Опубликовано: 15.11.2009 | |

При эксплуатации маломощных теплогенераторов, очень большое значение имеет такой фактор, как правильно спроектированный и корректно смонтированный дымоход. Естественно возникает необходимость расчета. Как и всякий теплотехнический расчет, расчет дымоходов бывает конструкционный и поверочный.

Первый из них представляет собой последовательность вложенных итераций (т.е. в начале расчета мы задаем некоторые параметры, такие как высота и материал дымохода, скорость дымовых газов и т.д., а потом путем последовательных приближений уточняем эти значения).

Однако на практике гораздо чаще приходится сталкиваться с необходимостью поверочного расчета дымохода, так как обычно котел подключается к уже существующей системе дымоудаления. В этом случае у нас уже есть высота дымовой трубы, материал и площадь сечения дымохода и т.д.

Стоит задача проверки совместимости параметров дымового канала и теплогенератора.

То есть необходимым условием корректной работы дымохода является превышение cамотяги над потерями напора в дымоходе на величину минимально допустимого разряжения в дымоотводящем патрубке теплогенератора. Величина естественной тяги зависит от многих факторов

  • Формы поперечного сечения дымохода (прямоугольная, круглая и т.д.)
  • Температуры дымовых газов на выходе из теплогенератора
  • Материала дымохода (нержавеющая сталь, кирпич и т.д.)
  • Шероховатости внутренней поверхности дымохода
  • Неплотностей газохода, при сочленениях элементов (трещины в покрытии и т.п.)
  • Параметров наружного воздуха (температура, влажность)
  • Высоты над уровнем моря
  • Параметров вентиляции помещения, где установлен котел
  • Качества настройки теплогенератора - полноты сгорания топлива (соотношения топливо/воздух).
  • Типа работы горелки (модуляционный или дискретный)
  • Степени загрязненности элементов газовоздушного тракта (котла и дымохода)

Величина самотяги
В первом приближении величину самотяги можно проиллюстрировать на примере рис. 1 .

Где hc - величина самотяги;
Hд - эффективнаявысота дымохода;
в - плотность воздуха;
г - плотность дымовых газов.
Как видно из формулы , основную переменную составляющую образуют плотности дымовых газов и воздуха, которые являются функциями от их температуры.

Для того, чтобы показать насколько сильно величина самотяги зависит от температуры дымовых газов, мы приводим следующий график, иллюстрирующий эту зависимость (см. рис. 2 ).


Однако на практике гораздо чаще встречаются случаи, когда изменяется не только температура дымовых газов, но и температура воздуха. В таб. 1 приведены величины удельной самотяги на один метр высоты дымовой трубы в зависимости от температур продуктов сгорания и воздуха.


Естественно, что таблица дает весьма приблизительный результат и для более точной оценки (во избежание интерполирования значений) необходимо подсчитывать реальные значения плотности продуктов сгорания и окружающего воздуха.
в - плотность воздуха при рабочих условиях:

где tос - температура окружающей среды, °С, принимается для наихудших условий работы оборудования - летнего времени. При отсутствии данных принимается 20 °С;
вну - плотность воздуха при нормальных условиях - 1,2932 кг/м3.
г - плотность дымовых газов при рабочих условиях:

где гну - плотность продуктов сгорания при нормальных условиях, пр= 1,2 для природного газа можно принять - 1,26 кг/м3.

Для удобства обозначим, a=1/273
тогда

где 1 + a x t - температурная составляющая.
Для упрощения операций будем считать плотность дымовых газов равной плотности воздуха и сводим все значения плотности, приведенные к нормальным условиям на промежутке t = -20 +400 °С, в табл. 2 .

Практическое вычисление самотяги
Для вычисления естественной тяги необходимо уточнить среднюю температуру газов в трубе ϑcp. Температура на входе в трубу ϑ1 определяется из паспортных данных оборудования. Температуру продуктов сгорания на выходе из устья дымохода ϑ2 находят с учетом их охлаждения по длине трубы.

Охлаждение газов в трубе на 1 метр её высоты определяется по формуле:

где Q - номинальная тепловая мощность котла, кВт;
В - коэффициент: 0,85 - неизолированная металлическая труба, 0,34 - изолированная металлическая труба, 0,17 - кирпичная труба с толщиной кладки до 0,5 метра.
Температура на выходе из трубы:

где Hд - эффективная высота дымовой трубы в метрах.

Средняя температура продуктов сгорания в дымоходе:

На практике величину самотяги просчитывают для следующих граничных условий:
1. Для температуры наружного воздуха 20 °С (летний режим работы теплогенератора).
2. Если летняя расчетная температура наружного воздуха отличается более чем на 10 °С от 20 °С, то принимается расчетная температура.
3. Если теплогенератор эксплуатируется только в зимний период, то расчет ведется по средней температуре за отопительный период.

Для примера возьмем установку со следующими параметрами (рис. 3) :

  • мощность 28 кВт;
  • температура дымовых газов 125 °С;
  • высота дымовой трубы 8 м;
  • дымовая труба выполнена из кирпича.


Охлаждение газов в трубе на 1 метр её высоты по :

Температура дымовых газов на выходе из трубы по :
ϑ2 = 125 — 8 x 1,016 = 117, °С.
Средняя температура продуктов сгорания в дымоходе по :
ϑср = (125 + 117)/2 = 121, °С.
Величину самотяги вычисляем по :
hc = 8(1,2049 — 0,8982) = 2,4536, мм вод.ст.

Вычисление оптимальной площади поперечного сечения дымового канала

1. Первый вариант определения диаметра дымохода
Диаметр трубы принимается либо по паспортным данным (по диаметру выходного патрубка из котла) в случае монтажа отдельной дымовой трубы к каждому котлу, либо по формуле при объединении нескольких котлов в общий дымоход (суммарная мощность до 755 кВт).

