Транзистор

Транзистор - полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Типы транзисторов

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

    Коллектор (англ. collector) - подаётся высокое напряжение, которым транзистор управляет

  • База (англ. base) - подаётся или отключается ток для открытия или закрытия транзистора
  • Эмиттер (англ. emitter) - «выпускной» вывод транзистоа. Через него вытекает ток от коллектора и базы.

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как h fe (в английской литературе называется gain ).

Например, если h fe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор-> эмиттер . Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Весёлые картинки:


NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP . Отличаются они чередованием слоёв. N (от negative — отрицательный) - это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) - слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P :

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП - это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле , транзистор и получил своё название - поле вой.

Полевые транзисторы имеют как минимум 3 вывода:

    Сток (англ. drain) - на него подаётся высокое напряжение, которым хочется управлять

    Затвор (англ. gate) - на него подаётся напряжение для управления транзистором

    Исток (англ. source) - через него проходит ток со стока, когда транзистор «открыт»

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.


Подключение транзистора

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер - транзистор - земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino - 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (h fe ).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

Пожалуй, сегодня сложно представить себе современный мир без транзисторов, практически в любой электронике, начиная от радиоприёмников и телевизоров, заканчивая автомобилями, телефонами и компьютерами, так или иначе, они используются.

Различают два вида транзисторов: биполярные и полевые . Биполярные транзисторы управляются током, а не напряжением. Бывают мощные и маломощные, высокочастотные и низкочастотные, p-n-p и n-p-n структуры... Транзисторы выпускаются в разных корпусах и бывают разных размеров, начиная от чип SMD (на самом деле есть намного меньше чем чип) которые предназначены для поверхностного монтажа, заканчивая очень мощными транзисторами. По рассеиваемой мощности различают маломощные до 100 мВт, средней мощности от 0,1 до 1 Вт и мощные транзисторы больше 1 Вт.


Когда говорят о транзисторах, то обычно имеют в виду биполярные транзисторы. Биполярные транзисторы изготавливаются из кремния или германия. Биполярными они названы потому, что их работа основана на использовании в качестве носителей заряда как электронов, так и дырок. Транзисторы на схемах обозначаются следующим образом:

Одну из крайних областей транзисторной структуры называют эмиттером. Промежуточную область называют базой, а другую крайнюю - коллектором. Эти три электрода образуют два p-n перехода: между базой и коллектором - коллекторный, а между базой и эмиттером - эмиттерный. Как и обычный выключатель, транзистор может находиться в двух состояниях - во "включенном" и "выключенном". Но это не значит, что они имеют движущиеся или механические части, переключаются они из выключенного состояния во включенное и обратно с помощью электрических сигналов.

Транзисторы предназначены для усиления, преобразования и генерирования электрических колебаний. Работу транзистора можно представить на примере водопроводной системы. Представьте смеситель в ванной, один электрод транзистора - это труба до краника (смесителя), другой (второй) – труба после краника, там где у нас вытекает вода, а третий управляющий электрод – это как раз краник, которым мы будем включать воду.
Транзистор можно представить как два последовательно соединенных диода, в случае NPN аноды соединяются вместе, а в случае PNP – соединяются катоды.

Различают транзисторы типов PNP и NPN, PNP транзисторы открываются напряжением отрицательной полярности, NPN - положительной. В NPN транзисторах основные носители заряда - электроны, а в PNP - дырки, которые менее мобильны, соответственно NPN транзисторы быстрее переключаются.


Uкэ = напряжение коллектор-эмиттер
Uбэ = напряжение база-эмиттер
Ic = ток коллектора
Iб = ток базы

В зависимости от того, в каких состояниях находятся переходы транзистора, различают режимы его работы. Поскольку в транзисторе имеется два перехода (эмиттерный и коллекторный), и каждый из них может находиться в двух состояниях: 1) открытом 2) закрытом. Различают четыре режима работы транзистора. Основным режимом является активный режим, при котором коллекторный переход находится в закрытом состоянии, а эмиттерный – в открытом. Транзисторы, работающие в активном режиме, используются в усилительных схемах. Помимо активного, выделяют инверсный режим, при котором эмиттерный переход закрыт, а коллекторный - открыт, режим насыщения, при котором оба перехода открыты, и режим отсечки, при котором оба перехода закрыты.

