Блоки питания с трансформаторами на частоту 50 Гц сегодня практически сдали свои позиции импульсным с высокой рабочей частотой, которые при той же выходной мощности имеют, как правило, меньшие габариты и массу, более высокий КПД. Основные сдерживающие факторы для самостоятельного изготовления импульсных блоков питания радиолюбителями - трудности с расчётом, изготовлением или приобретением готового импульсного трансформатора или ферритового магнитопровода для него. Но если для сборки маломощного импульсного блока питания использовать готовый трансформатор от компьютерного блока питания формфактора ATX, задача значительно упрощается.

Блок питания с обратной связью может отказаться от обычного регулятора, который контролирует резку. Десять ватт можно получить с помощью автоколебательного источника питания, управляемого от простого стабилитрона. Часть «опасного напряжения» источника питания подключается непосредственно к сети.

Классическая операция представлена ​​в этой статье. Трансформатор имеет 3 обмотки. Для рассуждения, мы можем подавить его, поэтому у нас есть несколько упрощенная диаграмма, которая поможет понять. Первичный скрещен его намагничивающим током. Полярность точки отрицательна по отношению к другому концу обмотки, так как точка первичной части находится на самом низком потенциале схемы. Регулирование импульсного источника питания.

У меня оказался в наличии неисправный компьютерный блок питания IW-ISP300J2-0 (ATX12V300WP4). В нём был заклинен вентилятор, пробит маломощный диод Шотки, а более половины всех установленных оксидных конденсаторов вздуты и потеряли ёмкость. Однако дежурное напряжение на выходе +5VSB было. Поэтому было принято решение, используя импульсный трансформатор источника дежурного напряжения и некоторые другие детали, изготовить другой импульсный источник питания с выходным напряжением 5 В при токе нагрузки до 2,5 А.

Поэтому регулирование происходит на вспомогательной обмотке, а не на выходе. Выходное напряжение импульсного источника питания. Частота переключения зависит от нагрузки. Выбор компонентов блока питания. Трансформатор должен иметь возможность передавать необходимую мощность. Преимущество этого источника питания.

130В - 240В - без переключающего регулятора - очень низкая стоимость. Импульсный источник питания для аудиоусилителей может быть реализован очень просто, всего за десять евро и без специального компонента! Целью является замена большого трансформатора и громоздких и дорогостоящих фильтрующих конденсаторов. Мощность может достигать 500 Вт для усилителя мощности. Технические характеристики для переключения источника питания для усилителей.

В блоке питания ATX узлы источника дежурного напряжения легко обособить. Он даёт напряжение 5 В и рассчитан на максимальный ток нагрузки 2 А и более. Правда, в старых блоках питания этого типа он может быть рассчитан на ток всего 0,5 А. При отсутствии на этикетке блока пояснительной надписи можно ориентироваться на то, что трансформатор источника дежурного напряжения с максимальным током нагрузки 0,5 А значительно меньше трансформатора источника на 2 А.

Фактически, выходное напряжение может быть выбрано в соответствии с потребностями, как мы увидим. Ниже приведена схема переключающего источника питания. Схема импульсного источника питания для усилителя мощностью 500 Вт. Детальная работа импульсного источника питания.

Многие компоненты можно выбирать достаточно свободно, в зависимости от того, что у вас есть, и желаемой мощности для усилителя. Входной каскад импульсного источника питания. Ничего дурака: плавкий предохранитель и диодный мост 5А. Фильтрующие конденсаторы и переключающие силовые реле.

Схема самодельного импульсного блока питания с выходным напряжением 5...5,25 В при максимальном токе нагрузки 2,5 А изображена на рис. 1. Его генераторная часть построена на транзисторах VT1, VT2 и импульсном трансформаторе T1 по образу и подобию имевшейся в компьютерном блоке, из которого был извлечён трансформатор.

