А. Жигурс, председатель правления, А. Церс, член правления,
С. Плескачев, инженер-теплотехник, АО «Ригас Силтумс», г. Рига, Латвия

Предисловие

АО «Rigas siltums» (АО «Ригас Силтумс») является главным поставщиком тепловой энергии в г. Риге. Оно производит, доставляет и реализует тепловую энергию, а также обеспечивает техническое обслуживание внутренних отопительных систем потребителей.

Тепловая энергия производится на принадлежащих АО «Ригас Силтумс» 5 крупных котельных (далее - теплоцентрали - ТЦ) и 37 небольших автоматизированных газовых котельных, а также закупается у принадлежащих АО «Латвэнерго» теплоэлектроцентралях ТЭЦ-1 и ТЭЦ-2. Объем закупаемой тепловой энергии составляет 70% от общего объема реализации. Остальные 30% производятся собственными источниками тепла.

На территории бывшего СССР, как и в других странах, в системах централизованного теплоснабжения (ЦТ) получили широкое применение водогрейные котлы КВГМ-50 и КВГМ-100 с номинальными мощностями 58 и 116 МВт соответственно.

Моральное и физическое устаревание используемого оборудования, а также ужесточение норм уровня вредных выбросов в атмосферу явились главными причинами проведенной реконструкции.

Одним из наиболее успешных мероприятий по реконструкции источников тепла является замена существующих горелок на современные, которые обеспечивают:

■ стабильную работу котлов в расширенном диапазоне нагрузок от 5 до 100%;

■ существенное снижение уровня вредных выбросов в атмосферу: NO x - 150 мг/нм 3 , CO - 60 мг/нм 3 при сжигании природного газа и NO x - 400 мг/нм 3 при сжигании жидкого топлива, что соответствует Латвийским и Европейским нормам и правилам;

■ продление срока эксплуатации котельных агрегатов.

Для обеспечения надежной работы котлов в автоматическом режиме и дистанционного управления с диспетчерского пульта, параллельно с заменой горелок были реконструированы автоматизированные системы управления (АСУ) с интеграцией в существующие системы.

Вышеупомянутые модернизации были проведены на принадлежащих АО «Ригас Силтумс» теплоисточниках ТЦ «Vecmilgravis» (один котел КВГМ-100), ТЦ «Imanta» (три котла КВГМ-100), а также ТЦ «Ziepniekkalns» (два котла КВГМ-50).

В предлагаемой статье изложена общая информация о приобретенном опыте и методике процесса модернизации.

Реконструкция котла КВГМ-100 на ТЦ «Vecmilgravis» с использованием современной горелки для работы на природном газе и дизельном топливе

Информация о ТЦ. Теплоцентраль «Vecmilgravis» была сдана в эксплуатацию в 1980 г. для обеспечения теплоснабжения прилегающих промышленных предприятий и жилых районов. На данный момент тепловая мощность ТЦ составляет 157 МВт, годовой объем производимой тепловой энергии достигает 155 тыс. МВт-ч. Основным видом топлива является природный газ, аварийным - дизельное топливо (до реконструкции - мазут).

Основное оборудование ТЦ «Vecmilgravis»: котел № 1 ПТВМ-30М мощностью 40,7 МВт и котел № 2 КВГМ-100 мощностью 116,3 МВт.

На данный момент установленная тепловая мощность водогрейных котлов более чем в 3 раза превышает максимальную нагрузку в зимний период, что вынуждает работать в, так называемом, режиме пониженных нагрузок: средняя тепловая нагрузка зимой составляет 25,8 МВт или около 22,2% от номинальной мощности котла КВГМ-100, а средняя тепловая нагрузка летом - всего 5,4 МВт (4,6% от номинальной мощности котла КВГМ-100).

Мощность и количество котельного оборудования оказывает непосредственное влияние на надежность работы ТЦ, что соответственно уменьшает возможность резервирования - в случае неисправности котла КВГМ-100 зимой, в период наиболее низких температур, ТЦ не сможет обеспечить тепловую нагрузку в 50 МВт (при расчетной температуре -22 О С), в свою очередь летом мощность обоих котлов слишком велика для обеспечения стабильной работы в период минимальных тепловых нагрузок.

Принимая во внимание вышеупомянутые причины, в 2003 г. было принято решение о модернизации котла КВГМ-100 с заменой одной из горелок. Было проведено тщательное исследование предлагаемой продукции, в результате которого наиболее оптимальным был признан вариант с установкой горелки производства одной из немецких фирм.

До реконструкции котел был оснащен тремя комбинированными газомазутными горелками ротационного типа РГГМ-30 со следующими характеристиками: производительность каждой горелки на газе - 4175 нм 3 /ч, на мазуте - 3835 кг/ч; давление газа перед горелками - 3000 кг/м 2 , давление мазута - 2 кг/см 2 .

В процессе модернизации третья горелка была заменена на новую автоматизированную, оборудованную собственным вентилятором, комбинированную горелку фирмы ELCO Ktockner RPD-70 GL-RD (рис. 1), способную работать на природном газе и дизельном топливе.

Одним из главных критериев выбора горелки типа RPD-70 был диапазон регулировки эффективной мощности - от 3 до 20 МВт, а также наиболее приемлемая для котлов КВГМ конфигурация пламени - ограниченная длина факела и его развертывание.

Когда тепловая нагрузка превышает 19 МВт, в работу задействуют остальные 2 горелки. Котел ПТВМ-30М, оборудованный шестью нерегулируемыми горелками, задействуется только в случае остановки котла КВГМ-100, находясь остальное время в состоянии резерва.

Выводы. Главное достижение проведенной модернизации - уникальная способность современной горелки работать при минимальных нагрузках, что в свою очередь благоприятно сказывается на уровне комфорта работы обслуживающего персонала. Учитывая то, что модернизация котла КВГМ-100 на ТЦ «Vecmilgravis» рассматривалась как экспериментальный вариант, в дальнейшем использовались другие технологии.