При работе транзистора с сигналами высокой частоты время протекания основных процессов (время перемещения носителей от эмиттера к коллектору) становится соизмеримым с периодом изменения входного сигнала. В результате способность транзистора усиливать электрические сигналы с ростом частоты ухудшается.

Некоторые параметры биполярных транзисторов

Постоянное/импульсное напряжение коллектор – эмиттер.
Постоянное напряжение коллектор – база.
Постоянное напряжение эмиттер – база.
Предельная частота коэффициента передачи тока базы
Постоянный/импульсный ток коллектора.
Коэффициент передачи по току
Максимально допустимый ток
Входное сопротивление
Рассеиваемая мощность.
Температура p-n перехода.
Температура окружающей среды и пр…

Граничное напряжение Uкэо гр. является максимально допустимым напряжение между коллектором и эмиттером, при разомкнутой цепи базы и токе коллектора. Напряжение на коллекторе, меньше Uкэо гр. свойственны импульсным режимам работы транзистора при токах базы, отличных от нуля и соответствующих им токах базы (для n-p-n транзисторы ток базы >0, а для p-n-p наоборот, Iб<0).

К биполярным транзисторам могут быть отнесены однопереходные транзисторы, таковым является например КТ117. Такой транзистор представляет собой трехэлектродный полупроводниковый прибор с одним р-n переходом. Однопереходный транзистор состоит из двух баз и эмиттера.

В последнее время в схемах часто стали применять составные транзисторы, называют их парой или транзисторами Дарлингтона, они обладают очень высоким коэффициентом передачи тока, состоят они из двух или более биполярных транзисторов, но выпускаются и готовые транзисторы в одном корпусе, таким является например TIP140. Включаются они с общим коллектором, если соединить два транзистора, то они будут работать как один, включение показано на рисунке ниже. Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора.

Некоторые недостатки составного транзистора: низкое быстродействие, особенно перехода из открытого состояния в закрытое. Прямое падение напряжения на переходе база-эмиттер почти в два раза больше чем в обычном транзисторе. Ну и само собой, потребуется больше места на плате.

Проверка биполярных транзисторов

Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Проверка транзистора обычно осуществляется омметром, проверяют оба p-n перехода транзистора: коллектор – база и эмиттер – база. Для проверки прямого сопротивления переходов p-n-p транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра. При проверке n-p-n транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. Транзисторы так же можно прозванивать цифровым мультиметром в режиме прозвонки диодов. Для NPN красный щуп прибора "+" присоединяем к базе транзистора, и поочередно прикасаемся черным щупом "-" к коллектору и эмиттеру. Прибор должен показывать некоторое сопротивление, примерно от 600 до 1200. Затем меняем полярность подключения щупов, в этом случае прибор ничего не должен показывать. Для структуры PNP порядок проверки будет обратным.

Несколько слов хочу сказать про MOSFET транзисторы (metal–oxide–semiconductor field-effect transistor), (Метал Оксид Полупроводник (МОП)) – это полевые транзисторы, не путать с обычными полевиками! У полевых транзисторов три вывода: G - затвор, D - сток, S – исток. Различают N канальный и Р, в обозначении данных транзисторов имеется диод Шоттки, он пропускает ток от истока к стоку, и ограничивает напряжение сток – исток.


Применяются они в основном для коммутации больших токов, управляются они не током, как биполярные транзисторы, а напряжением, и как правило, имеет очень малое сопротивление открытого канала, сопротивление канала величина постоянная и не зависит от тока. MOSFET транзисторы специально разработаны для ключевых схем, можно сказать как замена реле, но в некоторых случаях можно и усиливать, применяются в мощных усилителях НЧ.

