показано на рис. 62.11.
Теперь рассмотрим подключение фазы L2. Эта фаза подключается к клемме V, а клеммы V и X соединятся перемычкой.
Концы третьей обмотки подключены к клеммам V и Y. Таким образом, подключение фаз L1 и L2 соответствует схеме на рис. 62.12.

Завершая рассмотрение, отметим, что фаза L3 подключается к клемме W. При этом клеммы W и Y соединены перемычкой.
Полностью схема подключения "треугольник" представлена на рис. 62.13. На нем мы видим, что обмотки при этой схеме подключения расположены в форме треугольника, отсюда и произошло название схемы.

62. ТРЕХФАЗНЫЕ ЭЛЕКТРОДВИГАТЕЛИ 62.1. ОСНОВНЫЕ ПОНЯТИЯ



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png