Индукционный нагрев – это электрический нагрев с применением электромагнитной индукции. Если поместить предмет из электропроводного материала внутрь катушки, по обмотке которой проходит переменный ток, во вложенном в полость катушки предмете переменным магнитным полем индуцируются вихревые токи. В сущности, речь идет о трансформаторе, в котором вторичной обмоткой является заготовка (обмотка, замкнутая накоротко), а первичной обмоткой является катушка, которая в индукционных нагревателях называется индуктором. Вихревые токи нагревают вложенный предмет (заготовку). Тепло к заготовке подводится переменным магнитным полем, а не градиентом температуры, как при непрямых нагревах, и возникает прямо в заготовке. Все остальное вокруг может быть холодным. Это значительное преимущество индукционного нагрева.

Тепло в заготовке не образуется равномерно по всему сечению. Напр.: при нагреве заготовки цилиндрической формы наибольшая плотность тока будет на поверхности, а к середине снижается приблизительно экспоненциально. Это явление называется скин-эффект.

Глубина, в которой плотность тока снижается до значения J o /e, т.е., на 0,368 плотности на поверхности, называется глубиной проникновения δ

  • ω = 2πf угловая частота, f - частота
  • ρ удельное сопротивление материала заготовки
  • µ o проницаемость вакуума (4π x 10-7Hm-1)
  • µ r удельная проницаемость материала заготовки.

На практике целесообразно это отношение откорректировать:

В поверхностном слое толщины одной глубины проникновения образуется 86,5% всего тепла, в слое двух глубин проникновения δ 98%, в слое 3δ 99,8 % (относится к цилиндру с диаметром более 8 δ).

Очевидно, что глубина проникновения зависит от частоты тока индуктора и от удельного сопротивления и относительной проницаемости материала заготовки при рабочей температуре заготовки.

Для наглядности приведем глубину проникновения меди и углеродной стали (мм):

частота 50 500 1000 2000 4000 8000 10000 20000 50000
медь 40°C 10 3,2 2,3 1,6 1,1 0,8 0,7 0,5 0,3
сталь 1200°C 78 25 17,5 12,3 8,6 6,2 5,5 3,9 2,5

С точки зрения эксплуатационных затрат представляет интерес эффективность нагрева. Приблизительно эффективность η можно оценить с помощью отношения

  • D внутренний диаметр катушки индуктора
  • d диаметр заготовки
  • δ глубина проникновения
  • ρ 1 удельное сопротивление материала индуктора
  • ρ 2 удельное сопротивление материала заготовки
  • µ r относительная проницаемость материала заготовки.

Эффективность снижается с увеличением отношения D/d, потому что уменьшается связь магнитного поля индуктора с заготовкой. Поэтому не выгодно использовать один индуктор для большого диапазона диаметров заготовки. Эффективность снижается и при увеличении отношения δ/d. Низкое значение δ/d используется, например, для поверхностной закалки, при которой происходит быстрый процесс нагрева, а потом охлаждение тонкого поверхностного слоя.

Для формовки (ковки) необходимо, чтобы материал был прогрет по возможности равномерно. Поэтому выбирается более медленный нагрев, чтобы тепло могло разойтись к середине заготовки. Ровномерности нагрева способствует и увеличение глубины проникновения. Выбирается компромисс частоты для достижения необходимого прогрева при хорошей эффективности переноса энергии от индуктора к заготовке.

Практика показала, что для нагрева углеродной стали до 1200°C экономичным является следующий диапазон размеров заготовки:

частота
диаметр заготовки
[мм]
сторона прямоугольного сечения
[мм]
50 200-600 180-550
250 90-250 80-225
500 65-180 60-160
1000 50-140 45-125
2000 35-100 30-80
4000 22-65 20-60
8000 16-50 15-45
10000 15-40 14-35
20000 10-30 9-25

У заготовки плоской формы толщина шины должна более чем в 2,5 раза превышать глубину проникновения. При малой толщине возникает так называемая проницаемость и эффект нагрева снижается, что необходимо учитывать при выборе оборудования.

Для питания индуктора более высокой, чем в распределительной сети (50 Hz), частотой применяются статические преобразователи частоты - тиристорные или транзисторные.

Г. Хотеборж производит преобразователи частоты с тиристорами от 25 до 1200 kW с частотой до 8 kHz и с транзисторами до 200 kW с частотой до 25 kHz .

Индукционный нагрев позволяет хорошо стабилизировать температуру нагреваемых предметов. Для управления процессом восновном применяются свободно программируемые автоматы. Температура в большинстве случаев измеряется бесконтактным способом – пирометрами. При нагреве алюминия и его сплавов используются так же термопары.

Одним из преимуществ индукционного нагрева является возможность его механизации, а в некоторых случаях и автоматизации. Последняя уменьшает необходимость человеческого труда и для очень мощного оборудования просто необходима.