Плюсы у данных транзисторов следующие:
Минимальная мощность управления и большой коэффициент усиления по току
Лучшие характеристики, например большая скорость переключения.
Устойчивость к большим импульсам напряжения.
Схемы, где применяются такие транзисторы, обычно более простые.

Минусы:
Стоят дороже, чем биполярные транзисторы.
Боятся статического электричества.
Наиболее часто для коммутации силовых цепей применяют MOSFET с N-каналом. Напряжение управления должно превышать порог 4 В, вообще, необходимо 10-12 В для надежного включения MOSFET. Напряжение управления - это напряжение, приложенное между затвором и истоком для включения MOSFET транзистора.

Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.

Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым, например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.

Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.

Биполярный транзистор - полупроводниковый элемент с двумя p-n переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают p-n-p и n-p-n типа. На рис.7.1, а и б показаны их условные обозначения.

Рис.7.1. Биполярные транзисторы и их диодные эквивалентные схемы: а) p-n-p, б) n-p-n транзистор

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p- или n- слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер - база смещен в прямом направлении (открыт), а переход база - коллектор - в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис.7.2.

Рис.7.2. Полярность включения: а) n-p-n, б) p-n-p транзистора

Транзисторы n-p-n типа подчиняются следующим правилам (для транзисторов p-n-p типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

1. Коллектор имеет более положительный потенциал, чем эмиттер.

2. Цепи база-эмиттер и база-коллектор работают как диоды (рис.7.1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 - 0,8 В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением: UБ ≈ UЭ+0,6В; (UБ = UЭ + UБЭ).

3. Каждый транзистор характеризуется максимальными значениями IК, IБ, UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуры, UБЭ и др.

4. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы. Соотношение токов коллектора и эмиттера приблизительно равно

IК = αIЭ, где α=0,95…0,99 - коэффициент передачи тока эмиттера. Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 7.2, а) представляет собой базовый ток IБ = IЭ - IК. Ток коллектора зависит от тока базы в соответствии с выражением: IК = βIБ, где β=α/(1-α) - коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора. Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим - на эмиттерный переход подано прямое напряжение, а на коллекторный - обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим - к коллекторному переходу подведено прямое напряжение, а к эмиттерному - обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения - оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки - к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

Статьях про транзисторы мы касались такого понятия, как "усиление сигнала". Так как многие из вас не читали или подзабыли что значит это словосочетание, давайте припомним.

Усилить сигнал - это значит создать его копию, которая будет либо больше, чем этот сигнал, либо мощнее.

Давайте рассмотрим на примере человека. Как же его усилить? Здесь я вижу два варианта:

Увеличить человека в размерах

Либо усилить его с помощью экзоскелета:



Тут уже даже и ежу понятно, что мощности каждого из этих персонажей хватит для того, чтобы размотать целую роту вояк в рукопашном бою. В первом случае их проще будет давить либо пяточкой, а если попадется воспитанный великан с хорошими манерами - то пальчиками:-). Во втором случае, с экзоскелетом - хуком справа и слева.

Значит, для того, чтобы сделать сигнал мощнее, мы должны либо увеличить его амплитуду, либо увеличить его...Хм... Зачем наш Тони Старк сделал себе костюм? Чтобы он защищал его тело, то есть чтобы оказывать сопротивление ударам, пулям и тд. Какая-бы пулька или удар не влетали в него, он бы стоял колом (разумеется в разумных пределах) То есть его экзоскелет защищает его от разного рода сопротивления .

Получается, для нашего сигнала какое бы сопротивление он не встретил на своем пути, он будет таким же "бодрым и энергичным", каким был и до встречи с нагрузкой. Если Тони Старк брал энергию из своей фиговины на груди, то сигнал должен брать энергию от какого-либо мощного источника;-) Сравнение, конечно, так себе, но думаю, суть вы уловили.