Для цилиндрических труб определяется диаметр:

r - коэффициент, зависящий от вида используемого топлива. Газ: r = 0,016, жидкое топливо: r = 0,024, уголь: r = 0,030, дрова: r = 0,045.

2. Второй вариант определения диаметра дымохода (с учетом скорости продуктов сгорания)
Согласно Norma UNI-CTI 9615, площадь поперечного сечения дымохода можно вычислить по формуле:

где mг
д - массовый расход продуктов сгорания, кг/час.
Для примера рассмотрим следующий случай:

  • Высота дымовой трубы 7 м;
  • Массовый расход продуктов сгорания 81 кг/час;
  • Плотность продуктов сгорания (при ϑср =120 °С) г = 0,8982 кг/м3;
  • Скорость продуктов сгорания (в первом приближении) wг = 1,4 м/с.

По определяем ориентировочную площадь сечения дымового канала:
F = (0,225 кг/c)/(1,4 м/c x 0,8982) = 0,0178 м2 = 179 см2.

Отсюда вычисляем диаметр дымового канала и подбираем ближайший стандартный дымоход: 150 мм.

По новому значению диаметра дымовой трубы определяем площадь дымового канала и уточняем скорость дымовых газов.

wг = (0,225 кг/c)/(0,8982 кг/м3 x 0,01327 м2) = 1,89 м/c.
После этого проверяем, чтобы скорость дымовых газов укладывалась в диапазон 1,5-2,5 м/с.

При слишком высокой скорости дымовых газов увеличивается гидравлическое сопротивление дымохода, а при слишком низкой - активно образуется конденсат водяных паров.

Для примера просчитаем также скорость дымовых газов при нескольких ближайших типоразмерах дымохода:
Ø 110 mm: wг = 2,64 м/с.
Ø 130 mm: wг = 1,89 м/с.
Ø 150 mm: wг = 1,42 м/с.
Ø 180 mm: wг = 0,98 м/с.
Результаты представлены на рис. 4 . Как видим, из полученных значений скоростным условиям удовлетворяют два типоразмера: Ø 130 mm и Ø 150 mm. В принципе, мы можем остановиться на любом из этих значений, однако Ø 150 mm предпочтительней, так как потери напора в этом случае будут меньше.

Для удобства подбора типоразмера дымохода можно использовать диаграмму рис. 5 .
Для примера:

  • Расход продуктов сгорания 468 м3/час; диаметр газохода Ø 300 мм - скорость продуктов сгорания wг = 1,9 м/с
  • Расход продуктов сгорания 90 м3/час; диаметр газохода Ø 150 мм - скорость продуктов сгорания wг = 1,4 м/с

Потери напора в дымоходе
Сумма сопротивлений трубы:

Сопротивление трения:

Потери в местных сопротивлениях:

= 1,0; 0,9; 0,2-1,4 - коэффициенты местного сопротивления с выходной скоростью (на выходе из трубы), на входе в дымовую трубу и в поворотах - отводах и тройниках (коэффициент выбирают в зависимости от их конфигураций), соответственно.

- коэффициент сопротивления трения:
для кирпичных труб = 0,05;
для стальных труб = 0,02.
g - ускорение свободного падения, равное 9,81 м/с2.
d - диаметр дымовой трубы, м.
wг - скорость продуктов сгорания в трубе:

Vдг - действительный объём продуктов сгорания:

BT - расход топлива с учетом теплотворной способности данного топлива:

- КПД установки из паспортных данных на оборудование (0,9-0,95);
Qнр - низшая теплотворная способность (в зависимости от состава топлива), для газа - 8000 ккал/м3;
Voг - теоретический объем продуктов сгорания, для природного газа можно принять 10,9 м3/м3;
Voв - теоретически необходимое количество воздуха, для сжигания 1 м3 природного газа 8,5-10
м3/м3;
- коэффициент избытка воздуха, для природного газа 1,05-1,25.

Проверка тяги производится по формуле:

hбар - барометрическое давление, принимается 750 мм вод.ст.
HП - перепад полных давлений газового тракта, мм вод.ст., без учета сопротивления и самотяги трубы.
1,2 - коэффициент запаса по тяге.
Перепад полных давлений по газовому тракту (общий вид формулы):

где hT’’ - разряжение на выходе из топки, необходимое для предотвращения выбивания газов, обычно принимается 2-5 мм вод.ст.
В данном случае для проверки тяги перепад полных давлений берется без учета суммарного сопротивления h и самотяги трубы hc.
Таким образом:
HП = hT’’ = 2-5 мм вод.ст.
Для наглядности изобразим процессы, происходящие в дымовом канале на напорной диаграмме (рис. 6 ).

По горизонтальной оси отложим перепады давления и потери напора, а по горизонтальной высоту дымохода.

Тогда отрезок DB будет обозначать величину cамотяги, а линия DA - перепад давлений по высоте дымовой трубы.

С другой стороны от оси АВ откладываем потери напора в дымоходе. Графически потери давления по длине дымохода будет символизировать отрезок АС .

Производим зеркальную проекцию отрезка ВС и получаем точку С’ . Область, затушеванная зеленым цве- том, символизирует разряжение в дымовом канале.

Очевидно, что величина естественной тяги уменьшается по высоте дымохода, а потери напора возрастают от устья к основанию дымовой трубы.

Пример корректного монтажа дымохода и выдержки из ДБН.В.2.5-20-2001 «Газоснабжение»

При проектировании и монтаже дымоходов обязательно необходимо соблюдать следующие пункты отечественных норм и правил:

ДБН В.2.5-20-2001 Приложение Ж «Отвод продуктов сгорания».

Ж.З. Отвод продуктов сгорания от бытовых газовых приборов, печей и другого бытового газового оборудования, в конструкции которых предусмотрен отвод продуктов сгорания в дымоход, следует предусматривать от каждого прибора, агрегата или печи по обособленному дымоходу.
В существующих зданиях допускается предусматривать присоединение к одному дымоходу не более двух водонагревателей или отопительных печей, расположенных на одном или разных этажах здания, при условии ввода продуктов сгорания в дымоход на разных уровнях, не ближе 0,5 м один от другого, или на одном уровне с устройством в дымоходе рассечки на высоту не менее 0,5 м.