Рис. 1. Схема самодельного импульсного блока питания

Общий ток составляет около 11 мА. Осциллятор для переключения источника питания. Осциллятор основан только на операционном усилителе! Он должен иметь минимум 470 нФ. Частота прерывания должна составлять от 25 до 50 кГц. Значения 100 кОм для 4 резисторов в основном были выбраны для простоты и не критичны. Потребление зависит от потребления холостого хода операционного усилителя, частоты и напряжения питания.

Для этого измерения генератор питается от изолированного стабилизированного источника питания. Для этого теста подавление напряжения 27 В подавляется. Консо уменьшается на 2 мА, если питание 230 В отключено. Контроль транзисторных транзисторных транзисторов.

Вторичные узлы исходного блока питания (после выпрямителя напряжения +5 В) было решено не повторять, а собрать по традиционной схеме с интегральным параллельным стабилизатором напряжения в качестве узла сравнения выходного напряжения с образцовым. Входной сетевой фильтр собран из имеющихся деталей с учётом свободного места для их монтажа.

Это ключевой момент реализации! Трудно найти конкретные импульсные трансформаторы для переключения источника питания. Это обычная индуктивность, которая заменяет импульсный трансформатор: все трюки есть. Индуктивность общего режима, используемая в качестве импульсного трансформатора.

Как и напряжения источника затвора 2 транзисторы должны находиться в фазовой оппозиции, полярность индуктора общего режима должна быть абсолютно соблюдена! Пример индуктивности в обычном режиме. Преимущество этого компонента легко найти. Он также может восстанавливаться после переключения фильтров питания.

Переменное напряжение сети 230 В через плавкую вставку FU1 и замкнутые контакты выключателя SA1 поступает на RLC фильтр R1C1L1L2C2, который не только защищает блок от помех из питающей сети, но и не даёт создаваемым самим импульсным блоком помехам проникнуть в сеть. Резистор R1 и дроссели L1, L2, кроме того, уменьшают бросок потребляемого тока при включении блока. После фильтра напряжение сети поступает на мостовой диодный выпрямитель VD1-VD4. Конденсатор C9 сглаживает пульсации выпрямленного напряжения.

Импульсные транзисторы. Два транзистора работают в фазовой оппозиции, как и в любом полумостовом узле. Горячее место: дорожки должны быть как можно короче. Это зависит от того, сколько энергии вы хотите получить. Измеренные пиковые токи. Фактически он находится на среднем токе, на котором он основан, но он должен брать маржу.

Первичный соединительный конденсатор. Действительно, среднее напряжение на первичной обмотке равно нулю, как клеммы любого индуктора. Только один из двух терминалов первичного находится в горячей точке. Трансформатор для импульсного источника питания.

На высоковольтном полевом транзисторе VT2 собран генераторный узел преобразователя напряжения. Резисторы R2-R4 предназначены для запуска генератора. Суммарная мощность этих резисторов увеличена, поскольку печатная плата блока питания, из которого они извлечены, под ними заметно потемнела в результате перегрева. По той же причине демпфирующий резистор R8 установлен большей мощности, а в качестве VD6 применён более мощный, чем в прототипе, диод.

Выходное напряжение может быть выбрано в соответствии с потребностью усилителя. Вы должны выбрать правильную точку или «взять» вторичное напряжение. Выберите количество оборотов, необходимое для желаемого напряжения. Интерес заключается в использовании трансформатора, предусмотренного для этого приложения.

Для усилителя мощностью 500 Вт фактическая средняя потребляемая мощность намного ниже. Вторичные и импульсные выходы. Напряжение прямо выпрямляется простым чередованием, как это можно сделать на обычном 50-метровом трансформаторе. Индуктивность утечки трансформатора замедляет нарастание тока по краям напряжения, но на самом деле выпрямление работает хорошо, несмотря на простоту монтажа.

