Использование: в теплоэнергетике, в частности, при изготовлении парогенераторов. Сущность изобретения: повышение монтажной и ремонтной технологичности обеспечивается тем, что в конвективной поверхности нагрева, содержащей входной 1 и выходной 2 коллекторы, вертикально установленные обогреваемые трубы 3, дистанционирующие трубы 4, расположенные горизонтальными ярусами 5 на прямых вертикальных участках обогреваемых труб 4 и попарно жестко скреплены между собой по периферии конвективной поверхности, причем пара дистанционирующих труб 4 охватывает только один ряд обогреваемых труб 3. 4 ил.

Изобретение относится к теплоэнергетике и может быть использовано в парогенераторостроении. В процессе работы парогенератора, особенно на шлакующемся топливе или высокосернистом мазуте, на вертикальных поверхностях нагрева, размещенных, как правило, в горизонтальном газоходе, отлагается большое количество шлака. Очагами для интенсивной зашлаковки являются места, где уменьшены поперечные шаги между вертикальными трубами из-за выхода их из проектной плоскости (из ранжира). В этих местах резко уменьшается расход и скорость дымовых газов и это еще больше способствует зашлаковке поверхностей нагрева. Кроме того, наружные ранжировки труб, особенно в поперечном направлении движения греющих газов, ухудшают условия очистки обдувочными или другими устройствами. Применяемые в настоящее время различные неохлаждаемые устройства из жаростойких материалов быстро выгорают под воздействием высоких температур и агрессивных составляющих (серы, ванадия) греющих газов. Применение собственных, т.е. включенных параллельно с обогреваемыми трубами поверхности нагрева, дистанционирующих обогреваемых труб приводит к неравномерным условиям их работы, т.к. дистанционирующие трубы обязательно отличаются по длине и конфигурации от основных труб, что снижает надежность работы поверхности нагрева. Известна конструкция конвективной поверхности нагрева, в которой дистанционирование обогреваемых труб осуществляется неохлаждаемыми дистанционирующими планками из жаростойкого чугуна. Например, на котле ТГМП-204 Недостатком этой конструкции является недолговечность дистанционирующих планок, так как в условиях высоких температур газов и агрессивных составляющих продуктов горения топлива они быстро обгорают и разрушаются, что приводит к нарушению дистанций между обогреваемыми трубами поверхности нагрева, способствует заносу их золой и шлаком, ухудшению теплообмена и снижению надежности работы парогенератора. Наиболее близкой к заявленной является конструкция конвективной поверхности нагрева, содержащая входной и выходной коллекторы, вертикально расположенные обогреваемые трубы и горизонтальными ярусами установленные дистанционирующие трубы, охлаждаемые рабочей средой и снабженные шипами, образующими ячейки, в каждой из которых размещается по одной вертикальной трубе. В целом все дистанционирующие трубы, соединенные между собой шипами, образуют горизонтальную жесткую решетку, через которую пропускаются обогреваемые трубы поверхности нагрева Недостатком известной конструкции является сложность монтажа и низкая ремонтопригодность, состоящая в том, что при необходимости замены поврежденной обогреваемой трубы, размещенной в средней части вертикальной поверхности нагрева, совершенно невозможно раздвинуть обогреваемый вертикальные трубы для облегчения доступа к поврежденному месту. В равной мере это относится и к самим дистанционирующим трубам, снабженным шипами. Для доступа к поврежденному месту необходимо резать большое количество неповрежденных труб в доступных для этого местах с последующим восстановлением их. Опыт эксплуатации указанной поверхности на котлах ТГМП-204 подтверждает вышесказанное. Целью изобретения является устранение указанных недостатков, а также повышение монтажной и ремонтной технологичности. Поставленная цель достигается тем, что в конвективной поверхности нагрева, содержащей входной и выходной коллекторы, вертикально установленные обогреваемые трубы и дистанционирующие трубы, расположенные горизонтальными ярусами, дистанционирующие трубы в виде горизонтальных ярусов размещены на прямых вертикальных участках обогреваемых труб, попарно жестко соединенных между собой по периферии конвективной поверхности, причем каждая упомянутая пара охватывает только один ряд обогреваемых труб. Сущность изобретения поясняется чертежами, на которых изображено: на фиг. 1 общий вид конвективной поверхности нагрева, на фиг. 2 разрез по А-А фиг. 1, на фиг. 3 разрез по Б-Б на фиг. 2, на фиг. 4 разрез по В-В фиг. 2. Конвективная поверхность нагрева содержит входной 1 и выходной 2 коллекторы, вертикально установленные обогреваемые трубы 3, дистанционирующие трубы 4, выполненные в виде горизонтальных ярусов 5, размещенных на прямых участках труб 3 по высоте поверхности параллельно движению греющих газов и попарно охватывающих каждый ряд этих труб. Трубы 4 жестко соединены между собой сваркой 6 по периферии поверхности нагрева. Конвективная поверхность нагрева работает следующим образом. При изменении теплового состояния парогенератора дистанционирующие трубы 4 удерживают в одной плоскости каждый ряд обогреваемых труб 3, стремящихся из-за неравномерного обогрева выйти из ранжира. Сохранение ранжировки труб 3 обеспечивает равномерные скорости газов по всей ширине газохода, уменьшает возможность заноса золой его отдельных участков, а также улучшает условия очистки с помощью обдувочных или других приспособлений. Удержание обогреваемых труб 3 в ранжире значительно улучшает условия их осмотра и ремонта.,