Ж.6. Площадь сечения дымохода не должна быть меньше площади сечения патрубка газового прибора, присоединяемого к дымоходу. При присоединении к дымоходу двух приборов, печей и т.п. сечение дымохода следует определять с учетом одновременной их работы. Конструктивные размеры дымоходов должны определяться расчетом.

Ж.7 . Дымоходы следует выполнять из морозостойкого кирпича (Мрз 125), глиняного кирпича, жаростойкого бетона для многоэтажных зданий и асбесто-цементных труб для одноэтажных зданий. Допускается отвод продуктов сгорания предусматривать по стальным дымовым трубам. Конструкции дымовых каналов также могут быть заводского изготовления, поставляемые в комплекте с газовым оборудованием. При установке асбестоцементных и стальных труб вне здания или при прохождении их через чердак здания они должны быть теплоизолированные для предотвращения образования конденсата. Конструкция дымовых каналов в наружных стенах и приставных к этим стенам каналов также должна обеспечивать температуру газов на выходе из них выше точки росы. Запрещается выполнять каналы из шлакобетонных и других неплотных или пористых материалов.

Ж.9 . Присоединение газового оборудования к дымоходам следует предусматривать соединительными трубами, изготовленными из кровельной или оцинкованной стали толщиной не менее 1,0 мм, гибкими металлическими гофрированными патрубками или унифицированными элементами, поставляемыми в комплекте с оборудованием. Соединительная дымоотводящая труба, соединяющая газовый прибор с дымоходом, должна иметь вертикальный участок. Длина вертикального участка соединительной трубы, считая от низа дымоотводящего патрубка газового прибора до оси горизонтального участка трубы, должна быть не менее 0,5 м. В помещениях высотой до 2,7 м для приборов со стабилизаторами тяги допускается уменьшение длины вертикального участка до 0,25 м, без стабилизаторов тяги до 0,15 м. Суммарная длина горизонтальных участков соединительных труб в новых домах должна быть не более 3 м, в существующих домах - не более 6 м. Уклон трубы должен быть не менее 0,01 в сторону газового прибора. На дымоотводящих трубах допускается предусматривать не более трех поворотов с радиусом закругления не менее диаметра трубы. Ниже места присоединения дымоотводящей трубы от прибора к дымоходу должно быть предусмотрено устройство «кармана» сечением не менее сечения дымохода и глубиной не менее 25 см, имеющий люк для очистки. Дымоотводящие трубы, прокладываемые через неотапливаемые помещения, при необходимости должны быть покрыты изоляцией. Прокладка дымоотводящих труб от приборов и печей через жилые комнаты не допускается

Ж.10 . Расстояние от соединительной трубы до потолка или стены из несгораемых материалов принимается не менее 5 см, а из сгораемых и трудносгораемых материалов - не менее 25 см.

Ж.15. Дымовые трубы от газовых приборов в зданиях должны быть выведены:
- выше границы зоны ветрового подпора, но не менее 0,5 м выше конька крыши при расположении их (считая по горизонтали) не далее 1,5 м от конька крыши;
- в уровень с коньком крыши, если они отстоят на расстоянии до 3 м от конька крыши;
- не ниже прямой, проведенной от конька вниз под углом 10° к горизонту, при расположении труб на расстоянии более 3 м от конька крыши. Зоной ветрового подпора дымовой трубы считается пространство ниже линии, проведенной под углом 45° к горизонту от наиболее высоких точек вблизи расположенных сооружений и деревьев. Во всех случаях высота трубы над прилегающей частью крыши должна быть не менее 0,5 м, а для домов с совмещенной кровлей (плоской крышей) - не менее 2,0 м. Установка на дымоходах зонтов и других насадок не допускается.

Ж.20 . Длина горизонтального участка дымового канала от отопительного оборудования с герметичной камерой сгорания при выходе через наружную стену принимается не более 3 м.

Заключение
Как показывает многолетний опыт эксплуатации теплогенераторов с открытой камерой сгорания, накопленный в нашей организации, от правильно спроектированного и корректно смонтированного дымохода в большой мере зависит надежная и стабильная работа теплогенерирующей установки (см. рис. 7).

Поэтому необходимо уделять данному вопросу самое пристальное внимание уже на стадии проектирования системы теплоснабжения, а также проводить поверочные расчеты при ремонте, модернизации и замене теплогенераторов. Надеемся, данный материал поможет широким кругам читателей разобраться с этим немаловажным вопросом.

Определим площадь устья. Для того чтобы не было задувания, скорость в устье принимаем W ус = 3,0 м/с.

F ус = V 1 /W ус = 6,27/3 = 2,09 м 2 .

Тогда диаметр устья D ус = (4*F ус /π) 0,5 = (4*2,09/3,14) 0,5 = 1,63 м.

Диаметр основания D осн = 1,5* D ус = 1,5*1,63 = 2,45 м.

Скорость движения дымовых газов в основании:

W осн = 4* V 1 / (π* D осн 2) = 4*6,27/(3,14*2,45 2) = 1,33 м/с.

Действительное разряжение, создаваемое трубой должно быть на 20-40% больше потерь напора при движении дымовых газов по дымовому тракту. Примем h днйст = 1,3*∑ ΔР = 1,3*185701 = 241411 Па.

Для определения температуры дымовых газов в устье трубы, принимаем H тр = 40м. Падение температур для кирпичной трубы принимаем 1,5º на 1м высоты: .

Температура в основании принята Т осн = t осн + 273 = 573 К.

Тогда температура в устье трубы Т ус = Т осн – ΔТ = 573 – 60 = 513 К.