Реконструкция котлов КВГМ-100 на ТЦ «Imanta» с ипользованием современных газомазутных горелок, обеспечивающих низкий уровень вредных выбросов NO x в атмосферу Информация о ТЦ. Теплоцентраль «Imanta» была сдана в эксплуатацию в 1974 г. для обеспечения тепловых нагрузок Рижского левобережья. Функциональное размещение зданий и строений ТЦ соответствует технологическим требованиям производства тепловой энергии с использованием двух видов топлива - природного газа и мазута.

До реконструкции основное производство обеспечивали три водогрейных котла КВГМ-100 (установленные в 1974, 1976 и 1980 гг.) с номинальной мощностью 116 МВт каждый и два паровых котла ДКВР-20-13/250 с номинальной мощностью 16 МВт каждый.

Описание процесса модернизации. Модернизация ТЦ «Imanta» была разбита на несколько этапов:

■ строительство когенерационного блока с реновацией существующих зданий;

■ реконструкция железобетонной дымовой трубы - в существующей трубе, используемой как несущая конструкция, было установлено три теплоизолированных, изготовленных из высококачественной нержавеющей стали марки 10 HNAP (COR-TENA) ствола с внутренним диаметром Ду 1,7 м по одному на каждый из водогрейных котлов КВГМ-100 № 3, 4, 5;

■ демонтаж паровых котлов ДКВР;

■ установка нового парового котла VAPOR TTK-300 SH;

■ модернизация водогрейных котлов КВГМ-100 № 3, 4 и 5 с заменой фронтальных экранов и горелок;

■ реализация мероприятий по снижению уровня шума, который заметно возрос после модернизации котлов КВГМ; учитывая географическое расположение станции, плотно окруженной со всех сторон жилыми районами, было принято решение об установке звукоизолирующих экранов;

■ оборудование системы мониторинга вредных выбросов - была установлена современная система непрерывного мониторинга уровня вредных выбросов в атмосферу с использованием технологии абсорбционной спектроскопии «in situ» (по месту), которая осуществляет замеры состава дымовых газов непосредственно в канале, тем самым обеспечивая наиболее приближенный к реальности результат (рис. 2);

■ установка на котле № 3 конденсационного экономайзера;

■ реконструкция системы водоснабжения;

■ установка промышленного теплового насоса для повышения эффективности работы когенерационного энергоблока.

Водогрейные котлы КВГМ-100. В 2006 г. были произведены следующие работы по реконструкции водогрейного котла КВГМ-100 № 3.

1. Разработаны проекты реконструкции фронтального экрана (рис. 4) и замены горелок, которые были согласованы с заводом-изготови- телем и другими организациями. После консультаций с изготовителями котла, были выбраны горелки фирмы JOHN ZINK типа Dynaswirl Low NO x , которые доказали свою надежность в течение длительного периода эксплуатации. Принимая во внимание технические характеристики устанавливаемых горелок, для сохранения параметров установленной мощности котла с одновременным понижением уровня вредных выбросов, было принято решение осуществить замену трех старых горелок на четыре современные.

2. Как подготовительный этап для установки горелок, была осуществлена надлежащая реконструкция фронтального экрана.

3. Была осуществлена доставка и установка четырех газомазутных горелок аксиального типа фирмы «TODD Combustion» (рис. 3), которые обеспечивают стабильную работу котельного агрегата (в диапазоне нагрузок от 5 до 100% при работе на природном газе, от 15 до 100% - на

мазуте), а также высокий КПД (до 92%) при номинальных нагрузках.

4. Были проведены ремонтные работы элементов котла с частичной заменой конвективной части, в том числе: перестройка металлоконструкций, лестниц и фронтальных площадок обслуживания; установка ультразвуковой системы очистки поверхностей нагрева; замена системы освещения площадок котла.

5. Была осуществлена доставка и установка газового оборудования и газопроводов.

6. В необходимом объеме были произведены реконструкция и подключение электрооборудования.

7. Была реконструирована автоматизированная система управления (АСУ) котла с интеграцией в существующие системы.

8. Был проведен комплекс пуско-наладочных работ, оформление рабочей документации и обучение обслуживающего персонала. Следует отметить, что по причине относительно низкокачественного мазутного топлива, а также недостаточно отработанной технологии, пуско-нала- дочные работы на жидком топливе заняли несколько более длительное время, нежели предполагалось изначально.

9. Отдельно была произведена установка системы мониторинга уровня вредных выбросов.

В 2007 г. была осуществлена аналогичная реконструкция водогрейных котлов КВГМ-100 № 4 и 5.

Реконструкция АСУ. В процессе модернизации была осуществлена полная реконструкция системы управления горелками, а также частичная реконструкция системы управления котлами. Автоматика управления водогрейными котлами состоит из программируемого контроллера S7-300, который собирает информацию, поступающую с датчиков котельного оборудования, обрабатывает ее для последующей визуализации, обеспечивает коммуникацию с сервером котельной и осуществляет процесс управления оборудованием теплоцентрали.

В свою очередь автоматика управления горелками состоит из четырех автоматов зажигания DURAG D-GF 150, которые оснащены лампами контроля пламени D-LE 603 UA-CG. Согласно определенному алгоритму, автомат зажигания горелки обеспечивает полностью автоматические режимы розжига и тушения.

График потребления и обеспечения тепловых нагрузок на ТЦ «Imanta». Для обеспечения тепловых нагрузок на ТЦ «Imanta» используются четыре теплоисточника: когенерационный энергоблок (КЭ) и три водогрейных котла КВГМ-100 № 3, 4 и 5. Работая в базовом режиме, когенерационный энергоблок обеспечивает тепловую нагрузку от 15 до 45 МВт. КЭ работает в круглосуточном режиме, за исключением периода проведения ремонтно-профилактических мероприятий.