Увеличивая амплитуду сигнала, мы меняем его напряжение , а делая сигнал "неуязвимым", мы добавляем ему силу. Силу тока . Поэтому, увеличивая или напряжение, или силу тока, либо сразу два этих параметра, мы сделаем сигнал мощнее .

Для тех, кто позабыл:

P=IxU

где

P - это мощность, измеряется в Ваттах

I - сила тока, в Амперах

U - напряжение, в Вольтах

ну и значок "х " - это знак умножения (мало ли)

В своих электронных разработках вы должны точно решить для себя, что именно собираетесь делать с сигналом:

- увеличить его амплитуду напряжения, при этом силу тока оставить неизменной

- оставить амплитуду напряжение такой же, но прибавить мощности с помощью силы тока

- увеличить и напряжение и силу тока

В основном применяют усиление сразу по обоим параметрам. Поэтому в электронике чаще всего используется схема с ОЭ (Общим Эмиттером), которая увеличивает сигнал и по силе тока, и по напряжению одновременно.

Для транзистора PNP проводимости подключение транзистора с ОЭ выглядит так:

А для NPN транзистора вот так:

Но вы также должны иметь ввиду, что в электронике нам не просто надо усилить сигнал, а усилить его правильно, чтобы он не потерял свой первозданный вид. Мощная копия сигнала должна пропорционально усиливаться по амплитуде. По времени мы не должны ее трогать, иначе изменится частота сигнала. Но тогда это уже будет совсем другой сигнал.

На рисунке ниже мы можем увидеть входной слабенький сигнал, а на выходе усиленный сигнал после транзисторного каскада.



Как мы видим, сигнал по амплитуде изменился линейно и пропорционально, но период сигнала не изменился. То есть T1=T2 . Это пример идеального усилителя.

Итак, как же это все реализовать?

Усилители в электронике в большинстве случаев усиливают именно напряжение. То есть на вход загоняем какой-либо маленький сигнал напряжения, а на выходе мы должны уже получить точную копию сигнала, но бОльшего напряжения. Но как это сделать с практической точки зрения?

А почему бы нам не использовать делитель напряжения , у которого один резистор будет постоянным, а другой - переменным:



Что будет, если мы на переменном резисторе будем менять сопротивление? Правильно! Будем меняться напряжение на выходе U . А теперь представьте, что мы не ручками меняли бы сопротивление, а за нас это бы делало напряжение? Чем больше меняем напряжение, тем больше меняется сопротивление. То есть сопротивление переменного резистора менялось бы прямо пропорционально напряжению. Было бы круто, так ведь?

Помните, как в одной из статей мы сравнивали транзистор с краником? Открываем чуток - напор воды слабый, открываем больше - сильнее. Открываем полностью - вода бежит полным потоком



В биполярном транзисторе происходят похожие процессы. Меняя значение напряжения на базе, а следовательно силу тока в цепи база-эмиттер, мы тем самым меняем сопротивление между коллектором и эмиттером;-) Следовательно, наша схема из такого вида:



примет вот такой вид



Выглядеть должно все приблизительно так, но не совсем так... и далее вы поймете почему.

Итак, для того, чтобы все это показать нам понадобится:

На осциллограмме, снятой с желтой точки, мы видим только шумы.

Ладно, ставлю амплитуду в 2 Вольта:



Ничего не изменилось...

И только тогда, когда уже амплитуда стала больше, чем 2 Вольта, на желтой осциллограмме появился уже какой-то периодический сигнал



С увеличением амплитуды его импульсы просто стали шире.





Итак, теперь обо все по порядку:

Первый косяк этой схемы в том, что мы не учли напряжение для открытия транзистора. Оно, как вы помните, составляет 0,6-0,7 Вольт.