Стабилитрон VD5 защищает полевой транзистор VT2 от превышения допустимого напряжения между затвором и истоком. На биполярном транзисторе VT1 собран узел защиты от перегрузки и стабилизации выходного напряжения. При увеличении тока истока транзистора VT2 до 0,6 А падение напряжения на резисторе R5 достигнет 0,6 В. Транзистор VT1 откроется. В результате напряжение между затвором и истоком полевого транзистора VT2 уменьшится. Это предотвратит дальнейшее увеличение тока в канале сток- исток полевого транзистора. По сравнению с прототипом сопротивление резистора R5 уменьшено с 1,3 до 1,03 Ом, резистора R6 увеличено с 20 до 68 Ом, ёмкость конденсатора C13 увеличена с 10 до 22 мкФ.

Необходимо выбрать сверхбыстрые диоды 10А и минимум 200 В для желаемого усилителя мощностью 500 Вт. Модель 15А идеальна. Пиковые токи 50А могут циркулировать! Диоды должны быть установлены на небольшом радиаторе на расстоянии нескольких см друг от друга. Никогда не используйте стандартные выпрямительные диоды!

Интересно разместить несколько конденсаторов меньшей емкости параллельно, а не один большой. Эквивалентное сопротивление серии ниже, а пульсация также уменьшается. Для надежности он избегает использования более 80% напряжения: например, модель 50 В не должна превышать 40 В на своих терминалах.

Напряжение с обмотки II трансформатора T1 поступает на выпрямительный диод Шотки VD8, размах напряжения на выводах которого около 26 В. Пульсации выпрямленного напряжения сглаживает конденсатор C15. Если по тем или иным причинам выходное напряжение блока питания стремится увеличиться, растёт напряжение на управляющем входе параллельного стабилизатора напряжения DA1. Ток, текущий через излучающий диод оптрона U1, увеличивается, его фототранзистор открывается. Открывшийся в результате транзистор VT1 уменьшает напряжение между затвором и истоком полевого транзистора VT2, что возвращает выходное напряжение выпрямителя к номинальному значению. Цепь из резистора R16 и конденсатора C16 предотвращает самовозбуждение стабилизатора.

Выходные напряжения и текущий ток. Значение выходного напряжения устанавливается числом оборотов на вторичном. Это именно то, что делает усилитель мощности звука, поэтому импульсный источник питания хорошо подходит для усилителей. Если мы этого не сделаем, только один из двух транзисторов будет смещен, и рабочий цикл немного отклонится от значения 50%. Однако среднее напряжение на трансформаторе обязательно равно нулю. Измените значения максимумов и минимумов напряжения. Эта операция не рекомендуется из-за увеличения напряжения на конденсаторах незапрашиваемого выхода.

Изготовленный источник питания оснащён стрелочным измерителем тока нагрузки PA1, что значительно повышает удобство пользования им, поскольку позволяет быстро оценить ток, потребляемый нагрузкой. Шунтом для микроамперметра PA1 служит омическое сопротивление обмотки дросселя L4. Светодиоды HL1 и HL2 подсвечивают шкалу микроамперметра.

Опция: вспомогательное напряжение для усилителя. Если вы хотите добавить вспомогательное напряжение для питания вентилятора или любой другой схемы, просто добавьте диод и конденсатор. Мощность не должна превышать 10 Вт. Чтобы иметь такое же напряжение, но отрицательное, измените направление диода и конденсатора.

Вспомогательное напряжение импульсного источника питания. Профессиональные усилители с импульсным источником питания. Все больше моделей крупных брендов используют импульсные источники питания для питания своих усилителей. Эти усилители легче, компактнее, чем обычные тороидальные аналоги.

На выходные разъёмы XP2 и XS1 напряжение поступает через фильтр L5C19. Стабилитрон VD9 с диодом VD10 предотвращают чрезмерное повышение выходного напряжения при неисправности цепей его стабилизации.

Рабочая частота преобразователя - около 60 кГц. При токе нагрузки 2,3 А размах пульсаций выпрямленного напряжения на конденсаторе C15 - около 100 мВ, на конденсаторе C18 - около 40 мВ и на выходе блока питания - около 24 мВ. Это очень неплохие показатели.