Когда тепловая нагрузка превышает 45 МВт, в работу постепенно включаются водогрейные котлы КВГМ-100 № 3, 4 и 5 соответственно. В случае останова КЭ, всю тепловую нагрузку обеспечивают водогрейные котлы.

График обеспечения тепловых нагрузок с постепенным подключением водогрейных котлов отображен на рис. 5.

Проводимая и планируемая реконструкция ТЦ «Imanta». В данный момент на ТЦ «Imanta» начата реализация нового проекта - оборудование водогрейного котла КВГМ-100 № 3 конденсационным экономайзером. Используемые в производстве экономайзера износостойкие материалы позволят осуществлять его эксплуатацию в конденсационном режиме в течение 20 лет. Целью проекта является значительное повышение эффективности работы котла за счет снижения потребления природного газа и достижения более высокого КПД. Установка экономайзера позволит дополнительно снизить объем закупок предприятием эмиссионных квот.

В процессе разработки находится проект реконструкции системы водоснабжения, а также для повышения эффективности когенерационного энергоблока разработка проекта установки промышленного теплового насоса мощностью до 5 МВт.

Выводы. Поставленная цель реконструкции ТЦ «Imanta» - установка современных автоматизированных горелочных устройств для улучшения экологических показателей в отношении уровня вредных выбросов в атмосферу, расширение диапазона регулирования рабочих нагрузок котельных установок, а также автоматизация процесса управления - была успешно достигнута. Надежная работа реконструированных котлов КВГМ-100 безусловно является главным позитивным моментом проведенной модернизации.

К сожалению, следует отметить, что в процессе реконструкции не была полностью модернизирована система управления гидравликой котла.

В обозримом будущем предусматривается разработка компьютерной программы симуляции работы теплоцентрали, которая позволит существенно усовершенствовать процесс обучения обслуживающего персонала. Благодаря моделированию работы станции при различных режимах, станет возможным достижение оптимальных технологических решений.

Реконструкция котлов КВГМ-50 на ТЦ «Ziepniekkalns» с использованием современных газомазутных горелок, обеспечивающих низкий уровень вредных выбросов NO x в атмосферу

Информация о теплоцентрали. Теплоцентраль «Ziepniekkalns» была сдана в эксплуатацию в 1988 г. для обеспечения тепловых нагрузок промышленных предприятий и жилых зданий Рижского микрорайона Ziepniekkalns.

Тепловая схема ТЦ «Ziepniekkalns» включает в себя работавшее до начатой в 2008 г. реконструкции следующее оборудование:

■ два водогрейных котла типа КВГМ-50 с номинальной мощностью 58 МВт каждый, а также два паровых котла марки ДЕ-25-14ГМ с максимальной теплопроизводительностью 16 МВт каждый и параметрами пара P=14 бaр и t=191 О С;

■ система питательного водоснабжения паровых котлов с атмосферным деаэратором производительностью до 20 м 3 /ч и питательными насосами; паровые котлы также обеспечивают собственные нужды котельной включая поставку пара для мазутного хозяйства; потребление пара мазутного хозяйства составляет до 3 т/ч, другим потребителям пар не поставляется.

В связи с существенной степенью износа паровых котлов ДЕ-25-14ГМ и вспомогательного оборудования, в ближайшее время предусмотрено их отключение. Вместо них планируется установить один автоматизированный паровой котел производительностью до 3 т/ч с использованием существующей дымовой трубы. Для сохранения технической возможности обратного подключения демонтаж существующих паровых котлов не предусмотрен.

На данный момент паровые и водогрейные котлы подсоединены к отдельным дымовым трубам - паровые к металлической трубе высотой 43 м и диаметром 1 м, а водогрейные к металлической трубе высотой 50 м и диаметром 1,6 м.

Сейчас, после реконструкции с заменой горелок котла КВГМ-50 № 1, тепловая мощность ТЦ составляет 126 МВт и производится до 155 тыс. МВтч тепловой энергии в год.

Основным видом топлива является природный газ, резервным - мазут.

Описание процесса модернизации. После успешно проведенной модернизации ТЦ «Imanta»,15 мая 2008 г был подписан договор о первой очереди модернизации ТЦ «Ziepniekkalns» - реконструкции водогрейных котлов КВГМ-50 № 1 и 2 с заменой горелок. Договор предусматривает распределение объема работ на два основных этапа - поочередную реконструкцию каждого водогрейного котла.

Принимая во внимание фактическое снижение спроса на поставляемую тепловую энергию в районе Ziepniekkalns, было принято решение в процессе модернизации снизить установленную мощность котлов, что в отличие от ТЦ «Imanta» позволило оставить неизменным количество горелок. Возможность котлов работать в режиме пониженной мощности позволяет обеспечить стабильную работу теплоцентрали в летний период пониженных тепловых нагрузок. Снижение уровня вредных выбросов в атмосферу, в свою очередь, дает дополнительный экономический эффект - уменьшение объема закупок эмиссионных квот.

В конце 2008 г. были успешно завершены реконструкционные работы котла КВГМ-50 № 1 (рис. 6).

Работая на природном газе, был достигнут КПД котла 93%, а работая на мазуте с низким содержанием серы (1%) - 89%, что отвечает нормативным требованиям. На данный момент проводятся работы второго этапа проекта - аналогичная реконструкция котла КВГМ-50 № 2.

Вторая очередь модернизации предусматривает реализацию когенерационного цикла с использованием в качестве топлива древесной щепы с электрической мощностью 4 МВт и тепловой мощностью до 22 МВт. Планируется, что когенерационный энергоблок будет производить до 21 тыс. МВт.ч электрической энергии в год и теплоцентраль в целом до 173 тыс. МВт.ч тепловой энергии в год.

Выводы. Надежная работа реконструированного котла КВГМ-50 № 1 на ТЦ «Ziepniekkalns» очередной раз доказывает полезность проводимой модернизации. К сожалению, также как и на ТЦ «Imanta», автоматика управления гидравлики котла не была полностью модернизирована. Также следует отметить, что проект модернизации не предусматривает реконструкции системы отвода дымовых газов. На данный момент дымоходы обоих котлов выведены в ствол общей дымовой трубы, что, разумеется, не является наилучшим решением.

