Здравствуйте, дорогие друзья! В данной статье вы узнаете, что такое ток короткого замыкания, его причины и как его рассчитать. Короткое замыкание происходит, когда токоведущие части различных потенциалов или фаз, соединяются между собой. Замыкание может образоваться и на корпусе оборудования, имеющем связь с землей. Данное явление характерно также для электрических сетей и электрических приемников.

Причины и действие тока короткого замыкания

Причины возникновения короткого замыкания могут быть самыми различными. Этому способствует влажная или агрессивная среда, в которой значительно ухудшается сопротивление изоляции. Замыкание может стать результатом механических воздействий или ошибок персонала во время ремонта и обслуживания. Суть явления заключается в его названии и представляет собой укорачивание пути, по которому проходит ток. В результате, ток протекает мимо нагрузки, обладающей сопротивлением. Одновременно, происходит его увеличение до недопустимых пределов, если не сработает защитное отключение.

Токи короткого замыкания оказывают на аппаратуру и электроустановки электродинамическое и термическое воздействие, что в конечном итоге, приводит к их значительной деформации и перегреву. В связи с этим, необходимо заранее производить расчеты токов короткого замыкания.

Как рассчитать ток короткого замыкания в домашних условиях

Знание величины тока короткого замыкания крайне необходимо для обеспечения пожарной безопасности. Очевидно, что если измеренный ток короткого замыкания меньше тока уставки максимальной защиты автомата или 4-х кратного значения номинала тока предохранителя, то время срабатывания (перегорания плавкой вставки) будет больше, а это, в свою очередь, может привести к чрезмерному нагреву проводов и их возгоранию.

Как этот ток определить? Существуют специальные методики и специальные приборы для этого. Здесь рассмотрим вопрос как это сделать, имея лишь или даже вольтметр. Очевидно, что этот способ имеет не очень высокую точность, но всё же достаточную для обнаружения несоответствия максимально-токовой защиты к величине этого тока.

Как это сделать в домашних условиях? Необходимо взять достаточно мощный приёмник, например, электрический чайник или утюг. Ещё неплохо бы иметь тройник. К тройнику подключаем наш потребитель и вольтметр или мультиметр в режиме измерения напряжения. Записываем установившуюся величину напряжения (U1). Отключаем потребитель, и записываем величину напряжения без нагрузки (U2). Дальше производим расчёт. Нужно разделить мощность вашего потребителя (P) на разность замеренных напряжений.

Iк.з.(1) = Р/(U2 – U1)

Посчитаем на примере. Чайник 2 кВт. Первый замер – 215 В, второй замер – 230 В. По расчёту получается 133,3 А. Если стоит, например, автомат ВА 47-29 с характеристикой С, то его уставка будет от 80 до 160 Ампер. Следовательно, возможно, что этот автомат сработает с задержкой. По характеристике автомата можно определить, что время срабатывания может быть при этом до 5 секунд. Что в принципе опасно.

Что делать? Нужно увеличить величину тока короткого замыкания. Увеличить этот ток можно заменив провода питающей линии на большее сечение.

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание – явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем – к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Тема: что такое короткое замыкание в электроцепи, каковы последствия КЗ.

Про электрическое короткое замыкание слышали многие, но далеко не всем известна суть этого явления. Давайте же с этим разберемся. Итак, если вникнуть в само словосочетание «короткое замыкание», то можно понять, что происходит какой-то процесс, при котором замыкается нечто по короткому, а именно самому короткому пути протекания электрического тока (электрических зарядов в проводнике). Проще говоря, есть путь, по которому течет электричество, его ток зарядов. Это различные электрические цепи, проводники электроэнергии. Чем длиннее этот путь, тем больше преград нужно преодолеть зарядам, тем больше электрическое сопротивление этого пути. А из закона ома известно, чем больше сопротивление цепи, тем меньше сила тока будет в нем (при определенном значении напряжения). Следовательно, на самом коротком пути, будет максимально возможный ток, а это путь будет коротким в случае замыкания концов самого источника питания.

В общем, у нас есть, к примеру, обычный автомобильный аккумулятор (в заряженном состоянии). Если к нему подключить лампочку, рассчитанную на напряжение аккумулятора (12 вольт), то в результате прохождения тока определенной величины через эту лампу мы получим излучение света и тепла. Лампа имеет определенное электрическое сопротивление, которое и ограничивает силу тока, идущего по этой цепи. Чтобы намеренно сделать короткое замыкание нам просто нужно взять кусок провода и подсоединить его к концам выводов аккумулятора (параллельно лампе). У этого провода сопротивление очень мало, по сравнению с лампой. Следовательно и нет особого ограничения, которое бы препятствовало движению заряженных частиц. И как только мы замкнем такую вот цепь, получим наше КЗ. По проводу потечет сразу большое ток, который может просто раскалить и расплавить этот кусок провода.