КПД блока питания при токе нагрузки 2,5 А - 71 %, 2 А - 80 %, 1 А - 74 %, 0,2 А - 38 %. Ток короткого замыкания выхода - около 5 А, потребляемая от сети мощность при этом - около 7 Вт. Без нагрузки блок потребляет от сети около 1 Вт. Измерения потребляемой мощности и КПД проводились при питании блока постоянным напряжением, равным амплитуде сетевого.

При длительной работе с максимальным током нагрузки температура внутри его корпуса достигала 40 о С при температуре окружающего воздуха 24 о С. Это значительно меньше, чем у многочисленных малогабаритных импульсных источников питания, входящих в комплекты различных бытовых электронных приборов. При токе нагрузки, равном половине заявленного максимального значения, они перегреваются на 35...55 о С.

Большинство деталей описываемого блока питания установлены на плате размерами 75x75 мм. Монтаж - двухсторонний навесной. В качестве корпуса применена пластмассовая распределительная коробка размерами 85x85x42 мм для наружной электропроводки. Блок в открытом корпусе показан на рис. 2, а его внешний вид - на рис. 3.


Рис. 2. Блок в открытом корпусе

Рис. 3. Внешний вид блока

При изготовлении блока следует обратить особое внимание на фазировку обмоток трансформатора T1, начало и конец ни одной из них не должны быть перепутаны. Применённый трансформатор 3PMT10053000 (от упомянутого выше компьютерного блока питания) имеет также предназначенную для выпрямителя напряжения -12 В обмотку, которая в данном случае не использована. Взамен него можно применить почти любой подобный трансформатор. Для ориентировки при подборе трансформатора привожу значения индуктивности обмоток использованного: I - 2,4 мГн, II - 17 мкГн, III - 55 мкГн.

В качестве PA1 применён микроамперметр M68501 (индикатор уровня от отечественного магнитофона). Учтите, что микроамперметры этого типа различных лет выпуска имеют очень большой разброс сопротивления измерительного механизма. Если установить нужный предел измерения подборкой резистора R13 не удаётся, нужно включить последовательно с дросселем L4 проволочный резистор небольшого сопротивления (ориентировочно 0,1 Ом).

При градуировке микроамперметра неожиданно выяснилось, что он очень чувствителен к статическому электричеству. Поднесённая пластмассовая линейка могла отклонить стрелку прибора до середины шкалы, где она могла остаться и после того, как линейка была убрана. Устранить это явление удалось удалением имевшейся плёночной шкалы. Вместо неё была приклеена липкая алюминиевая фольга, которой были оклеены и свободные участки корпуса. Экран из фольги следует соединить проводом с любым выводом микроамперметра. Можно попробовать обработать корпус микроамперметра антистатическим средством.

Напечатанную на принтере бумажную шкалу приклеивают на место удалённой. Образец шкалы изображён на рис. 4. Как видите, у этого микроамперметра она заметно нелинейна.

Рис. 4. Образец шкалы

Резистор R1 - импортный невозгораемый. Вместо такого резистора можно установить проволочный мощностью 1...2 Вт. Отечественные металлоплёночные и углеродные резисторы в качестве R1 не подходят. Остальные резисторы общего применения (С1-14, С2-14, С2-33, С1-4, МЛТ, РПМ). Резистор R19 для поверхностного монтажа припаян непосредственно к выводам розетки XS1.

Оксидные конденсаторы - импортные аналоги К50-68. Использование конденсаторов C15, C18, C19 с номинальным напряжением 10 В вместо часто применяемых в импульсных блоках питания оксидных конденсаторов на напряжение 6,3 В значительно повышает надёжность устройства. Плёночный конденсатор C2 ёмкостью 0,033...0,1 мкФ предназначен для работы на переменном напряжении 275 В. Остальные конденсаторы - импортные керамические. Конденсаторы C14, C17 припаяны между выводами соответствующих оксидных конденсаторов. Конденсатор C20 установлен внутри штекера ХР2.