Проведенная АО «Ригас Силтумс» реконструкция водогрейных котлов КВГМ-50 и КВГМ-100 на ТЦ «Imanta» и ТЦ «Ziepniekkalns» с установкой современных горелок за период эксплуатации доказала свою эффективность:

■ экономией природного газа;

■ расширением диапазона нагрузок котлов от 5 до 100%;

■ существенным уменьшением уровня вредных выбросов в атмосферу - NO x - 150 мг/нм 3 , CO - 60 мг/нм 3 , сжигая природный газ и NO x - 400 мг/нм 3 , сжигая жидкое топливо, что соответствует Латвийским и Европейским нормам и правилам. Для дальнейшего понижения уровня вредных выбросов в будущем предусматривается установка системы рециркуляции дымовых газов, которая не потребует каких-либо изменений воздушного короба или горелок;

■ продлением срока надежной эксплуатации котлов.

Планируемая модернизация автоматизированной системы управления котельных и теплоцентралей необходима для обеспечения надежности непрерывного технологического процесса, а также по экономическим соображениям - существенно снижаются затраты на обслуживающий персонал.

Литература

1. TODD Combustion A Koch Industries/ John Zink Company, Справочники 2001-2002 гг., США.

2. DURAG Industrie Elektronik GmbH & Co KG, Справочники 2001-2004 гг., Германия.

3. ООО «Торговый дом Дорогобужкотломаш», Справочники, Россия.

4. Ежемесячный журнал «Новости теплоснабжения», 2002 г., Россия.

5. Ежемесячный журнал «Теплоэнергетика», Россия.

6. Ежемесячный журнал «Мировая Энергетика», Россия.

7. Новые методы диспетчеризации и управления объектами теплоснабжения в современных условиях, АО «RlGAS SILTUMS», 2008 г.

8. Годовые отчеты АО «RlGAS SILTUMS» за 2000-2007 гг.

И.А. Урманов, главный инженер, А.В. Мамошкин, технический директор,
ЗАО «ИЦ АВЕЛИТ», г. Белгород

Журнал «Новости теплоснабжения» №2, 2010 г., www.ntsn.ru

Постановка вопроса

Водогрейные котлы (ВК) серии КВГМ тепловой мощностью 20, 30, 50 и 100 Гкал/ч с типовыми горелочными устройствами (ГУ) ГМГ на 20, 30 и 40 МВт и РГМГ на 20 и 30 МВт имеют широкое применение на территории республик бывшего СССР для нагрева воды в пиковых и основных режимах отопительных и промышленных котельных, со второй половины XX в. по настоящее время.

За прошедший период эксплуатация ВК и ГУ практически не изменилась и сегодня, в XXI веке, абсолютно не удовлетворяет современным требованиям по надежности, эффективности, экономичности и экологичности генерации тепловой энергии.

При эксплуатации:

  • имеют место нестабильные режимы горения с пульсацией в топке и как следствие раскачка экранной системы котла, а также элементов газового оборудования по фронтовому экрану;
  • на КВГМ-50 и КВГМ-100 возникает противофазная резонансная раскачка давления воздуха по горелкам с усилением амплитуды колебания разрежения;
  • наблюдается эжекция в аксиальные аппараты с локальным обгоранием лопаток.

Указанные недостатки приводят к:

  • разрушениям обмуровки и (на котлах КВГМ-50 и КВГМ-100) ребер жесткости каркаса;
  • непрерывным нарастаниям присосов (за осенне-зимний период в среднем на 20-30%);
  • тепловой перегрузке конвективной части котлов (из-за низкой светимости в топке и больших разрежений);
  • снижению КПД котлов и дополнительным энергозатратам на тягу и дутье.

Для снижения пульсации (вибрации котла) наладочный персонал вынуждено организует режимы горения, с давлением воздуха отвечающее значениям a=1,3-1,5 за топкой. При этом в режимных картах, как правило, по «экономическим» соображениям показаны фиктивные значения a=1,3-1,4 за дымососом.

Проблемы ГУ хронические и не решаются по двум основным причинам.

1. Теплоэнергетический рынок ВК и ГУ инерционен, у производителей (поставщиков) отсутствует посыл и потребность к оптимизации ГУ, да и зачем что-либо менять, если продукция находит сбыт.

2. В значительной степени утрачен инженерный потенциал. На уровне НИОКБ или в ВУЗах поиска решений также нет по причине отсутствия государственных программ и соответственно финансирования проектов.

Такое положение дел, вернее, их отсутствие, сегодня не устраивает ни владельцев ВК и ГУ, ни реальных потребителей услуг по отоплению и горячему водоснабжению. Последние задаются вопросом: «Как соответствуют «хронические проблемы ВК и ГУ» требованиям времени в области энергосбережения, энергоэффективности и техногенной безопасности с инновационными подходами к решению технологических проблем?!».

И все же «разрубить гордиев узел» можно и нужно, в одном, довольно простом и эффективном варианте – создания консорциума наладочно-монтажной организации с собственником генерации тепловой энергии. Первые, если это профессионалы, обязаны по роду деятельности, организовать и обеспечить модернизацию ГУ. Вторые заинтересованные в минимизации эксплуатационных затрат, повышении экологичности и экономичности генерации тепла и горячей воды должны обеспечить необходимый уровень эксплуатации и обслуживания энергетического оборудования.

Проведенное нами детальное обследование состояния энергетического оборудования (более 20 котлов серии КВГМ), выяснение опыта ведения режимов и объемов обслуживания этого оборудования, а также изучение отчетов наладочных организаций, проводивших пусконаладочные работы, и проведенные по фактическому состоянию оборудования аэродинамические и теплотехнические испытания подтверждают повсеместное наличие вышеназванных проблем этой серии котлов.