В результате такого вот короткого замыкания будет возгорание проводника (его изоляции), вплоть до пожара, если этот проводник своим воспламенением переносит огонь на легковоспламеняющиеся вещи, что находятся поблизости. Кроме этого такое вот резкое, скачкообразное течение тока может быть вредным для самого аккумулятора. Он также в это время начинает нагреваться. А как известно аккумуляторы очень сильно не любят чрезмерного нагрева. Как минимум у них значительно после этого сокращается срок службы, а как максимум - выходят из строя и даже загораются и взрываются. Если такое короткое замыкание происходит, к примеру, с литиевым аккумулятором в телефоне (у которого нет электронной защиты внутри), в течении нескольких секунд происходит сильный нагрев, далее образуется пламя и взрыв.

Есть некоторые аккумуляторы, которые изначально рассчитаны на отдачу больших токов (тяговые аккумуляторы), но и у них полное короткое замыкание может привести к большим неприятностям. Ну, а что же происходит с напряжением во время короткого замыкания? Из школьной физики должно быть известно, что чем больше сила тока, тем большее падение напряжения на этом участке цепи. Следовательно, когда к источнику электропитания не подсоединено никакой нагрузки, на нем можно увидеть максимальное значение напряжения (это и есть ЭДС источника питания, его электродвижущая сила). Как только мы нагрузили этот источник питания, тут же появляется некое падение напряжения. И чем больше будет нагрузка, тем сильнее будет падение напряжения. Так как при коротком замыкании сопротивление цепи практически равно нулю, а сила тока при этом будет максимально возможной, то и падение напряжение на источнике питания также будет максимальной (около нуля).

Это мы рассмотрели вариант полного короткого замыкания, который происходит непосредственно на выводах источника питания. Да, вот, что еще стоит добавить про это. В случае аккумулятора будет происходит большая токовая нагрузка на внутренние части и химические вещества самого аккумулятора (электролит, пластины, выводы). В случае короткого замыкания на таких источниках питания как электрогенераторы токовая нагрузка ложится на обмотки этих генераторов, что приводит к ее чрезмерному нагреву и испорченности (ну и те цепи, что работают в генераторе после этой обмотки). Короткое замыкание на выводах различных блоков питания приводит к перегреву и выходу из строя самих электрических схем источников тока и вторичной обмотки трансформатора.

Короткое замыкание может случаться в самой электрической цепи проводки, схемы. В этом случае последствия также имеют крайне негативный характер. Но при этом сила тока уже будет, как правило, чуть меньше, чем в случае замыкания на выходе источника питания. К примеру, есть схема усилителя звука. Вдруг из-за плохой изоляции самих динамиков происходит короткое замыкание на звуковом выходе этого усилителя. В итоге, скорее всего выгорят выходные транзисторы, микросхемы, стоящей в последних каскадах усиления звука. Сам источник питания в этом случае может даже не пострадать, так как до него чрезмерная токовая нагрузка может не дойти. Думаю вы суть короткого замыкания уловили.

P.S. В любом случае явление электрического короткого замыкания приводит к плачевным последствиям. Для защиты от этого как правило применять обычные плавкие предохранители, автоматические выключатели, защитные схемы и т.д. Их задача заключается в быстром разрыве электрической цепи при резком увеличении силы тока. То есть, обычный предохранитель как бы является самым слабым звеном во всех электрической цепи. Как только сила тока резко возросла плавкая вставка просто плавится и разрывает цепь. Это в большинстве случаев приводит к тому, что прочие другие цепи в схеме остаются не поврежденными.

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

У меня на сайте есть статья про . Я в ней приводил случаи из своей практики.

Так вот чтобы минимизировать последствия от подобных аварий и инцидентов, необходимо правильно выбирать электрооборудование. Но чтобы его правильно выбрать, нужно уметь рассчитывать токикороткого замыкания.

В сегодняшней статье я покажу Вам как можно самостоятельно рассчитать ток короткого замыкания, или сокращенно ток к.з., на реальном примере.