Полезная модель относится к теплообменной технике и может быть, в частности, использована в качестве конвективных поверхностей нагрева котлов. Предлагаемая конструкция поверхности нагрева имеет уменьшенные по сравнению с прототипом шаги между трубами шахматного конвективного пучка в направлении поперечном движению газов. Схема соединения U-образных труб каждого флажка с коллектором позволяет при тех же габаритах конвективного пакета увеличить общую поверхность нагрева, а также увеличить скорость газов в конвективной поверхности нагрева, повысив, таким образом, интенсивность теплообмена. Конвективная поверхность нагрева содержит шахматный конвективный пучок, образованный флажками 1, выполненными из U-образных труб 2, подключенных к вертикальным коллекторам 3. U-образные трубы 2 каждого флажка 1 соединяются с вертикальным коллектором 3 так, что центры их отверстий располагаются на двух осях, параллельных оси вертикального коллектора 3. Места присоединения входных концов U-образных труб 2 каждого флажка 1 последовательно перемежаются по осям, при этом входной и выходной концы каждой трубы 2 соединяются с коллектором 3 на разных осях. Таким образом, U-образные трубы 2 располагаются перекрестие, одна над другой, что позволяет уменьшить расстояние между центрами отверстий соединения труб 2 с коллектором 3 и, следовательно, шаги между трубами шахматного конвективного пучка в поперечном направлении.


Полезная модель относится к теплообменной технике и может быть, в частности, использована в качестве конвективных поверхностей нагрева котлов.

Известна конвективная поверхность нагрева по авт. свид. СССР №844917, содержащая шахматный конвективный пучок образованный установленными в вертикальных коллекторах встречно расположенными флажками, выполненными из U-образных труб. Трубы каждого флажка традиционно соединяются с вертикальными коллекторами так, что центры их отверстий располагаются на двух осях, параллельных оси коллектора, причем часть труб каждого флажка крепится по одной оси, часть - по другой. При этом шаг между трубами шахматного конвективного пучка в поперечном направлении не может быть меньше двух диаметров труб, что не позволяет уменьшить габаритные размеры конвективной поверхности нагрева.

Технический результат заявляемой полезной модели заключается в уменьшении шагов между трубами в поперечном движению газов направлении, что позволяет при тех же габаритах конвективного пакета увеличить общую поверхность нагрева, и, кроме того, увеличивает скорость проходящих газов, что увеличивает интенсивность теплообмена.

Указанный технический результат достигается тем, что в конвективной поверхности нагрева, содержащей шахматный конвективный пучок образованный установленными в вертикальных

коллекторах встречно расположенными флажками, выполненными из U-образных труб, в которой трубы каждого флажка соединяются с вертикальными коллекторами так, что центры их отверстий располагаются на двух осях, параллельных оси коллектора, в соответствии с предлагаемой полезной моделью, места присоединения входных концов U-образных труб каждого флажка последовательно перемежаются по осям, при этом входной и выходной концы каждой трубы соединяются с коллектором на разных осях.

Предлагаемые чертежи поясняют суть предложения. На фиг.1 представлен общий вид конвективной поверхности нагрева, на фиг.2 и 3 - то же соответственно в разрезе по А-А и по Б-Б.