Решение проблем при работе котла КВГМ-100 с тремя горелками ГМГ 40

В качестве примера приводим установленные причины пульсаций и других негативных факторов работы КВГМ-100, оборудованного тремя горелками ГМГ 40, как наиболее проблемного котла.

1. Наличие блуждающей эжекции высокотемпературных продуктов в аксиальные аппараты горелок с обгоранием лопаток.

«Блуждающая» эжекция в горелки объясняется тем, что воздушные короба горелок «ломают» высокоскоростной поток воздуха (10-25 м/с), создавая зоны высоких и низких давлений. В местах сопряжений этих зон, под действием сил, возникающих при обтекании лопаток аксиального аппарата происходит подсос высокоскоростными потоками, истекающими из напорных участков воздуха из зон низкого давления, создавая тем самым обратные токи из топки в горелки. Этим и объясняется обгорание лопаток. Зона эжекции зависит от нагрузки. Очаги обгорания лопаток определяются долговременностью использования определенных нагрузок.

2. Наличие сильной пульсации во всем диапазоне нагрузок, которая незначительно снижается при увеличении подачи воздуха до a=1,3-1,5 за топкой.

Попробуем разобраться в причинах пульсации горения. Нижние две горелки по подводу воздуха схожи с горелками с улиткообразным подводом воздуха. Известно, что тангенциальные и улиткообразные горелки грешат той же эжекцией, причем, нарастающей по силе пропорционально нагрузке их воздухом. Проведем расчеты, предполагая, что все три горелки улиткообразные и влияние аксиальных аппаратов незначительно. Тогда вместо хаотичной эжекции мы получаем концентрическую, степень фокусировки которой в меньшей степени зависит от изменения нагрузки; она зависит от степени крутки:

где a – полувысота; b – ширина воздушного короба; d – диаметр амбразуры горелки.

При увеличении расхода воздуха, т.е. скорости, геометрия обратных токов не меняется. Меняется лишь глубина разрежения пропорционально квадрату скорости потока.

При существующем аксиальном аппарате средняя скорость воздуха из горелки: V ср. =Q/S, где Q – расход воздуха, принимаемый как 10Q газ ·a. Здесь a (избыток воздуха в горелке) можно принять 1,1, а Q газ – это расход газа через горелку. Не вся площадь сечения амбразуры горелки S при улиткообразном подводе пропускает воздух, а лишь S–S обр. токов. Чтобы определить площадь обратных токов S обр. токов необходимо рассчитать степень крутки b. В нашем случае b=0,6·0,4/0,7 2 =0,49. Для такой степени крутки площадь обратных токов составляет 16,7%, а доля радиуса обратных токов – 41%. Есть также незначительная зона (5%), где воздух стоит, которой в данном случае пренебрежем.

Тогда среднюю по сечению осевую скорость воздуха определим по уравнению V ср =10Q газ ·a/[(pd 2 /4)·(1–0,167)3600] и получим для минимальной и максимальной нагрузок горелки: V min =1,1·10·2000/[(3,14·0,7 2 /4)·(1–0,167)3600]=19,1 (м/с); V max =1,1·10·4175/[(3,14·0,7 2 /4)·(1–0,167)3600]=39,8 (м/с).

Понятно, что равномерность скорости в нашем случае весьма условна. При такой скорости воздуха и при наличии аксиального аппарата приходится иметь дело с форсированной турбулентной горелкой, обладающей неустойчивым корнем факела.

Рассчитаем глубину проникновения газовых струй в поток воздуха на минимальной и максимальной нагрузке. Скорости воздуха на этих нагрузках уже рассчитаны, необходимо рассчитать скорость газовых струй, которую усреднено можно принять:

W газ =Q газ /(3600s),

где s=21·p·0,016 2 /4=0,00422 м 2 , при количестве отверстий n=21, диаметром d отв =16 мм.

W min газ =Q min газ /(3600·0,00422)=2000/(3600·0,00422)=131,65 (м/с);

W max газ =Q max газ /(3600·0,00422)=4175/(3600·0,00422)=274,82 (м/с).

Теперь можно рассчитать глубину проникновения струи газа со средней скоростью W газ по сечению отверстия в поток воздуха со средней осевой скоростью V ср по рекомендуемой формуле для перпендикулярного проникновения газа в поток:

h=2,2(W газ /V ср)(r г /r в) 0,5 d отв,

где r г, r в – плотность газа и воздуха соответственно; d отв – диаметр газового отверстия.

h min =2,2·(131,65/19,1)·0,84·16=203,8 (мм);

h max =2,2·(274,82/39,8)·0,84·16=204,2 (мм).

Данный расчет показывает, что на любой нагрузке газ попадает в зону эжекции, т.к. 204/350=58,3% (здесь 350 мм – радиус газового коллектора), а мы имеем 41% радиуса обратных токов, прилегающую 5% зону нулевых скоростей и однозначно неравномерность обеспечения воздухом по образующей горелки. Тогда можно предположить, что проблема больших пульсаций не связана с всасыванием продуктов сгорания в горелку. Она связана с образованием локальных зон, где происходит всасывание в горелку газа, смешивания его до взрывных концентраций, хлопков с выбросами больших энергий, что и является причиной сильных пульсаций.

Для подтверждения этой гипотезы был проведен эксперимент. Чтобы отсечь газ от проникновения в горелку, было принято решение установить обечайку на расстоянии 1/2h+10 (мм) от газовых отверстий. Здесь 10 мм – запас, необходимый для возможных зон недостаточных скоростей воздуха, для рассеяния струй газа и воспрепятствования после «отражения» от обечайки, обволакиванию образующей горелки газом с последующим примыканием его к фронтовому экрану. В результате получили снижение пульсации и измененный ее характер.

Причина больших пульсаций определена, а остаточная пульсация, очевидно, результат хаотично блуждающих корней факелов.