Найдем средний диаметр трубы D ср:

D ср = (D ус + D осн)/2 = (1,63 + 2,45)/2 = 2,04 м.

Средняя площадь сечения:

F ср = π* D ср 2 /4 = 3,14*2,04 2 /4 = 3,27 м 2 .

Средняя скорость движения дымовых газов

W ср = V 1 / F ср = 6,27/3,27 = 1,91 м/с.

Примем λ дг для кирпичной трубы 0,05.

Средняя температура дымовых газов в трубе:

T ср = (Т осн + Т ус)/2 = (573 + 513)/2 = 543 К.

Высота дымовой трубы находится по формуле:

Н тр = Ч/З.

Ч = h днйст + ρ дг *(W ус 2 - W осн 2)/2* T ср / Т о + ρ дг * W ус 2 /2* Т ус / Т о,

где ρ дг – плотность дымового газа при нормальных условиях, кг/м 3 .

Тогда числитель дроби:

Ч = h днйст + ρ дг *(W ус 2 - W осн 2)/2* T ср / Т о + ρ дг * W ус 2 /2* Т ус / Т о = 241411 + 1,295*(3 2 – 1,33 2)/2*543/273 + 1,295*3 2 /2*513/273 = 241431

З = (ρ в * Т о / Т в - ρ дг * Т о / Т ср)*g - λ дг / D ср * ρ дг * W ср 2 /2* Т ср / Т о,

где ρ в – плотность воздуха при нормальных условиях, кг/м 3 ;

Т в – температура окружающей среды, К.

Тогда знаменатель дроби:

З = (ρ в * Т о / Т в - ρ дг * Т о / Т ср)*g - λ дг / D ср * ρ дг * W ср 2 /2* Т ср / Т о = (1,29*273/283 – 1,295*273/543)*9,81 – 0,05/2,04*1,295*1,91 2 /2*543/273 = 5,7055.

Тогда высота дымовой трубы: Н тр = Ч/З = 241431/5,7055 = 42315 м.

Принимаем трубу 40 метров из следующих соображений:

    Основная высота застройки около 30 м, а дымовые газы должны рассеиваться с высоты выше уровня застройки.

    Строительство трубы более 40 м экономически нецелесообразно, поэтому рекомендуется установить дымосос у основания трубы, который будет компенсировать разряжение.

Определим потери напора, которые должен компенсировать дымосос. Для этого в приложении Excel воспользуемся процедурой Сервис/Подбор параметра. Результат расчета показал, что при Н тр = 40 м компенсируются потери напора ΔР = 207,96 Па, тогда оставшиеся потери напора 241411 – 207, 96 = 241203,04 Па должны быть скомпенсированы за счёт тяги дымососа.

Заключение

Для нагрева 23 т/ч толуола с 10ºС до 110ºС требуется кожухотрубный теплообменник с диаметром кожуха D = 400 мм, числом труб n=111, длинной труб l = 2 м, площадью теплопередачи F = 16 мс запасом поверхности 0,57. Кроме рабочего устанавливается также запасной теплообменник того же типа.

Для нагрева потребуется 1,39 м/c газа, состава, приведенного в условии.

Для подачи толуола из хранилища необходимо установить центробежный насос типа 3К – 9 с производительностью V 2 = 40 м/ч, напором Н = 35 м, мощностьюN = 7 кВт, диаметром рабочего колеса D рк = 148 мм и КПД = 62 %.

Сопротивление действительное дымового тракта составляет 241411 Па. Рекомендуется для удаления дымовых газов установить кирпичную дымовую трубу высотой 40 м, в основании которой установить дымосос для создания разряжения не менее 241203,04 Па.

2008-01-11

При эксплуатации маломощных теплогенераторов очень большое значение имеет такой фактор, как правильно спроектированный и корректно смонтированный дымоход. Естественно возникает необходимость расчета. Как и всякий теплотехнический расчет, расчет дымоходов бывает конструкционный и поверочный. Первый из них представляет собой последовательность вложенных итераций (в начале расчета мы задаем некоторые параметры, такие как высота и материал дымохода, скорость дымовых газов и пр., а затем путем последовательных приближений уточняем эти значения). Однако на практике гораздо чаще приходится сталкиваться с необходимостью поверочного расчета дымохода, поскольку котел обычно подключается к уже существующей системе дымоудаления.






В этом случае у нас уже есть высота дымовой трубы, материал и площадь сечения дымохода и т.д. Стоит задача проверки совместимости параметров дымового канала и теплогенератора, т.е. необходимым условием корректной работы дымохода является превышение cамотяги над потерями напора в дымоходе на величину минимально допустимого разряжения в дымоотводящем патрубке теплогенератора. Величина естественной тяги зависит от многих факторов:

  • формы поперечного сечения дымохода (прямоугольная, круглая и т.д.);
  • температуры дымовых газов на выходе из теплогенератора;
  • материала дымохода (нержавеющая сталь, кирпич и т.д.);
  • шероховатости внутренней поверхности дымохода;
  • неплотностей газохода, при сочленениях элементов (трещины в покрытии и т.п.);
  • параметров наружного воздуха (температура, влажность);
  • высоты над уровнем моря;
  • параметров вентиляции помещения, где установлен котел;
  • качества настройки теплогенератора — полноты сгорания топлива (соотношения топливо/воздух);
  • типа работы горелки (модуляционный или дискретный);
  • степени загрязненности элементов газовоздушного тракта (котла и дымохода).

Величина самотяги

В первом приближении величину самотяги можно проиллюстрировать на примере рис. 1.

h c = H д (ρ в - ρ г), мм вод. ст.,

где h c — величина самотяги; H д — эффективная высота дымохода; ρ в — плотность воздуха; ρ г — плотность дымовых газов. Как видно из формулы, основную переменную составляющую образуют плотности дымовых газов и воздуха, которые являются функциями от их температуры. Для того, чтобы показать насколько сильно величина самотяги зависит от температуры дымовых газов, мы приводим следующий график, иллюстрирующий эту зависимость (рис. 2).