Я понимаю, что многим из Вас нет необходимости производить расчеты, т.к. обычно этим занимаются, либо проектанты в организациях (фирмах), имеющих лицензию, либо студенты, которые пишут очередной курсовой или дипломный проект. Особенно понимаю последних, т.к. сам будучи студентом (в далеком двух тысячном году), очень жалел, что в сети не было подобных сайтов. Также данная публикация будет полезна энергетикам и для поднятия уровня саморазвития, или чтобы освежить в памяти когда-то прошедший материал.

Кстати, я уже приводил . Кому интересно, то переходите по ссылочке и читайте.

Итак, перейдем к делу. Несколько дней назад у нас на предприятии случился пожар на кабельной трассе около цеховой сборки №10. Выгорел практически полностью кабельный лоток со всеми там идущими силовыми и контрольными кабелями. Вот фото с места происшествия.



Сильно вдаваться в «разбор полетов» я не буду, но у моего руководства возник вопрос о срабатывании вводного автоматического выключателя и соответствие его для защищаемой линии. Простыми словами скажу, что их интересовала величина тока короткого замыкания в конце вводной силовой кабельной линии, т.е. в том месте, где случился пожар.

Естественно, что никакой проектной документации у цеховых электриков по расчетам токов к.з. на эту линию не нашлось, и мне пришлось самому производить весь расчет, который я выкладываю в общий доступ.

Сбор данных для расчета токов короткого замыкания

Силовая сборка №10, около которой случился пожар, питается через автоматический выключатель А3144 600 (А) медным кабелем СБГ (3х150) от понижающего трансформатора №1 10/0,5 (кВ) мощностью 1000 (кВА).


Не удивляйтесь, у нас на предприятии еще много действующих подстанций с изолированной нейтралью на 500 (В) и даже на 220 (В).

Скоро буду писать статью о том, как в сеть 220 (В) и 500 (В) с изолированной нейтралью . Не пропустите выход новой статьи — подпишитесь на получение новостей.

Понижающий трансформатор 10/0,5 (кВ) питается силовым кабелем ААШв (3х35) с высоковольтной распределительной подстанции № 20.


Некоторые уточнения для расчета тока короткого замыкания

Несколько слов хотелось бы сказать про сам процесс короткого замыкания. Во время короткого замыкания в цепи возникают переходные процессы, связанные с наличием в ней индуктивностей, препятствующих резкому изменению тока. В связи с этим ток к.з. во время переходного процесса можно разделить на 2 составляющие:

  • периодическая (появляется в начальный момент и не снижается, пока электроустановка не отключится от защиты)
  • апериодическая (появляется в начальный момент и быстро снижается до нуля после завершения переходного процесса)

Ток к.з. я буду расчитывать по РД 153-34.0-20.527-98.

В этом нормативном документе сказано, что расчет тока короткого замыкания допускается проводить приближенно, но при условии, что погрешность расчетов не составит больше 10%.

Расчет токов короткого замыкания я буду проводить в относительных единицах. Значения элементов схемы приближенно приведу к базисным условиям с учетом коэффициента трансформации силового трансформатора.

Цель — это А3144 с номинальным током 600 (А) на коммутационную способность. Для этого мне нужно определить ток трехфазного и двухфазного короткого замыкания в конце силовой кабельной линии.

Пример расчета токов короткого замыкания

Принимаем за основную ступень напряжение 10,5 (кВ) и задаемся базисной мощностью энергосистемы:

    базисная мощность энергосистемы Sб = 100 (МВА)

    базисное напряжение Uб1 = 10,5 (кВ)

    ток короткого замыкания на сборных шинах подстанции №20 (по проекту) Iкз = 9,037 (кА)

Составляем расчетную схему электроснабжения.


На этой схеме указываем все элементы электрической цепи и их . Также не забываем указать точку, в которой нам нужно найти ток короткого замыкания. На рисунке выше я ее забыл указать, поэтому объясню словами. Она находится сразу же после низковольтного кабеля СБГ (3х150) перед сборкой №10.

Затем составим схему замещения, заменив все элементы вышеприведенной схемы на активные и реактивные сопротивления.

При расчете периодической составляющей тока короткого замыкания допускается активное сопротивление кабельных и воздушных линий не учитывать. Для более точного расчета активное сопротивление на кабельных линиях я учту.


Зная, базисные мощности и напряжения, найдем базисные токи для каждой ступени трансформации:

Теперь нам нужно найти реактивное и активное сопротивление каждого элемента цепи в относительных единицах и вычислить общее эквивалентное сопротивление схемы замещения от источника питания (энергосистемы) до точки к.з. (выделена красной стрелкой).