Конвективная поверхность нагрева (фиг.1-3) содержит шахматный конвективный пучок, образованный флажками 1, выполненными из U-образных труб 2, подключенных к вертикальным коллекторам 3. U-образные трубы 2 каждого флажка 1 соединяются с вертикальным коллектором 3 так, что центры их отверстий располагаются на двух осях, параллельных оси вертикального коллектора 3. Места присоединения входных концов U-образных труб 2 каждого флажка 1 последовательно перемежаются по осям, при этом входной и выходной концы каждой трубы 2 соединяются с коллектором 3 на разных осях. Таким образом, U-образные трубы 2 располагаются перекрестие, одна над другой, что позволяет уменьшить расстояние между центрами отверстий соединения труб 2 с коллектором 3 и, следовательно, шаги между трубами шахматного конвективного пучка в поперечном направлении.

Работает устройство следующим образом.

Рабочая среда поступает в коллекторы 3 и раздается по U-образным трубам 2 флажков 1 конвективной поверхности нагрева.

Горячие газы поперечно омывают трубы 2, при этом за счет уменьшенного шага между трубами 2, обеспечившего более плотное расположение труб в шахматном конвективном пучке, скорость газов увеличивается. Нагретая рабочая среда попадает в коллекторы 3 и отводится из конвективной поверхности нагрева.

Предлагаемая конструкция поверхности нагрева имеет уменьшенные по сравнению с прототипом шаги между трубами шахматного конвективного пучка в направлении поперечном движению газов. Схема соединения U-образных труб каждого флажка с коллектором позволяет при тех же габаритах конвективного пакета увеличить общую поверхность нагрева, а также увеличить скорость газов в конвективной поверхности нагрева, повысив, таким образом, интенсивность теплообмена.


Формула полезной модели

Конвективная поверхность нагрева, содержащая шахматный конвективный пучок, образованный установленными в вертикальных коллекторах встречно расположенными флажками, выполненными из U-образных труб, причем трубы каждого флажка соединяются с вертикальными коллекторами так, что центры их отверстий располагаются на двух осях, параллельных оси коллектора, отличающаяся тем, что места присоединения входных концов U-образных труб каждого флажка последовательно перемежаются по осям, при этом входной и выходной концы каждой трубы соединяются с коллектором на разных осях.

Расчет конвективных пучков котла.

Конвективные поверхности нагрева паровых котлов играют важную роль в процессе получения пара, а также использования теплоты продуктов сгорания, покидающих топочную камеру. Эффективность работы конвективных поверхностей нагрева в значительной мере зависит от интенсивности передачи теплоты продуктами сгорания пару.

Продукты сгорания передают теплоту наружной поверхности труб путем конвекции и лучеиспускания. От наружной поверхности труб к внутренней теплота передается через стенку теплопроводностью, а от внутренней поверхности к воде и пару -- конвекцией. Таким образом, передача теплоты от продуктов сгорания к воде и пару представляет собой сложный процесс, называемый теплопередачей.

При расчете конвективных поверхностей нагрева используется уравнение теплопередачи и уравнение теплового баланса. Расчет выполняется для 1 м3 газа при нормальных условиях.

Уравнение теплопередачи.

Уравнение теплового баланса

Qб=?(I"-I”+???I°прс);

В этих уравнениях К - коэффициент теплопередачи, отнесенный к расчетной поверхности нагрева, Вт/(м2-К);

T - температурный напор, °С;

Bр - расчетный расход топлива, м3/с;

H - расчетная поверхность нагрева, м2;

Коэффициент сохранения теплоты, учитывающий потери теплоты от наружного охлаждения;

I",I" - энтальпии продуктов сгорания на входе в поверхность нагрева и на выходе из нее, кДж/м3;

I°прс - количество теплоты, вносимое присасываемым в газоход воздухом, кДж/м3.

В уравнении Qт=K?H??t/Bр коэффициент теплопередачи K является расчетной характеристикой процесса и всецело определяется явлениями конвекции, теплопроводности и теплового излучения. Из уравнения теплопередачи ясно, что количество теплоты, переданное через заданную поверхность нагрева, тем больше, чем больше коэффициент теплопередачи и разность температур продуктов сгорания и нагреваемой жидкости. Очевидно, что поверхности нагрева, расположенные в непосредственной близости от топочной камеры, работают при большей разности температуры продуктов сгорания и температуры воспринимающей теплоту среды. По мере движения продуктов сгорания по газовому тракту температура их уменьшается и хвостовые поверхности нагрева (водяной экономайзер) работают при меньшем перепаде температур продуктов сгорания и нагреваемой среды. Поэтому чем дальше расположена конвективная поверхность нагрева от топочной камеры, тем большие размеры должна она иметь и тем больше металла расходуется на ее изготовление.