Однако на практике гораздо чаще встречаются случаи, когда изменяется не только температура дымовых газов, но и температура воздуха. В табл. 1 приведены величины удельной самотяги на один метр высоты дымовой трубы в зависимости от температур продуктов сгорания и воздуха. Естественно, что таблица дает весьма приблизительный результат и для более точной оценки (во избежание интерполирования значений) необходимо подсчитывать реальные значения плотности продуктов сгорания и окружающего воздуха. Плотность воздуха ρ в при рабочих условиях:

где t ос — температура окружающей среды, °С, принимается для наихудших условий работы оборудования — летнего времени, при отсутствии данных принимается 20 °С; ρ в.ну — плотность воздуха при нормальных условиях, 1,2932 кг/м 3 ; ρ г — плотность дымовых газов при рабочих условиях:

где ρ г.ну — плотность продуктов сгорания при нормальных условиях, при α= 1,2 для природного газа можно принять — 1,26 кг/м 3 . Для удобства обозначим:

где (1 + αt)— температурная составляющая. Для упрощения операций будем считать плотность дымовых газов равной плотности воздуха и сводим все значения плотности, приведенные к нормальным условиям на промежутке t = -20…+400 °С, в табл. 2.

Практическое вычисление самотяги

Для вычисления естественной тяги необходимо уточнить среднюю температуру газов в трубе (символ) cp . Температура на входе в трубу (символ) 1 определяется из паспортных данных оборудования. Температуру продуктов сгорания на выходе из устья дымохода (символ) 2 находят с учетом их охлаждения по длине трубы.

Охлаждение газов в трубе на 1 м ее высоты определяется по формуле:

где Q — номинальная тепловая мощность котла, кВт; В — коэффициент: 0,85 — неизолированная металлическая труба, 0,34 — изолированная металлическая труба, 0,17 — кирпичная труба с толщиной кладки до 0,5 м.

Температура на выходе из трубы :

где H д — эффективная высота дымовой трубы в метрах.

Средняя температура продуктов сгорания в дымоходе :

На практике величину самотяги просчитывают для следующих граничных условий:

  1. Для температуры наружного воздуха 20 °С (летний режим работы теплогенератора).
  2. Если летняя расчетная температура наружного воздуха отличается более чем на 10 от 20 °С, то принимается расчетная температура.
  3. Если теплогенератор эксплуатируется только в зимний период, то расчет ведется по средней температуре за отопительный период.

Для примера возьмем установку со следующими параметрами (рис. 3):

  • мощность — 28 кВт;
  • температура дымовых газов — 125 °С;
  • высота дымовой трубы — 8 м;
  • дымовая труба — из кирпича.

Охлаждение газов в трубе на 1 м ее высоты по (3):

Температура дымовых газов на выходе из трубы по (4):

Средняя температура продуктов сгорания в дымоходе по (5):

Тогда величина самотяги будет : h c = 8.(1,2049 - 0,8982)= 2,4536 мм вод. ст.

Вычисление оптимальной площади поперечного сечения дымового канала

1. Первый вариант определения диаметра дымохода Диаметр трубы принимается либо по паспортным данным (по диаметру выходного патрубка из котла) в случае монтажа отдельной дымовой трубы к каждому котлу, либо по формуле при объединении нескольких котлов в общий дымоход (суммарная мощность до 755 кВт):

Для цилиндрических труб определяется диаметр:

где r — коэффициент, зависящий от вида используемого топлива: для газа — r = = 0,016, для жидкого топлива — r = 0,024, для угля — r = 0,030, дрова — r = 0,045.

2. Второй вариант определения диаметра дымохода (с учетом скорости продуктов сгорания)

Согласно Norma UNI-CTI 9615, площадь поперечного сечения дымохода можно вычислить по формуле:

где m г.д — массовый расход продуктов сгорания, кг/ч. Для примера рассмотрим следующий случай:

  • высота дымовой трубы — 7 м;
  • массовый расход продуктов сгорания — 81 кг/ч;
  • r = 0,8982 кг/м 3 ;
  • плотность продуктов сгорания (при (символ) ср =120 °С) ρ г = 0,8982 кг/м 3 ;
  • скорость продуктов сгорания (в первом приближении) w г = 1,4 м/с.

По (8) определяем ориентировочную площадь сечения дымового канала:

Отсюда вычисляем диаметр дымового канала и подбираем ближайший стандартный дымоход: 150 мм. По новому значению диаметра дымовой трубы определяем площадь дымового канала и уточняем скорость дымовых газов:

После этого проверяем, чтобы скорость дымовых газов укладывалась в диапазон 1,5-2,5 м/с. При слишком высокой скорости дымовых газов увеличивается гидравлическое сопротивление дымохода, а при слишком низкой — активно образуется конденсат водяных паров. Для примера просчитаем также скорость дымовых газов при нескольких ближайших типоразмерах дымохода:

  • Ø110 мм: w г = 2,64 м/с.
  • Ø130 мм: w г = 1,89 м/с.
  • Ø150 мм: w г = 1,42 м/с.
  • Ø180 мм: w г = 0,98 м/с.

Результаты представлены на рис. 4. Как видим, из полученных значений скоростным условиям удовлетворяют два типоразмера: Ø 130 мм и Ø 150 мм. В принципе, мы можем остановиться на любом из этих значений, однако Ø 150 мм предпочтительней, т.к. потери напора в этом случае будут меньше.

Для удобства подбора типоразмера дымохода можно использовать диаграмму рис. 5. Для примера: расход продуктов сгорания — 468 м 3 /ч; диаметр газохода Ø 300 мм — скорость продуктов сгорания w г = 1,9 м/с. Расход продуктов сгорания — 90 м3/ч; диаметр газохода Ø 150 мм — скорость продуктов сгорания w г = 1,4 м/с.