Второй косяк. Для того, чтобы транзистор усиливал, мы его должны вогнать в активный режим. Это промежуточный режим между режимом насыщения и режимом отсечки транзистора.

Режим отсечки - это когда транзистор полностью закрытый, то есть нет напряжения смещения на базе-эмиттере 0,6-0,7. Вольт. В этом случае у нас сопротивление между коллектором и эмиттером очень большое.

Режим насыщения - это когда транзистор полностью открытый. В этом режиме смещение на базе-эмиттере более, чем 0,6-0,7 Вольт и сопротивление между коллектором и эмиттером равняется почти нулю.

В режиме отсечки и насыщения работает транзисторный ключ .

В активном режиме напряжение смещения более, чем 0,6-0,7 Вольт, но у нас сопротивление между коллектором и эмиттером не равняется ни нулю, ни бесконечности. В этом режиме мы можем регулировать сопротивление с помощью силы тока, проходящего между базой и эмиттером. А чтобы регулировать эту силу тока, мы можем подавать большее или меньшее напряжение на базу.

Если все объяснить заумной фразой получается так: небольшое изменение силы тока в цепи базы-эмиттер приводит к пропорциональному изменению силы тока в цепи коллектор-эмиттер . Коэффициент, показывающий, во сколько раз увеличивается сила тока коллектор-эмиттер от силы тока базы-эмиттер называется коэффициентом усиления по току в схеме с ОЭ. Этот коэффициент часто называют h 21э или просто β.

Думаю, большинство из вас сидело за рулем авто. Может быть, вы когда-нибудь даже пользовались педалькой газа)



Допустим, мы поставили первую скорость и решили проехаться по трассе. Топим педальку в пол и едем на всей первой скорости, не переключая коробку скоростей. По аналогии с транзистором - это и есть режим насыщения.

Вообще убираем ногу от педальки - машина встает колом. Это режим отсечки (о понятии отсечки в самом авто мы с вами сейчас не говорим). В этом режиме мы вообще не касаемся педальки.

Ну а в активном режиме мы нажимаем педальку с такой силой, которая нам нужна;-) В этом режиме мы сами регулируем скорость. Хотим - едем быстрее, а хотим медленнее;-) То есть мы управляем автомобилем между режимами отсечки и насыщения.

Именно в этом режиме работает транзистор в режиме усиления сигналов.

Честно говоря, усилитель на биполярном транзисторе - тот еще геморрой.

Во-первых, он управляется силой тока, а не напряжением.

Во-вторых, мы должны обязательно предусмотреть напряжение смещения.

В-третьих, схема каскада усилителя на биполярном транзисторе получается довольно таки громоздкая

В-четвертых, даже тогда, когда мы не подаем сигнал на такой транзисторный каскад, то схема все равно жрет ток.

Как тогда должны выглядеть схема, чтобы мы могли из слабого сигнала получать усиленную копию?



Придется учесть все замечания и построить каскад с нуля, что мы и сделаем в следующей статье...

Обозначение биполярных транзисторов на схемах

Биполя́рный транзи́стор - трёхэлектродный полупроводниковый прибор , один из типов транзисторов . В полупроводниковой структуре сформированы 2 p-n перехода и перенос заряда в приборе осуществляется носителями 2 видов - электронами и дырками . Именно поэтому прибор получил название «биполярный».

Применяется в электронных устройствах для усиления генерации электрических колебаний и в качестве переключающего ток элемента, например, в логических электронных схемах .

Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости . По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative ) - электронный тип примесной проводимости, p (positive ) - дырочный).