Определим реактивное сопротивление эквивалентного источника (системы):

Определим реактивное сопротивление кабельной линии 10 (кВ):

  • Хо — удельное индуктивное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)

Определим активное сопротивление кабельной линии 10 (кВ):

  • Rо — удельное активное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим реактивное сопротивление двухобмоточного трансформатора 10/0,5 (кВ):

  • uк% — напряжение короткого замыкания трансформатора 10/0,5 (кВ) мощностью 1000 (кВА), берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 27.6

Активным сопротивлением трансформатора я пренебрегаю, т.к. оно несоизмеримо мало по отношению к реактивному.

Определим реактивное сопротивление кабельной линии 0,5 (кВ):

  • Хо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 0,5 (кВ):

  • Rо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим общее эквивалентное сопротивление от источника питания (энергосистемы) до точки к.з.:


Найдем периодическую составляющую тока трехфазного короткого замыкания:

Найдем периодическую составляющую тока двухфазного короткого замыкания:

Результаты расчета токов короткого замыкания

Итак, мы рассчитали ток двухфазного короткого замыкания в конце силовой кабельной линии напряжением 500 (В). Он составляет 10,766 (кА).

Вводной автоматический выключатель А3144 имеет номинальный ток 600 (А). Уставка электромагнитного расцепителя у него выставлена на 6000 (А) или 6 (кА). Поэтому можно сделать вывод, что при коротком замыкании в конце вводной кабельной линии (в моем примере по причине пожара) и отключил поврежденный участок цепи.

Еще полученные значения трехфазного и двухфазного токов можно применить для выбора уставок релейной защиты и автоматики.

В этой статье я не выполнил расчет на ударный ток при к.з.

P.S. Вышеприведенный расчет был отправлен моему руководству. Для приближенного расчета он вполне сгодится. Конечно же низкую сторону можно было рассчитать более подробно, учитывая сопротивление контактов автоматического выключателя, контактных соединений кабельных наконечников к шинам, сопротивление дуги в месте замыкания и т.п. Об этом я как-нибудь напишу в другой раз.

Если Вам нужен более точный расчет, то можете воспользоваться специальными программами на ПК. Их в интернете множество.


Требуется выполнить расчет трехфазного тока короткого замыкания (ТКЗ) на шинах проектируемого ЗРУ-6 кВ ПС 110/6 кВ «ГПП-3». Данная подстанция питается по двум ВЛ-110 кВ от ПС 110 кВ «ГПП-2». Питание ЗРУ-6 кВ «П4СР» получает от двух силовых трансформаторов ТДН-16000/110-У1, которые работаю раздельно. При отключении одного из вводов, предусмотрена возможность подачи питания на обесточенную секцию шин посредством секционного выключателя в автоматическом режиме (АВР).

На рисунке 1 приведена расчетная схема сети

Поскольку цепь от I с.ш. «ГПП-2» до I с.ш. «ГПП-3» идентична цепи II с.ш. от «ГПП-2» до II с.ш. «ГПП-3» расчет ведется только для первой цепи.

Схема замещения для расчета токов короткого замыкания приведена на рисунке 2.


Расчет будет производиться в именованных единицах.


2. Исходные данные для расчета

  • 1. Данные системы: Iкз=22 кА;
  • 2. Данные ВЛ - 2хАС-240/32 (Данные даны для одной цепи АС-240/32, РД 153-34.0-20.527-98, приложение 9):
  • 2.1 Индуктивное сопротивление прямой последовательности - Х1уд=0,405 (Ом/км);
  • 2.2 Емкостная проводимость - bуд=2,81х10-6 (См/км);
  • 2.3 Активное сопротивление при +20 С на 100 км линии - R=R20C=0,12 (Ом/км).
  • 3. Данные трансформатора (взяты с ГОСТ 12965-85):
  • 3.1 ТДН-16000/110-У1, Uвн=115 кВ, Uнн=6,3 кВ, РПН ±9*1,78, Uк.вн-нн=10,5 %;
  • 4. Данные гибкого токопровода: 3хАС-240/32, l=20 м. (Для упрощения расчета, сопротивление гибкого токопровода не учитывается.)
  • 5. Данные токоограничивающего реатора - РБСДГ-10-2х2500-0,2 (взяты из ГОСТ 14794-79):
  • 5.1 Номинальный ток реактора - Iном. = 2500 А;
  • 5.2 Номинальные потери мощности на фазу реактора - ∆P= 32,1 кВт;
  • 5.3 Индуктивное сопротивление – Х4=0,2 Ом.