При условиях, имеющих место в условно холодной топке, с использованием для горения холодного воздуха неустойчивость горения закономерность. Так как скорость распространения пламени в зоне воспламенения значительно меньше скорости газо-воздушной смеси. К тому же сама смесь неоднородна и не повсеместно находится в необходимом для стабильного горения диапазоне 5-15%. Для обеспечения существования стационарного факела при указанных условиях, необходимо наличие в топке непрерывного мощного источника зажигания, от которого пламя может распространиться по всему сечению горючей смеси.

Итак, произведенные расчеты и опыты позволяют сделать заключение, что пульсация устранима, причем достичь этого можно при хороших экономических показателях работы котлов. Для этого необходимо провести модернизацию горелок с устранением всех вышеизложенных негативных факторов объясняющих первопричины пульсаций.

Практический опыт внедрения комплексной модернизации горелок на котлах серии КВГМ подтвердил возможность устранения пульсаций во всем диапазоне нагрузок с одновременным повышением экономической эффективности работы котлов.

Положительные результаты модернизации горелок, устраняющие вышеперечисленные недостатки работы типовых горелок, позволили нам подать заявку на изобретение горелочного устройства.

Рационализацию и модернизации эксплуатируемых сегодня горелок целесообразно проводить на рабочих местах в соответствии с авторскими решениями и под авторским надзором.

Литература

1. Тепловой расчет котельных агрегатов (Нормативный метод). Н.В. Кузнецов.

2. Методические указания по испытаниям котельных агрегатов работающих на природном газе. Минхимпром СССР.

3. Теплотехнические испытания котельных установок. В.И. Трембовля.

4. Методические указания по составлению режимных карт котельных установок и оптимизация управления ими. РД 34.25.514-96.

5. Теплотехнические расчеты по приведенным характеристикам топлива. Я.Л. Пекер.

6. Упрощенная методика теплотехнических расчетов. Н.Б. Равич. М.: «Наука».

7. Экономия топлива на электростанциях и в энергосистемах. А.С. Горшков. М.: «Энергия», 1967.

8. Опыт сжигания газа на электростанциях и в промышленных котельных. БТИ «ОРГРЭС», М.,1962.

9. Теория горения и топочные устройства. Под ред. Д.М. Хзмаляна. М.: «Энергия», 1976.

Отопительные водогрейные котлы серии КВГМ выпускаются Бийским Котельным Заводом уже не первый год. За это время они укрепили свой авторитет на отечественном рынке газогорелочного оборудования, став одними из наиболее практичных и доступных решений в своем ценовом сегменте.

Несмотря на то, что производитель поставляет на российский рынок широкую линейку оборудования, наибольшей популярностью пользуются котлы КВГМ 100, поскольку их номинальная мощность идеально подходит для отопления самых разных помещений.

Данный агрегат довольно активно устанавливается как на промышленных объектах, так и в частных жилых домах и квартирах, являясь при этом универсальным и очень выносливым оборудованием. Помимо этого, котел КВГМ, характеристики которого говорят о его высокой производительности, может применяться в качестве агрегата для технологических нужд предприятий в самых разных отраслях экономики.

Котлы идеально сочетаются с закрытыми системами теплоснабжения, в которых осуществляется принудительная циркуляция воды. Агрегация с подобными системами позволяет увидеть максимальную эффективность от использования модели КВГМ 100.

Аппарат отличается горизонтальной компоновкой и имеет два основных блока – топочный и конвективный. При этом арматура и гарнитура для техники поставляется в комплекте с котлом.

Среди особенностей модели КВГМ 100 стоит отметить следующие:

  • Монтаж агрегата можно производить в сжатые сроки, поскольку котел предлагается в максимальной заводской готовности.
  • За счет того, что обмуровка оборудования производится непосредственно на месте установки, масса поставочной конструкции заметно сокращается. Это облегчает транспортировку аппарата.
  • Большая часть комплектующих и узлов унифицированы и стандартизированы, что дает возможность применять их на аналогичных водонагревательных аппаратах, поставляемых другими производителями.
  • Блоки могут оснащаться различными горелками, что также является дополнительным доказательством универсальности техники.
  • В конструкции предусмотрена система острого дутья и уноса, за счет чего существенно сокращается расход топлива и снижается уровень вредных выбросов в атмосферу. Это говорит о соответствии оборудования существующим экологическим стандартам.
  • Котлы КВГМ 100, благодаря простоте конструкции, долговечны и легко ремонтируются в случае возникновения поломки. Все комплектующие также отличаются демократичной ценой, что особенно актуально для практичных потребителей.
  • Конструкцией модели КВГМ 100 предусмотрен легкий доступ для осмотра и чистки труб, предназначенных для вывода продуктов горения, что очень удобно. Вы можете обслуживать технику без особых усилий и без вмешательства специалиста.
  • Аппарат серии КВГМ 100 может быть дополнительно укомплектован так называемым генератором ударных волн. Данное оборудование позволяет эффективно удалять отложения с труб, что влечет за собой снижение температуры отработанных газов и уменьшение расхода топлива.
  • В котлах предусмотрена качественная автоматика, которая обеспечивает стабильную работу техники при любых условиях.
  • Дополнительный плюс котла КВГМ 100 – возможность монтажа в сейсмически нестабильных регионах. Оборудование способно функционировать при сейсмической активности, равной 9 баллам.

Технические особенности отопительных котлов серии КВГМ 100

Данное оборудование способно функционировать на газе или дизельном топливе, что говорит о его универсальности. Исходя из типа топлива, техника оснащается газовыми, жидкотопливными или комбинированными горелками.

Работа котла автоматизирована, что позволяет ему работать с различной интенсивностью. Комбинация возможных режимов дает возможность существенно сократить уровень потребления топлива. КВГМ 100 могут похвастаться отменной производительностью притом, что их габариты довольно малы. Это исключает необходимость обустройства специального фундамента для установки оборудования. Котел может быть монтирован в любом здании, будь то котельная на производственном объекте или подсобное помещение в жилом доме.