Работа биполярного транзистора, в отличие от полевого транзистора , основана на переносе зарядов одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» - «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к среднему слою, называют базой , электроды, подключённые ко внешним слоям, называют эмиттером и коллектором . С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы. Но практически, при изготовлении транзисторов, для улучшения электрических параметров прибора они существенно различаются степенью легирования примесями. Эмиттерный слой сильно легированный, коллекторный легируется слабо, что обеспечивает повышение допустимого коллекторного напряжения. Величина пробойного обратного напряжения эмиттерного перехода некритична, так как обычно в электронных схемах транзисторы работают с прямосмещенным эмиттерным p-n-переходом , кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Кроме того, площадь коллекторного p-n-перехода при изготовлении делается существенно больше площади эмиттерного перехода, что обеспечивает лучший сбор неосновных носителей из базового слоя и улучшает коэффициент передачи.

Для повышения быстродействия (частотных параметров) биполярного транзистора толщину базового слоя нужно делать тоньше, так как толщиной базового слоя, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей, но, при снижении толщины базы, снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

Устройство и принцип действия

В первых транзисторах в качестве полупроводникового материала использовался металлический германий . В настоящее (2015 г.) время их изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия . Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ -усилителей .

Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых слоёв: эмиттера E (Э), базы B (Б) и коллектора C (К). В зависимости от чередования типа проводимости этих слоёв различают n-p-n (эмиттер − n -полупроводник, база − p -полупроводник, коллектор − n -полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты .

Слой базы расположен между эмиттерным и коллекторным слоями и слаболегирован, поэтому имеет большое электрическое сопротивление . Общая площадь контакта база-эмиттер выполняется значительно меньше площади контакта коллектор-база (это делается по двум причинам - большая площадь перехода коллектор-база увеличивает вероятность захвата неосновных носителей заряда из базы в коллектор и, так как в рабочем режиме переход коллектор-база обычно включен с обратным смещением, при работе в коллекторном переходе выделяется основная доля тепла, рассеиваемого прибором, повышение площади способствует лучшему отводу тепла от коллекторного перехода), поэтому реальный биполярный транзистор общего применения является несимметричным устройством (технически нецелесообразно менять местами эмиттер и коллектор и получить в результате аналогичный исходному биполярный транзистор - инверсное включение).

В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).

Для определённости рассмотрим работу n-p-n транзистора, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители заряда в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико . Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны), и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (I э =I б + I к ).

Коэффициент α, связывающий ток эмиттера и ток коллектора (I к = α I э ) называется коэффициентом передачи тока эмиттера . Численное значение коэффициента α 0,9-0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малым током базы можно управлять значительно бо́льшим током коллектора.

Режимы работы биполярного транзистора

Напряжения
на эмиттере,
базе,
коллекторе
()
Смещение
перехода
база-эмиттер
для типа n-p-n
Смещение
перехода
база-коллектор
для типа n-p-n
Режим
для типа n-p-n
прямое обратное нормальный
активный режим
прямое прямое режим насыщения
обратное обратное режим отсечки
обратное прямое инверсный
активный режим
Напряжения
на эмиттере,
базе,
коллекторе
()
Смещение
перехода
база-эмиттер
для типа p-n-p
Смещение
перехода
база-коллектор
для типа p-n-p
Режим
для типа p-n-p
обратное прямое инверсный
активный режим
обратное обратное режим отсечки
прямое прямое режим насыщения
прямое обратное нормальный
активный режим

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база - в обратном (закрыт):

U ЭБ > 0; U КБ < 0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид U ЭБ <0; U КБ > 0.

Инверсный активный режим

Эмиттерный переход имеет обратное смещение, а коллекторный переход - прямое: U КБ > 0; U ЭБ < 0 (для транзистора n-p-n типа).

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n -переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э. нас) и коллектора (I К. нас).

Напряжение насыщения коллектор-эмиттер (U КЭ. нас) - это падение напряжения на открытом транзисторе (смысловой аналог R СИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (U БЭ. нас) - это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме оба p-n перехода смещены в обратном направлении. Режиму отсечки соответствует условие U ЭБ <0, U КБ <0.

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором , а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Схемы включения

Любая схема включения транзистора характеризуется двумя основными показателями:

  • Коэффициент усиления по току I вых /I вх.
  • Входное сопротивление R вх = U вх /I вх.