Потери напора в дымоходе

Сумма сопротивлений трубы:

Σ∆h тр = ∆h тр + ∆h мс, мм вод. ст. (10)

Сопротивление трения :

Потери в местных сопротивлениях:

где ζ= 1,0; 0,9; 0,2-1,4 — коэффициенты местного сопротивления с выходной скоростью (на выходе из трубы), на входе в дымовую трубу и в поворотах — отводах и тройниках (коэффициент выбирают в зависимости от их конфигураций), соответственно; λ— коэффициент сопротивления трения: 0,05 для кирпичных труб, 0,02 для стальных; g — ускорение свободного падения, 9,81 м/с2; d — диаметр дымовой трубы, м; w г — скорость продуктов сгорания в трубе:

V г.д — действительный объем продуктов сгорания:

BT — расход топлива с учетом теплотворной способности данного топлива:

где η— КПД установки из паспортных данных на оборудование, 0,9-0,95; Q нр — низшая теплотворная способность (в зависимости от состава топлива), для газа — 8000 ккал/м3; V г.о — теоретический объем продуктов сгорания, для природного газа можно принять 10,9 м3/м3; V в.о — теоретически необходимое количество воздуха, для сжигания 1 м3 природного газа 8,5-10 м3/м3; α— коэффициент избытка воздуха, для природного газа 1,05-1,25.

Проверка тяги производится по формуле :

H бар — барометрическое давление, принимаемое 750 мм вод. ст.; ∆Н п — перепад полных давлений газового тракта, мм вод. ст., без учета сопротивления и самотяги трубы; h = 1,2 — коэффициент запаса по тяге. Перепад полных давлений по газовому тракту (общий вид формулы):

∆H п = h т ˝ + ∆h - h c . (17)

где h т ˝ — разряжение на выходе из топки, необходимое для предотвращения выбивания газов, обычно принимается 2-5 мм вод. ст. В данном случае для проверки тяги перепад полных давлений берется без учета суммарного ∆h и самотяги трубы h c сопротивлений, таким образом:

∆H п = h т ˝ = 2-5 мм вод. ст.

Для наглядности изобразим процессы, происходящие в дымовом канале, на напорной диаграмме (рис. 6). По горизонтальной оси отложим перепады давления и потери напора, а по горизонтальной — высоту дымохода. Тогда отрезок DB будет обозначать величину cамотяги, а линия DA — перепад давлений по высоте дымовой трубы. С другой стороны от оси АВ откладываем потери напора в дымоходе. Графически потери давления по длине дымохода будет символизировать отрезок АС.

Производим зеркальную проекцию отрезка ВС и получаем точку С. Область, затушеванная зеленым цветом, символизирует разряжение в дымовом канале. Очевидно, что величина естественной тяги уменьшается по высоте дымохода, а потери напора возрастают от устья к основанию дымовой трубы.

Заключение

Как показывает многолетний опыт эксплуатации теплогенераторов с открытой камерой сгорания, от правильно спроектированного и корректно смонтированного дымохода в большой мере зависит надежная и стабильная работа теплогенерирующей установки (см. рис. 7). Поэтому необходимо уделять этому вопросу самое пристальное внимание уже на стадии проектирования системы теплоснабжения, а также проводить поверочные расчеты при ремонте, модернизации и замене теплогенераторов. Надеемся, статья поможет вам разобраться с этим немаловажным вопросом.

8.10. Расчет дымовой трубы

Расчет дымовой трубы заключается в правильном выборе ее конструкции и подсчете высоты, обеспечивающей допустимую концентрацию вредных веществ в атмосфере.

Рассчитаем минимальную высоту дымовой трубы.

Диаметр устья дымовой трубы D 0 , м, определяется по формуле:

где N – предполагаемое число дымовых труб (принимаем N = 1);

w 0 – скорость дымовых газов в устье дымовой трубы, м/с

(принимаем w 0 = 22 м/с /8/);

V – объемный расход дымовых газов, м 3 /с,

V = V Г *B, (78)

где В – суммарный расход топлива на станцию, кг/с;

V Г – удельный объем дымовых газов, м 3 /кг,

где - удельный объем дымовых газов, соответствующий теоретически необходимому объему воздуха, м 3 /кг,

Объемы продуктов сгорания подсчитываются по формулам:

где d Г – влагосодержание топлива (при температуре топлива 20 0 С

d Г = 19,4 /8/);

Тогда действительный объем газов:

С учетом плотности топлива имеем:

Суммарный расход топлива всеми котлами:

В = В Р *n, (84)

где В Р – расчетный расход топлива на один котел, кг/с;

n – число котлов.

В = 7,99*4 = 31,96 кг/с.

Тогда объемный расход дымовых газов:

V = 19*31,96 = 607,24 м 3 /с.

Диаметр устья дымовой трубы:

Высота дымовой трубы Н, м, определяется по формуле:

, /12/ (85)

где F – поправочный коэффициент, учитывающий содержание примесей в дымовых газах (для газообразных примесей F = 1);

A – коэффициент, зависящий от температурной стратификации атмосферы (для данного региона А= 200);

m и n – коэффициенты, учитывающие условия выхода газовоздушной смеси из трубы;

ПДК – предельно допустимая концентрация какого-либо элемента в атмосфере, мг/м 3 ;

C Ф – фоновая концентрация вредных веществ, обусловленная внешними источниками загазованности, мг/м 3 ;

М – массовый выброс вредных веществ в атмосферу, г/с;

Разность температур уходящих газов и атмосферного воздуха, 0 С.

Разность температур определяется формулой:

Т – температура воздуха самого жаркого месяца в 13 часов дня

150-20 = 130 0 С.

Фоновая концентрация С Ф зависит от промышленной развитости района сооружения станции. Поскольку город Сызрань является крупным промышленным центром, то фоновая концентрация велика: С Ф = 0,025 мг/м 3 .