3. Расчет сопротивлений элементов


3.1 Сопротивление системы (на напряжение 115 кВ):

3.2 Сопротивление воздушной линии (на напряжение 115 кВ):

Где:
n - Количество проводов в одной воздушной линии ВЛ-110 кВ;

3.3 Суммарное сопротивление до трансформатора (на напряжение 115 кВ):

Х1,2=Х1+Х2=3,018+0,02025=3,038 (Ом)

R1,2=R2=0,006 (Ом)

3.4 Сопротивление трансформатора:

3.4.1 Активное сопротивление трансформатора (РПН находится в среднем положении):

3.4.2 Активное сопротивление трансформатора (РПН находится в крайнем «минусовом» положении):

3.4.3 Активное сопротивление трансформатора (РПН находится в крайнем «плюсовом» положении):

Минимальное индуктивное сопротивление трансформатора (РПН находится в крайнем «минусовом» положении)

Максимальное индуктивное сопротивление трансформатора (РПН находится в крайнем «плюсовом» положении)

Величина входящая в формулу приведенную выше – напряжение, соответствующее крайнему положительному положению РПН, и она равна Uмакс.ВН=115*(1+0,1602)=133,423 кВ, что превышает наибольшее рабочее напряжение электрооборудования равное 126 кВ (ГОСТ 721-77 «Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В»). Напряжению UмахВН соответствует Uк%max=10,81 (ГОСТ 12965-85).

Если Uмах.ВН, получается больше максимально допустимого для данной сети (табл.5.1), то Uмах.ВН следует принимать по этой таблице. Значение Uк%, соответствующее этому новому максимальному значению Uмах.ВН, определяют либо опытным путем, либо находят из приложений ГОСТ 12965-85.


3.4.5 Сопротивление токоограничивающего реактора (на напряжении 6,3 кВ):


4. Расчет токов трехфазного короткого замыкания в точке К1


4.1 Суммарное индуктивное сопротивление:

Х∑=Х1,2=Х1+Х2=3,018+0,02025=3,038 (Ом)

4.2 Суммарное активное сопротивление:

R∑=R1,2=0,006 (Ом)

4.3 Суммарное полное сопротивление:

4.4 Ток трехфазного короткого замыкания:

4.5 Ударный ток короткого замыкания:



5. Расчет токов трехфазного короткого замыкания в точке К2

6.1 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в среднее положение


6.1.1 Значение суммарного сопротивления в точке К2, приводим к напряжению сети 6,3 кВ:

6.1.2 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

6.1.3 Ударный ток короткого замыкания:



6.2 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в минусовое положение


6.2.1 Значение суммарного сопротивления в точке К2 приводим к напряжению сети 6,3 кВ:


6.2.2 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

6.2.3 Ударный ток короткого замыкания:



6.3 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в плюсовое положение


6.3.1 Значение суммарного сопротивления в точке К2, приводим к напряжению сети 6,3 кВ:


6.3.2 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

6.3.3 Ударный ток короткого замыкания:


Результаты расчетов заносим в таблицу РР1.3

Таблица РР1.3 – Данные расчета токов трехфазного короткого замыкания

Положение РПН трансформатора Токи КЗ Точка короткого замыкания
К1 К2 К3
РПН в среднем положении Ток КЗ, кА 21,855 13,471 7,739
Ударный ток КЗ, кА 35,549 35,549 20,849
Ток КЗ, кА - 13,95 7,924
Ударный ток КЗ, кА - 36,6 21,325
РПН в плюсовом положении Ток КЗ, кА - 13,12 7,625
Ударный ток КЗ, кА - 34,59 20,553

7. Расчет тока короткого замыкания выполненный в Excel


Если выполнять данный расчет с помощью листка бумаги и калькулятора, уходит много времени, к тому же Вы можете ошибиться и весь расчет пойдет насмарку, а если еще и исходные данные постоянно меняются – это все приводит к увеличению времени на проектирование и не нужной трате нервов.

Поэтому, я принял решение выполнить данный расчет с помощью электронной таблицы Excel, чтобы больше не тратить в пустую свое время на перерасчеты ТКЗ и обезопасить себя от лишних ошибок, с ее помощью можно быстро пересчитать токи КЗ, изменяя только исходные данные.

Надеюсь, что данная программа Вам поможет, и Вы потратите меньше времени на проектирование Вашего объекта.


8. Список литературы

  • 1. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования.
    РД 153-34.0-20.527-98. 1998 г.
  • 2. Как рассчитать ток короткого замыкания. Е. Н. Беляев. 1983г.
  • 3. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.
  • 4. Расчет токов короткого замыкания для релейной защиты. И.Л.Небрат. 1998 г.
  • 5. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.


Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png