Схема включения с общей базой


Схема включения с общей базой.

Усилитель с общей базой.

  • Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
  • I вых /I вх = I к /I э = α [α<1].
  • Входное сопротивление R вх = U вх /I вх = U эб /I э.

Входное сопротивление (входной импеданс) усилительного каскада с общей базой мало, зависит от тока эмиттера, при увеличении тока - снижается и не превышает единиц - сотен Ом для маломощных каскадов, так как входная цепь каскада при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства

  • Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера .
  • Высокое допустимое коллекторное напряжение.
Недостатки схемы с общей базой
  • Малое усиление по току, равное α, так как α всегда немного менее 1
  • Малое входное сопротивление

Схема включения с общим эмиттером


Схема включения с общим эмиттером.
I вых = I к
I вх = I б
U вх = U бэ
U вых = U кэ.

  • Коэффициент усиления по току: I вых /I вх = I к /I б = I к /(I э -I к) = α/(1-α) = β [β>>1].
  • Входное сопротивление: R вх = U вх /I вх = U бэ /I б.
Достоинства
  • Большой коэффициент усиления по току.
  • Большой коэффициент усиления по напряжению.
  • Наибольшее усиление мощности.
  • Можно обойтись одним источником питания.
  • Выходное переменное напряжение инвертируется относительно входного.
Недостатки
  • Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера .

Схема с общим коллектором


Схема включения с общим коллектором.
I вых = I э
I вх = I б
U вх = U бк
U вых = U кэ.

  • Коэффициент усиления по току: I вых /I вх = I э /I б = I э /(I э -I к) = 1/(1-α) = β [β>>1].
  • Входное сопротивление: R вх = U вх /I вх = (U бэ + U кэ)/I б.
Достоинства
  • Большое входное сопротивление.
  • Малое выходное сопротивление.
Недостатки
  • Коэффициент усиления по напряжению немного меньше 1.

Схему с таким включением часто называют «эмиттерным повторителем ».

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току r э, r к, r б, которые представляют собой:
    • r э - сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • r к - сумму сопротивлений коллекторной области и коллекторного перехода;
    • r б - поперечное сопротивление базы.

Эквивалентная схема биполярного транзистора с использованием h -параметров.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h ».

Входное сопротивление - сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h 11 = U m1 /I m1 , при U m2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h 12 = U m1 /U m2 , при I m1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h 21 = I m2 /I m1 , при U m2 = 0.

Выходная проводимость - внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h 22 = I m2 /U m2 , при I m1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

U m1 = h 11 I m1 + h 12 U m2 ; I m2 = h 21 I m1 + h 22 U m2 .

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» - для схемы ОЭ, «б» - для схемы ОБ, «к» - для схемы ОК.

Для схемы ОЭ: I m1 = I mб, I m2 = I mк, U m1 = U mб-э, U m2 = U mк-э. Например, для данной схемы:

h 21э = I mк /I mб = β.

Для схемы ОБ: I m1 = I mэ, I m2 = I mк, U m1 = U mэ-б, U m2 = U mк-б.

Собственные параметры транзистора связаны с h -параметрами, например для схемы ОЭ:

;

;

;

.

С повышением частоты вредное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода C к. Сопротивление ёмкости уменьшается, снижается ток через сопротивление нагрузки и, следовательно, коэффициенты усиления α и β. Сопротивление ёмкости эмиттерного перехода C э также снижается, однако она шунтируется малым сопротивлением перехода r э и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме импульс тока коллектора начинается с запаздыванием на время задержки τ з относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τ ф. Временем включения транзистора называется τ вкл = τ з + τ ф.

Технологии изготовления транзисторов

  • Диффузионно-сплавная.

Применение транзисторов

  • Усилители , каскады усиления
  • Демодулятор (Детектор)
  • Инвертор (лог. элемент)
  • Микросхемы на транзисторной логике (см.


Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png