Поскольку в топливе отсутствует сероводород, будем вести расчет только по выбросам диоксида азота NO 2 . ПДК по содержанию в воздухе этого элемента составляет 0,085 мг/м 3 .

Массовый выброс диоксида азота определяется пол формуле:

где q 4 – потери теплоты от механической неполноты сгорания топлива (при сжигании газообразного топлива q 4 = 0 %);

Поправочный коэффициент, учитывающий влияние на выход оксидов азота качества сжигаемого топлива (для газообразного топлива, при отсутствии содержания в нем N, =0,9);

Коэффициент, учитывающий конструкцию горелок (для вихревых горелок =1);

Коэффициент, учитывающий вид шлакоудаления (= 1);

Коэффициент, характеризующий эффективность воздействия рециркулирующих газов в зависимости от условий подачи их в топку (=0);

r – степень рециркуляции дымовых газов (r = 0 %);

Коэффициент, характеризующий снижение выброса оксидов азота при подаче части воздуха помимо основных горелок (=1).

К – коэффициент, характеризующий выход оксидов азота, кг/т;

где D – паропроизводительность котла, т/ч;

Итак массовый выброс оксида азота:

М NO 2 = 0,034*8,57*0,9*31,96*34,32 = 287,6 г/с.

Для того, чтобы определить коэффициенты m и n, необходимо знать высоту трубы. Поэтому расчет ведется методом последовательных приближений.

Задаемся высотой трубы H = 150 м.

Коэффициент m определяем по формуле:

, (89)

где f – безразмерный параметр, определяемый по формуле:

Коэффициент n зависит от параметра V М, который определяется по формуле.

Тяга – это движение дымовых газов вверх по дымовой трубе дома, из области повышенного давления в область пониженного давления. В дымоходе(в трубе) установленного диаметра, высотой не менее 5м., образуется разрежение, это значит образуется необходимый минимальный перепад давления между нижней частью дымохода и верхней, воздух из нижней части, попадая в трубу, уходит вверх. Это и называют тягой. Тягу можно замерить специальными чувствительными приборами, либо взять пушинку и поднести ее к трубе.

Соответственно, если взять трубу достаточного диаметра, в которой у воздуха есть возможность двигаться, и вытянуть ее высоко вверх, то воздух от земли начнет постоянно вытекать наверх. Это происходит потому что вверху ниже давление, а разрежение больше, и воздух стремится туда естественным образом. А на его место придет воздух с других сторон.

В системе «топка + дымоход» тяга действует даже если печь в частном доме не работает. При горении дров образуется повышенное давление во внутренней топочной камере и образующиеся при горении дымовые газы требуют выхода. Все топки и печи имеют конструкцию, выводящую дымовые газы в дымоход.

Высота каждого дымохода подобрана так, чтобы создалась тяга, создалось изначальное разрежение. При горении в топочной камере, выделяется тепло, газы и возникает избыточное давление. Газы движутся в дымоходе под воздействием тяги, стремятся идти из области повышенного в область пониженного давления. Работают законы созданные природой.

Что же такое «плохая обратная тяга»?

Обратная тяга – это движение дымовых газов из области повышенного давления в область пониженного, но не вверх (как описано ранее), а вниз. Обратная тяга образуется при инверсии давления - когда давление вверху выше, чем внизу.

Причинами становятся самые обыденные вещи: если в частном доме или помещении герметично, стоят стеклопакеты, а вместе с дымоходом работает вытяжка, вытягивающая воздух из помещения. Тут и создается пониженное давление относительно окружающей местности. Поэтому, при растопке, когда дымоход пока еще холодный, у воздуха в верхней части дымохода большее давление, чем в помещении. Дым конечно пойдет туда, куда ему легче. Это явление называют «холодный столб». При остывании дымохода, внутри образуется воздушная масса низкой температуры, которая давит вниз, возникает обратная тяга. Если давление в частном доме, не пониженное, то теплый воздух пойдет вверх, в дымоход.

Таким образом, если в доме нет кухонной вытяжки и он не герметичен, никакого застаивания холодного воздуха в топке не будет.

Проверьте: если зимой перед тем, как затопить камин, сперва поджечь газету и занести ее в трубу (минуя топочную часть), то огонь не пойдет в помещение, какой бы ни был столб холодного воздуха. Огонь будет гореть и выходить только в трубу. Это указывает на то, что давление в помещении не пониженное и теплый воздух нормально стремится вверх.

При растопке печи или камина в частном доме иногда дым идёт в помещение. Связано это с тем, что образующиеся дымовые газы при первоначальной растопке еще не успели нагреться, и, при подъёме вверх соприкасаясь с холодными стенками, сразу охлаждаются. После этого они, естественно, устремятся вниз. Снова возникает обратная тяга в вентиляции дымохода. Чтобы нормализовать тягу в печке, важно растапливать правильно, понимая происходящие там процессы.

Опрокидывание тяги

Еще один возникающий вопрос – это опрокидывание тяги. В каких случаях это происходит?

Если дымоход протяженный и холодный (зачастую кирпичный), а давление сниженное. Если соотношение размеров топки и сечения дымохода соответствуют, если в доме нормальное давление, все равно возникает ситуация, когда при растопке пламени не хватает силы и отходящие дымовые газы успевают охладиться в дымоходе и обрушиваются вниз. Почему нет тяги в дымоходе? Происходит подобное при пасмурной погоде, ветре. Бывает, что огонь нормально разгорается, но потом дым валит внутрь дома. Почему нет тяги в печи? Почему образуется обратная тяга в дымоходе? Воздух из дома забирается, и давление снижается, притока воздуха нет. А дымовые газы поднимаясь охлаждаются и обрушиваются вниз. Что надо знать в таких ситуациях? Приоткройте форточку, если помещение имеет стеклопакеты и герметично. Важна подготовка дров, их качество.