Модель КВГМ 100 производится в форме призмы. Ограждающие поверхности конструкции образуются топочным и подовым экраном, которые изготавливаются из трубы, диаметр которой составляет 51 миллиметр. Передняя часть конструкции заполняется термоустойчивым бетоном. В верхней части переднего коллектора оборудован подвод и отвод горячей воды. Кроме того, производитель предусмотрел качественную теплоизоляцию котла, выполнив ее из первоклассных волокнистых материалов, которые замаскированы под металлической обшивкой.

Котлам серии КВГМ 100 свойственна экономичность и экологическая безопасность. Кроме того, техника Бийского Котельного Завода отличается высоким КПД, который достигает 93%. Явным плюсом модели можно считать простоту эксплуатации и неприхотливость в обслуживании.

Техника КВГМ 100 идеально подходит для российского потребителя, которому в первую очередь важна долговечность, выносливость и надежность. Подтверждением этих отменных технических характеристик может служить тот факт, что огромное число котлов данного типа, введенных в эксплуатацию еще во времена Советского Союза, функционирует по сегодняшний день.

Естественно, модель с момента ее вывода на рынок много лет назад подверглась серьезным модификациям. В первую очередь изменения претерпела конструкция горелки, что позитивно отразилось на экономии топлива. После модернизации расход энергии существенно снизился, и надежность оборудования значительно улучшилась.

Одним из недостатков оборудования серии КВГМ 100 можно считать подверженность конструкции процессам коррозии. Агрессивные внешние факторы и активный режим эксплуатации со временем может привести к образованию ржавчины. Тем не менее, если вовремя провести реконструкцию оборудования – есть возможность избежать подобных проблем, тем самым продлив срок службы техники.

Подробнее о характеристиках

Котел КВГМ 100 способен удивить своего покупателя высокой производительностью. Для этого достаточно подробнее изучить технические характеристики оборудования.

Номинальная теплопроизводительность котла КВГМ 100 составляет 116 МВт. При этом техника обеспечивает температуру теплоносителя на входе на уровне 70 градусов, в пиковом режиме – 110 градусов, а на выходе – 150 градусов.

Котел КВГМ 100 отличается серьезным рабочим ресурсом, который составляет 20 лет или 100 тысяч часов непрерывной эксплуатации. В процессе работы техника практически не издает шума (80 ДБа). Безопасность также является одним из преимуществ котла КВГМ 100 – наружная стенка конструкции не нагревается выше 55 градусов, что исключает возможность получить ожог.

Таким образом, если вы ищите надежное и очень продуктивное водонагревательное оборудование отечественного производства за относительно небольшие деньги – выбор в пользу КВГМ 100 вполне обоснован. Данный котел прослужит вам много лет без каких-либо «сюрпризов» и будет дарить тепло даже при весьма агрессивной эксплуатации. Технике не страшны неблагоприятные климатические условия, что выгодно отличает ее от продукции многих азиатских и европейских брендов.

Эксплуатация П-образного водогрейного котла КВГМ-100, установленного в качестве пикового на Волгодонской ТЭЦ-2, выявила ряд серьезных недостатков при сжигании мазута.

Подписаться на статьи можно на

Отмечалась неудовлетворительная работа ротационных горелок типа РГМГ-30, что приводило к повышенным потерям с механическим недожогом. Наблюдалось смещение факела к правой боковой стенке топки и затягивание процесса сгорания мазута. Неоптимальный режим работы горелок и перетоки горячих газов из топки в конвективную шахту через неплотности в местах примыкания заднего экрана топки к боковым стенкам создавали неравномерное поле температур в конвективной шахте.

Для устранения отмеченных недостатков в работе котла были проведены опыты с измерением основных параметров работы топки и конвективной шахты.

Во всех опытах наблюдался более высокий уровень температур газов вблизи заднего экрана топки. Усредненные температуры газов за верхним конвективным пакетом и на выходе из конвективной шахты составили, соответственно, 350 и 166 °С при теплопроизводительности котла 80 % номинальной. Максимальная температура в этих сечениях газохода достигала, соответственно, 412 и 250 °С. Коэффициент температурной разверки изменялся в диапазоне 1,04-1,5 для сечения за верхним пакетом и 1,3-1,7 - для сечения на выходе из конвективного пучка.

Распределение плотности теплового потока в топке оказалось неравномерным, со смещением к правой боковой стенке. При теплопроизводительности 80 % номинальной измеренная с помощью температурной вставки плотность теплового потока, воспринятого трубой правого бокового экрана, составила 340 кВт/м². Температура стенки трубы этого экрана при этом достигала 235 °С, а избыточная температура на внутренней образующей трубе - 60-80 °С. Ожидаемая величина лучистого теплового потока - 400-500 кВт/м² при номинальной теплопроизводительности.

По эксплуатационным данным были отмечены существенные неравномерности распределения температуры воды по секциям конвективной поверхности и трубам бокового экрана конвективной шахты. Общей тенденцией является более высокий уровень температур воды в трубах, примыкающих к промежуточному и заднему экранам конвективной шахты. Температура воды в стояках секций достигала 166 °С при температуре воды на выходе из котла 150 °С. Температурная разверка в секциях достигала 19 °С. В трубах бокового экрана абсолютная величина разверки увеличилась до 26 °С, а температура воды в разверенной трубе составила 172 °С.

Ожидаемая результирующая величина разверки в трубах секций по эксплуатационным и расчетным данным, с учетом неравномерности и в плоскости змеевика, оценивается в 19 + 4 = 23 °С.

Температурные разверки в котле КВГМ-100 оказались более высокими по сравнению с аналогичными котлами такого же типа. Можно предположить, что в данном случае проявился в наибольшей мере суммарный эффект, обусловленный, с одной стороны, неравномерностью поля температур газов, а с другой стороны - гидравлической неравномерностью, влияние которой могло заметно сказаться вследствие имевших место значительных внутренних отложений в трубах из-за неудовлетворительного качества сетевой воды.