Мощная сборка диодов Шотки S30D40C взята из неисправного компьютерного блока питания. В рассматриваемом устройстве она может работать без теплоотвода. Заменить её можно на MBR3045PT, MBR4045PT, MBR3045WT. MBR4045WT При максимальном токе нагрузки корпус этой сборки нагревается до 60 о С - это самый горячий элемент в устройстве. Вместо диодной сборки можно применить два обычных диода в корпусе DO-201AD, например, MBR350, SR360, 1N5822, соединив их параллельно. К ним со стороны выводов катодов нужно прикрепить дополнительный медный теплоотвод, показанный на рис. 5.

Рис. 5. Дополнительный медный теплоотвод

Вместо диодов 1N4005 подойдут 1 N4006, 1 N4007, UF4007, 1N4937, FR107, КД247Г, КД209Б. Диод FR157 можно заменить на FR207, FM207, FR307, PR3007. Один из перечисленных диодов подойдёт и вместо КД226Б. Заменой диода FR103 может служить любой из UF4003, UF4004, 1N4935GP RG2D, EGP20C, КД247Б. Вместо стабилитрона BZV55C18 подойдут 1N4746A, TZMC-18.

Светодиоды HL1, HL2 - белого цвета свечения из узла подсветки ЖКИ сотового телефонного аппарата. Их приклеивают к микроамперметру цианакрилатным клеем. Транзистор KSP2222 можно заменить любым из PN2222, 2N2222, KN2222, SS9013, SS9014, 2SC815, BC547 или серии КТ645 с учётом различий в назначении выводов.

Полевой транзистор SSS2N60B извлечён из неисправного блока питания и установлен на ребристый алюминиевый теплоотвод с площадью охлаждающей поверхности 20 см 2 , причём все выводы транзистора должны быть электрически изолированы от теплоотвода, при работе блока питания с максимальным током нагрузки этот транзистор нагревается всего до 40 о С. Вместо транзистора SSS2N60B можно применить SSS7N60B, SSS6N60A, SSP10N60B, P5NK60ZF, IRFBIC40, FQPF10N60C.

Оптрон EL817 можно заменить другим четырёхвыводным (SFH617A-2, LTV817, PC817, PS817S, PS2501-1, PC814, PC120, PC123). Вместо микросхемы LM431ACZ подойдёт любая функционально аналогичная в корпусе ТО-92 (TL431, AZ431, AN1431T).

Все дроссели - промышленного изготовления, причём магнитопроводы дросселей L1, L2, L4 - H-образные ферритовые. Сопротивление обмотки дросселя L4 - 0,042 Ом. Чем крупнее этот дроссель по размеру, тем меньше будет нагреваться его обмотка, тем точнее будет измерять ток нагрузки микроамперметр PA1. Дроссель L5 намотан на кольцевом магнитопроводе, чем меньше сопротивление его обмотки и чем больше её индуктивность, тем лучше. Дроссель L3 - надетая на вывод общего катода диодной сборки VD8 ферритовая трубка длиной 5 мм.

Штекер XP2 соединён с конденсатором C19 сдвоенным многожильным проводом 2x2,5 мм 2 длиной 120 см. Розетка XS1 USB-AF закреплена в отверстии корпуса устройства клеем.

Первое включение изготовленного устройства в сеть переменного тока производят без нагрузки через лампу накаливания мощностью 40...60 Вт на 235 В, установленную вместо плавкой вставки FU1. Предварительные испытания под нагрузкой выполняют, заменив FU1 лампой накаливания мощностью 250...300 Вт. Нити ламп накаливания при нормальной работе блока питания не должны светиться. Безошибочно изготовленное из исправных деталей устройство начинает работать сразу.