При выборе последовательности размещения конвективных поверхностей нагрева в котлоагрегате стремятся так расположить эти поверхности, чтобы разность температуры продуктов сгорания и температуры воспринимающей среды была наибольшей. Например, пароперегреватель располагают сразу после топки или фестона, поскольку температура пара выше температуры воды, а водяной экономайзер - после конвективной поверхности нагрева, потому что температура воды в водяном экономайзере ниже температуры кипения воды в паровом котле.

Уравнение теплового баланса Qб=?(I"-I”+???I°прс) показывает, какое количество теплоты отдают продукты сгорания пару через конвективную поверхность нагрева.

Количество теплоты Qб, отданное продуктами сгорания, приравнивается к теплоте, воспринятой паром. Для расчета задаются температурой продуктов сгорания после рассчитываемой поверхности нагрева и затем уточняют ее путем последовательных приближений. В связи с этим расчет ведут для двух значений температуры продуктов сгорания после рассчитываемого газохода.

1. определяем площадь поверхности нагрева, расположенная в рассчитываемом газоходе Н =68.04м2 .

Площадь живого сечения для прохода продуктов сгорания при поперечном омывании гладких труб F =0.348м2.

По конструктивным данным подсчитываем относительный поперечный шаг:

1= S1 /dнар=110/51=2.2;

относительный продольный шаг:

2 = S2 /d=90/51=1.8.

2. Предварительно принимаем два значения температуры продуктов сгорания после рассчитанного газохода: =200°С =400°С;

3. Определяем теплоту, отданную продуктами сгорания (кДж/м3),

Qб =??(-+ ??к?I°прс),

где? - коэффициент сохранения теплоты, определяется в пункте 3.2.5;

I" - энтальпия продуктов сгорания перед поверхностью нагрева, определяется по табл. 2 при температуре и коэффициенте избытка воздуха после поверхности нагрева, предшествующей рассчитываемой поверхности; =21810 кДж/м3 при =1200°С;

I" - энтальпия продуктов сгорания после рассчитываемой поверхности нагрева, определяется по табл. 2 при двух предварительно принятых температурах после конвективной поверхности нагрева; =3500 кДж/м3 при =200°С;

6881 кДж/м3 при =400°С;

К - присос воздуха в конвективную поверхность нагрева, определяется как разность коэффициентов избытка воздуха на входе и выходе из нее;

I°прс - энтальпия присосанного в конвективную поверхность нагрева воздуха, при температуре воздуха tв= 30 °С определяется пункте 3.1.

Qб1 =0.98?(21810-3500+0.05?378.9)=17925 кДж/м3;

Qб2=0.98?(21810-6881+0.05?378.9)=14612 кДж/м3;

4. Вычисляем, расчетную температуру потока продуктов сгорания в конвективном газоходе (°С)

где и - температура продуктов сгорания на входе в поверхность и на выходе из нее.

5. Определяется температурный напор (°С)

T1=-tк = 700-187.95=512°С;

T2 =-tк=800-187.95=612°С;

где tк - температура охлаждающей среды, для парового котла принимается равной температуре кипения воды при давлении в котле, tн.п=187.95°С;

6. Подсчитываем среднюю скорость продуктов сгорания в поверхности нагрева (м/с)

где Вр - расчетный расход топлива, м3/с, (см. п. 3.2.4);

F - площадь живого сечения для прохода продуктов сгорания (см. п. 1.2), м2;

Vг - объем продуктов сгорания на 1кг твердого и жидкого топлива или на 1 м8 газа (из расчетной табл. 1 при соответствующем коэффициенте избытка воздуха);

кп -средняя расчетная температура продуктов сгорания, °С;

7. Определяем коэффициент теплоотдачи конвекцией от продуктов сгорания к поверхности нагрева при поперечном омывании коридорных пучков:

К = ?н?сz ?сs ?сф;

где?н - коэффициент теплоотдачи, определяемый по номограмме при поперечном омывании коридорных пучков (рис. 6.1 лит 1); ?н.1=84Вт/м2К при?г.1 и dнар; ?н.2=90Вт/м2К при?г.2 и dнар;