Коэффициент тепловой эффективности конвективной поверхности при сжигании мазута в диапазоне нагрузок 24,4-82 МВт, при которых скорость газов изменилась от 2,6 до 7,1 м/с, а избытки воздуха - от 1,4 до 1,2, в среднем, составил 0,6.

Практические выводы из результатов проведенных исследований послужили исходными данными для усовершенствования котла КВГМ-100.

В проекте, подготовленном на основании описанных выше исследований, были реализованы следующие решения (рис. 1):

Установлены в топке на боковых стенках по встречной схеме 4 вихревые горелки;

В поворотной камере над конвективной шахтой размещена дополнительная ширмовая поверхность из U-образных мембранных труб диаметром 38 × 4 мм, тепло которой используется для подогрева холодного воздуха, идущего на горение;

Введение

В состав теплоэлектроцентрали ОАО «ЭнСер» входят следующие подразделения:

Котельный, турбинный цеха, электроцех, химцех, участок ТАИ,

Водогрейная котельная №1,

Водогрейная котельная №2,

Водогрейные котельные №1,2 обеспечивают выработку горячей воды на технологические нужды, для отопления и горячего водоснабжения ОАО АЗ «Урал», центральной части г. Миасса и других потребителей.

На водогрейной котельной №2 забор воздуха для подачи в котлы осуществляется снаружи, мероприятия по подогреву воздуха в зимний период не предусмотрены, вследствие чего, в котёл попадает воздух с низкой температурой, что отрицательно влияет на ряд факторов:

Увеличиваются потери с уходящими газами.

Увеличивается химический недожог.

Увеличивается механический недожог топлива, особенно в случае сжигания углей и мазута.

Предложение по использованию предварительного нагрева входящего воздуха, позволит в зимний период, за счёт пропуска части сетевой воды с входа котла КВГМ через калорифер, нагревать холодный воздух до положительных температур. В результате, в холодное время года, при работающих котлах КВГМ обеспечивается возможность постоянно подавать на горелки котла подогретый воздух, что повысит эффективность сжигания газа, а также предотвратит обмерзание воздушного тракта. Предложенные мероприятия улучшат экологические и экономические показатели котла.

Описание котла КВГМ-100

Котел имеет прямоточную П - образную бескаркасную компоновку с облегченной обмуровкой, укрепляемой на экранных трубах. Котел может использоваться как в режиме 150 - 100°С. Площадки для обслуживания котла крепятся к самостоятельным металлоконструкциям, опирающимся на портал котла. Конструкция котла представлена в графической части дипломного проекта на листах 1 и 2. Топочная камера котла и задняя стенка конвективной части поверхности нагрева котла состоит из трех пакетов. Каждый пакет набирается из U- образных ширм, выполненных из труб d = 283 мм. Ширмы в пакетах расположены параллельно фронту котла и расставлены таким образом, что их трубы образуют шахматный пучок с шагом S1 = 64 мм и S2 = 40 мм.

Боковые стены конвективной шахты закрыты трубами d = 8335мм с шагом 128 мм служащие одновременно стояками ширм. Все трубы образующие экранные поверхности котла, вварены непосредственно в коллектор d = 27311 мм. Для удаления воздуха из трубной системы при заполнении котла водой на верхних коллекторах установлены воздушники. Взрывные предохранительные клапана установлены на потолке топочной камеры.

Для удаления наружных отложений с труб конвективных поверхностей нагрева котла оборудована дробеочистительная установка. Подача дроби наверх производится с чистым воздухом, подаваемым ротационной воздуходувкой.

Обмуровка котла облегченная, натрубная, толщина около 110мм, состоит из трех слоев: шамотобетона, совелитовых плит, минераловатных матрацев и магнезиальной обмазки. На фронтальной стенке котла установлены три газомазутные горелки с ротационными форсунками, причем третья горелка размещена сверху во втором ряду.

Ротационные горелки РГМГ-30 - механические с мазутными форсунками механического распыления и водяным охлаждением.

Производительность горелки РГМГ-30 составляет:

По природному газу 4175м3/час

По мазуту 3855 кг/час.

Тепловой и аэродинамический расчеты котла представлены далее в пояснительной записке. На рисунке 1 показана схема движения воды в котле КВГМ-100 при работе в основном режиме. Вода с температурой 70°С и давлением 2,5 МПа подается во фронтовой экран топочной камеры, затем направляется в боковой экран, после чего поступает в промежуточный экран, откуда входит в конвективную часть и боковые экраны. Выход воды из котла с температурой 150°С происходит из заднего экрана конвективной шахты. Скорость движения воды по тракту котла лежит в пределах 1,6 - 1,8 м/с. Продувка котла из коллекторов экранов производится по специальным трубопроводам в коллектор дренажей.

Рисунок 1. Схема движения воды в котле КВГМ - 100

Технические характеристики котла КВГМ-100 приведены в таблице 1.

Таблица 1 - Технические характеристики котла КВГМ-100

Наименование

Ед. измерения

Значение

1. Теплопроизводительность Гкал/час 100

2. Расход воды т/час 1235/2460

3. Расход топлива:

Природный газ м3/час 12520

Мазут кг/час 11500

4. Температура уходящих газов:

Работа на газу °С 120

Работа на мазуте °С 175

5. Лучевоспринимающая поверхность м2 325

6. Объём топочной камеры м3 388

7. Тип и число горелок шт. 3 РГМГ-30

8. Теплонапряжение топочного объёма Ккал/(м3 *час) 280*103

9. Тепловая нагрузка лучевоспринимающих поверхностей:

Работа на газу; Ккал/(м3 *час) 116*103

Работа на мазуте Ккал/(м3 *час) 137*103

10. Поверхность нагрева:

Радиационная; м2 325

Конвективная м 2385

11. Расчетная температура воды на выходе

из котла °С 150

12. КПД котла:

Работа на газ; % 92,7

Работа на мазуте % 91,3



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png