При необходимости подборкой резистора R13 можно установить показания амперметра. Подбирая резистор R14, устанавливают выходное напряжение блока питания равным 5...5,25 В. Повышенное напряжение компенсирует его падение на проводах, соединяющих блок с нагрузкой.

Изготовленный источник питания можно эксплуатировать совместно с доработанным USB-концентратором , к которому можно будет подключить до четырёх внешних жёстких дисков типоразмера 2,5 дюйма, работающих одновременно. Мощности будет достаточно и для питания, например, таких устройств, как .

Литература

1. Бутов А. Доработка USB-концентратора. - Радио, 2013, № 11, с. 12.

2. БутовА. Преобразователь напряжения 5/9 В для питания радиоприёмников. - Радио, 2013, № 12, с. 24, 25.

В статье описан несложный и недорогой сетевой блок питания с выходным напряжением 5 В и током нагрузки до 4 А.

Источник питания представляет собой однотактный обратноходовый преобразователь напряжения с самовозбуждением. Отличительная особенность предлагаемого устройства - отсутствие специализированных микросхем, простота и дешевизна в изготовлении.

Основные технические характеристики

Схема устройства показана на рисунке 1. Источник питания содержит сетевой выпрямитель VD1-VD4, по-мехоподавляющий фильтр L1C1-СЗ, преобразователь на коммутирующем транзисторе VT1 и импульсном трансформаторе Т1, выходной выпрямитель VD8 с фильтром C9C10L2 и узел стабилизации, выполненный на стабилизаторе DA1 и оптроне U1.


Рис.1. Принципиальная схема устройства

Устройство работает следующим образом. После включения источника питания приоткрывается коммутирующий транзистор VT1 и по первичной обмотке импульсного трансформатора Т1 начинает протекать ток. В обмотке обратной связи II трансформатора наводится ЭДС, которая по цепи положительной обратной связи - резистор R9, диод VD5, конденсатор С5 поступает на затвор полевого транзистора VT1. В результате чего развивается лавинообразный процесс, приводящий к полному открыванию коммутирующего транзистора. Начинается накопление энергии в трансформаторе Т1. Ток через коммутирующий транзистор VT1 линейно нарастает, а напряжение с датчика тока- резистора R10 через диод VD6 и конденсатор С7 воздействует на базу фототранзистора оптрона U1.1, приоткрывая его, из-за чего уменьшается напряжение на затворе полевого транзистора. Начинается обратный процесс, приводящий к закрыванию коммутирующего транзистора VT1. В этот момент открывается диод VD8 и энергия, накопленная в трансформаторе Т1, передается в конденсатор выходного фильтра С9.

Когда выходное напряжение по какой-либо причине превысит номинальное значение, стабилизатор DA1 откроется и через него и последовательно включенный излучающий диод оптрона U1.2 начинает протекать ток. Излучение диода приводит к более раннему открыванию транзистора оптрона, в результате чего время открытого состояния коммутирующего транзистора уменьшается, энергии в трансформаторе запасается меньше, а следовательно, выходное напряжение уменьшается.

Если же выходное напряжение понижается, ток через излучающий диод оптрона уменьшается, а транзистор оптрона закрывается. В результате время открытого состояния коммутирующего транзистора увеличивается, энергии в трансформаторе запасается больше и выходное напряжение восстанавливается.

Резистор R3 необходим для уменьшения влияния темнового тока транзистора оптрона и улучшения термостабильности всего устройства. Конденсатор С7 повышает устойчивость работы источника питания. Цепь C6R8 форсирует процессы переключения транзистора VT1 и увеличивает КПД устройства.

По приведенной схеме были изготовлены несколько десятков источников питания с выходной мощностью 15...25 Вт.

На месте коммутирующего транзистора VT1 можно использовать как полевые, так и биполярные транзисторы, например, серий 2Т828, 2Т839, КТ872, КП707, BUZ90 и т. д. Транзисторный оптрон 4N35 заменим любым из серий АОТ110, АОТ126, АОТ128, а стабилизатор КР142ЕН19А - TL431. Однако лучшие результаты получились с импортными элементами (BUZ90, 4N35, TL431).