сz - поправка на число рядов труб по ходу продуктов сгорания, определяется при поперечном омывании коридорных пучков; сz =1 при z1=10;

сs - поправка на компоновку пучка, определяется при поперечном омывании коридорных пучков; сs =1

сф - коэффициент, учитывающий влияние изменения физических параметров потока, определяется при поперечном омывании коридорных пучков труб (рис. 6.1 лит 1);

cф1=1.05 при; сф2=1.02 при;

К1=84?1?1?1.05=88.2 Вт/м2К;

К2=90?1?1?1.02=91.8 Вт/м2К;

8. Вычисляем степень черноты газового потока по номограмме. При этом необходимо вычислить суммарную оптическую толщину

kps=(kг?rп +kзл?µ)?p?s ,

где kг - коэффициент ослабления лучей трехатомными газами, определяется в п.4.2.6;

rп -- суммарная объемная доля трехатомных газов, берется из табл. 1;

kзл - коэффициент ослабления лучей эоловыми частицами, kзл=0;

µ - концентрация золовых частиц, µ =0;

р - давление в газоходе, для котлоагрегатов без наддува принимается равным 0,1 МПа.

Толщина излучающего слоя для гладкотрубных пучков (м):

s=0.9?d?()=0.9?51?10-3 ?(-1)=0.18;

9. Определяем коэффициент теплоотдачи?л, учитывающий передачу теплоты излучением в конвективных поверхностях нагрева, Вт/(м2К):

для незапыленного потока (при сжигании газообразного топлива) ?л = ?н??ф?сг, где?н - коэффициент теплоотдачи, определяется по номограмме (рис. 6.4 лит 1); ?ф - степень черноты;

сг - коэффициент, определяется.

Для определения?н и коэффициента сг вычисляется температура загрязненной стенки (°С)

где t - средняя температура окружающей среды, для паровых котлов принимается равной температуре насыщения при давлении в котле, t= tн.п=194°С;

T - при сжигании газа принимается равной 25 °С.

Tст=25+187=212;

Н1=90 Вт/(м2К) ?н2=110 Вт/(м2К) при Tст, и;

Л1=90?0.065?0.96=5,62 Вт/(м2К);

Л2=94?0.058?0.91=5,81 Вт/(м2К);

10. Подсчитываем суммарный коэффициент теплоотдачи от продуктов сгорания к поверхности нагрева, Вт/(м2-К),

? = ??(?к + ?л),

где? - коэффициент использования, учитывающий уменьшение тепловосприятия поверхности нагрева вследствие неравномерного смывания ее продуктами сгорания, частичного протекания продуктов сгорания мимо нее и образования застойных зон; для поперечно омываемых пучков принимается? = 1.

1=1?(88.2+5.62)=93.82Вт/(м2-К);

2=1?(91.8+5.81)=97.61Вт/(м2-К);

11. Вычисляем коэффициент теплопередачи, Вт/(м2-К)

где? - коэффициент тепловой эффективности, (табл. 6.1 и 6.2 лит 1 в зависимости от вида сжигаемого топлива).

К1=0.85*93.82 Вт/(м2-К);

К2=0.85*97.61 Вт/(м2-К);

12. Определяем количество теплоты, воспринятое поверхностью нагрева, на 1 м3 газа (кДж/м3)

Qт=K?H??t/(Bр?1000)

Температурный напор?t определяется для испарительной конвективной поверхности нагрева (°С)

T1==226°С; ?t2==595°С;

где tкип - температура насыщения при давлении в паровом котле;

Qт1==8636 кДж/м3;

Qт2==23654 кДж/м3;

13. По принятым двум значениям температуры и и полученным двум значениям Q6 и Qт производится графическая интерполяция для определения температуры продуктов сгорания после поверхности нагрева. Для этого строится зависимость Q = f(), показанная на рис. 3. Точка пересечения прямых укажет температуру продуктов сгорания, которую следовало бы принять при расчете. ===310°С;


Рис3.

Таблица №7 Тепловой расчет котельных пучков

Рассчитываемая величина

Обозначение

Размерность

Формула и обоснование

Поверхность нагрева

Рассчитана по чертежу

Живое сечение для прохода газов

Рассчитана по чертежу

Поперечный шаг труб

Рассчитана по чертежу

Продольный шаг труб

Рассчитана по чертежу

По I-t диаграмме

Энтальпия прод. сгор на выходе с КП

По I-t диаграмме

Энтальпия прод. сгор на входе в КП



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png