Как правильно собрать дымоход?

Сэндвич дымоходы (сборные), собираются по дыму и по конденсату.

Существует мнение, что собирать по дыму правильнее. Объясняют тем, что на стыках труб остаются щели, куда забиваются выходящие в трубу дымовые газы. В противоположность этому, считается, что если собрать по дыму, то дым перестанет выходить.

Решить такой спор можно, если в действующей печи дома высверлить в любом месте дымохода отверстие и посмотреть, а что же произойдет. Наиболее интересно сделать это в нижней части. Отверстие высверлите любое, хоть сантиметр в диаметре. Что вы увидите? Из этого отверстия никакого дыма выходить не будет (если не закрывать плотно дымоход сверху).


Что же важнее учесть при сборке дымохода?

Главное – учесть то, что в каждом дымоходе дома возможно возникновение конденсата, особенно когда он еще холодный и теплые дымовые газы, поднимаясь сильно охлаждаются. На стенках может оседать конденсат, который стекает по трубе.

Если дымоход собран по дыму, то конденсат легко проникает в щели и увлажняет изоляцию, полностью лишая её теплоизолирующих свойств. Тут и до пожара недалеко. Поэтому сборка модульных дымоходов ведётся только по конденсату. Дымоходы собираются на четкий стык, с герметиком по внутренней трубе. Однако дымоходы сами по себе должны быть качественными, чтобы не оставалось посторонних щелей. Если щели останутся - через них зайдет воздух, и получается, что все равно тяги не будет.


Но дымоход ведь большой, высокий! Не понимая в чем причина, вызывают мастеров. Мастера используют простой метод: накрывают сверху дымоход и смотрят, откуда пойдет дым. Тут обнаруживаются всевозможные нестыковки в дымоходе, которые и приводят к тому, что подсасывается воздух внутрь дымохода. Помните? Воздух стремится вверх, туда, где давление ниже. Поэтому, чем больше щелей, тем хуже тяга внизу. Сборка по дыму, к сожалению, не учитывает саму суть тяги. В результате огонь горит, а дым прёт во все стороны. Хотя логика тут не сложная - дым идет из области повышенного в область пониженного давления, туда, куда ему легче.

В чем измеряется тяга?

Норма тяги для стандартного камина или печи - в среднем 10 Паскаль (Па). Замеряется тяга за дымовым патрубком, так как именно там видны скорость эвакуации дымовых газов и соответствие соотношению размеров топки печи и диаметра дымохода.

Что еще влияет на величину тяги?

В первую очередь, высота дымохода. Минимально необходимая высота – 5 метров. Этого достаточно для возникновения естественного разрежения и начала движения вверх. Чем выше дымоход, тем сильнее тяга. Однако, в кирпичном дымоходе сечением в среднем 140х140мм., при высоте свыше 10-12 метров, тяга уже не возрастает. Это происходит потому, что значение шероховатости стенок растет с увеличением высоты. Поэтому, избыточная высота не влияет на тягу. Подобный вопрос возникает у желающих использовать под дымоходы каналы в домах. Они бывают большой высоты и узкого сечения, поэтому серьёзный камин редко подсоединяют к такому дымоходу.

Факторы влияющие на тягу:

  • Температура отходящих дымовых газов. Чем выше температура, тем скорее устремляются дымовые газы вверх, возникает большая тяга.
  • Прогреваемость дымохода. Чем быстрее прогревается дымоход, тем быстрее нормализуется плохая тяга.
  • Степень шероховатости дымохода, внутренних стенок. Шероховатые стенки тягу снижают, при гладких стенках тяга лучше.
  • Форма сечения дымохода. Круглое сечение – это образец; овальное, прямоугольное и так далее. Чем замысловатее форма, тем это сильнее влияет на тягу, снижая ее.
  • Важно отметить,что влияет и соотношение размеров топки, диаметра выходного патрубка и диаметра дымоходной трубы. При избыточной высоте проектируемого дымохода, следует подумать о том, чтобы уменьшить сечение дымохода в среднем на 10%. На топку, на дымовой патрубок, установить переходник (например с 200-го диаметра на 180-й) и саму трубу брать 180-ую. Это допускается производителями. Если для примера говорить о "EdilKamin " , видно, что он расписывает в инструкциях к топкам, какого диаметра брать дымоход в зависимости от высоты.

Например:

  • высота до 3 м – диаметр 250,
  • высота от 3 м до 5 м – 200,
  • высота от 5 м и выше – 180 или 160. Строгие рекомендации.


Другие производители (как пример, фирма Supra) допускают, что возможны изменения. Некоторые вовсе не допускают. Поэтому руководствуясь инструкциями, не стоит забывать и о происходящих в дымоходе процессах.

Как измеряется тяга?

Вначале затопите печь или камин в доме. Топить не менее получаса, чтобы нормализовались процессы. Затем, проделав отверстие в трубе чуть выше дымового патрубка, вставьте туда специальный датчик депримометра и измерьте тягу. Проверьте, избыточна она или ее не хватает. Факторов, влияющих на тягу, много, рассмотрим еще несколько.

Роза ветров

Ситуация когда господствующие ветра задувают прямо в дымоход и снижают тягу либо разворачивают её. Дымоход ставят с наветренной стороны, конечно если определены направления ветров. Если дымоход расположен далеко от конька и ниже, нельзя использовать подветренную сторону. Многоэтажные дома и деревья тоже влияют на тягу. Для компенсации порывов ветра и неудачного расположения дымохода используют антиветровые дефлекторы. По нормативам дымоход выводится на полметра выше конька. Если расстояние от конька 1,5 м - 3 м, то выводится в один уровень с коньком. Если расстояние свыше 3-х метров, то дальше действуют по формуле: от горизонтали, проведенной от конька, 10 градусов вниз. На практике дымоход делают выше конька, либо в один уровень с коньком. Важно использовать один дымоход для одной печи в доме.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png