Все резисторы в источнике питания - для поверхностного монтажа типоразмера 1206 мощностью 0,25 Вт, конденсаторы С1 -СЗ, С8 - К10-47в на напряжение 500 В, С5-С7 - для поверхностного монтажа типоразмера 0805, остальные - любые оксидные.

Трансформатор Т1 наматывают на двух, сложенных вместе, кольцевых магнитопроводах К19x11x6,7 из пермаллоя МП 140. Первичная обмотка содержит 180 витков провода ПЭВ-2 0,35, обмотка II - 8 витков провода ПЭВ-2 0,2, обмотка III на выходное напряжение 5В - 7 витков из пяти проводников ПЭВ-2 0,56. Порядок намотки соответствует их нумерации, причем витки каждой обмотки необходимо равномерно распределить по всему периметру магнитопровода.

Дроссели L1 и L2 выполнены на кольцевых магнитопроводах К15x7x6,7 из пермаллоя МП140. Первый содержит две обмотки по 30 витков в каждой, намотанных проводом ПЭВ-2 0,2 на разных половинах магнитопровода, второй наматывают проводом ПЭВ-2 0,8 в один слой по всей длине магнитопровода сколько уместится.

Чтобы уменьшить пульсации выходного напряжения, общую точку конденсаторов С2 и СЗ сначала следует соединить с минусовым выводом конденсатора С10, а затем с остальными деталями - обмоткой III трансформатора Т1, минусовым выводом конденсатора С9, резистором R12 и выводом 2 стабилизатора DA1.

Устройство собрано на печатной плате размерами 80x60 мм. На одной стороне платы расположены печатные проводники и элементы для поверхностного монтажа, а также коммутирующий транзистор VT1 и диод VD8, которые прижаты к алюминиевой пластине-теплоотводу таких же размеров, а на другой - все остальные.

Первое включение прибора лучше производить от источника питания с ограничением тока, например, Б5-50, причем подавать следует сразу рабочее напряжение, а не повышать его постепенно. Налаживание устройства заключается в подстройке выходного напряжения делителем R11R12 и, если необходимо, установке датчиком тока R10 порога ограничения выходной мощности (начала резкого падения выходного напряжения при увеличении тока нагрузки).

Для получения другого выходного напряжения нужно пропорционально изменить число витков обмотки III трансформатора Т1 и коэффициент деления делителя R11R12.

При эксплуатации устройства следует помнить, что его минусовый вывод гальванически связан с сетью.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Линейный регулятор КР142ЕН19А 1 Поиск в LCSC В блокнот
VT1 Транзистор КП707В1 1 Поиск в LCSC В блокнот
VD1-VD4, VD7 Диод

КД258Г

5 Поиск в LCSC В блокнот
VD5, VD7 Диод КД629АС9 2 Поиск в LCSC В блокнот
VD8 Диод КД238ВС 1 Поиск в LCSC В блокнот
U1 Оптопара

4N35M

1 Поиск в LCSC В блокнот
С1-С3, С7 Конденсатор 3300 пФ 4 Поиск в LCSC В блокнот
С4 10 мкФ 400 В 1 Поиск в LCSC В блокнот
С5, С8 Конденсатор 0.022 мкФ 2 Поиск в LCSC В блокнот
С6 Конденсатор 680 пФ 1 Поиск в LCSC В блокнот
С9 Электролитический конденсатор 1000 мкФ 16 В 1 Поиск в LCSC В блокнот
С10 Электролитический конденсатор 100 мкФ 16 В 1 Поиск в LCSC В блокнот
R1, R2, R4-R7 Резистор

180 кОм

6 Поиск в LCSC В блокнот
R3 Резистор

100 кОм

1 Поиск в LCSC В блокнот
R8 Резистор

82 Ом

1 Поиск в LCSC В блокнот
R9 Резистор

3.6 кОм

1


Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png