На практике индукционный нагрев используется в следующих областях:

  • для формовки – возможно самая широкая область применения, важным является ровномерное прогревание заготовки
  • для плавления железных и не железных металлов, с низкой и средней частотой
  • для поверхностной закалки – , г. Хотеборж при производстве оборудования для закалки сотрудничает также и с приглашенными технологами
  • для пайки – между спаиваемыми металлическими частями вкладывается припой, детали помещаются в индуктор и припой расплавляется
  • для горячего прессования – используется тепловое расширение металлов
  • специальные технологии – сварка, плазма, вакуумная плавка, поддерживание температуры расплавленного стекла. Этими технологиями , г. Хотеборж пока еще не занимался.

Aктуальности

PF 2019

14.12.2018 Благодарим Вас за сотрудничество в 2018 году и желаем Вам больших успехов в работе и личной жизни в Hовом 2019 году. С Новым годом 2019 и Рождеством желает ROBOTERM Chotěboř!

ИНДУКЦИОННЫЙ НАГРЕВ, нагрев токопроводящих (в основном металлических) тел и ионизированных газов в результате выделения теплоты вихревыми (индукционными) токами, возбуждаемыми переменным электромагнитным полем. Обеспечивает бесконтактный способ передачи энергии от источника электромагнитного поля (индуктора) в нагреваемое тело с преобразованием её в тепловую непосредственно в теле; наиболее эффективный способ нагрева. При индукционном нагреве теплота, выделяющаяся в нагреваемом теле (по Джоуля - Ленца закону), зависит от его размеров и физических свойств, частоты и напряжённости магнитного поля. Особенностью индукционного нагрева является неравномерное распределение мощности в нагреваемом теле, обусловленное диссипацией энергии поля и затуханием электромагнитной волны. Такое затухание характеризуют эквивалентной глубиной δ э (м), т. е. глубиной поверхностного слоя плоского тела, в котором выделяется 86,5% мощности электромагнитной волны: δ э ≈ 500√p/(μ r ∙f), где р - удельное электрическое сопротивление (Ом·м), μ r - относительная магнитная проницаемость тела, f - частота изменения поля (Гц). Для индукционного нагрева используют токи разных частот - промышленной (50 Гц), повышенной (150 и 250 Гц), средней (от 0,5 до 10 кГц), высокой (67 и 440 кГц), сверхвысокой (1,76 и 5,28 МГц).

Индукционный нагрев применяют: в индукционных нагревательных установках - для нагрева заготовок под пластическую обработку (глубинный или сквозной индукционный нагрев) и деталей под химико-термическую обработку (локальный или поверхностный индукционный нагрев), в том числе под поверхностную закалку токами ВЧ; в индукционных печах - для плавки чёрных и цветных металлов и сплавов, а также зонной плавки, плавки во взвешенном состоянии, для получения низкотемпературной плазмы (смотри Плазмотрон). Индуктор (основной элемент конструкции индукционных установок и печей) создаёт переменное магнитное поле (напряжённостью 10 5 -10 6 А/м). Нагреваемый материал может быть в виде твёрдого массивного тела (в индукционных нагревательных установках), жидкого тела (в индукционных плавильных печах) и ионизированного газа (в СВЧ плазмохимических установках). Первая промышленная индукционная печь для подогрева жидкой стали (до 80 кг) в открытом горизонтальном кольцевом канале введена в эксплуатацию в Швеции в 1900 году, в СССР такие печи начали строить в 1930-х годах.

В индукционных нагревательных установках используют в основном индукторы 2 типов: проходные - круглого или квадратного поперечного сечения для нагрева заготовок по всей длине, щелевые и овального сечения для местного нагрева концов длинных заготовок (рис. 1), а также с поперечным магнитным полем (для листового материала) и замкнутым магнитопроводом (для кольцевых заготовок); закалочные - одновитковые (для внешних цилиндрических поверхностей), петлевые, зигзагообразные и в виде плоской спирали (для плоских поверхностей), кольцевые соленоидные (для внутренних цилиндрических поверхностей). Через отверстия в индукторе или с помощью спрейерного устройства на поверхность закаливаемой детали подают охлаждающую жидкость (воду, масло, различные эмульсии).

Индукционные плавильные печи могут быть канальными, работающими на промышленной частоте, вместимостью до 150 тонн и мощностью до 4,0 MBA, и тигельными - вместимостью на средней частоте до 25 тонн и на промышленной частоте (при жидкой завалке) до 60 т. В канальной печи (рис. 2) температура металла в ванне (шахте) повышается за счёт теплопередачи от жидкого металла, находящегося в канале. Один или несколько вертикальных либо горизонтальных каналов (прямоугольного или круглого сечения), расположенных в огнеупорной футеровке - так называемом подовом камне, охватывают замкнутый магнитопровод с многовитковым цилиндрическим индуктором. В канале жидкий металл с более высокой температурой под действием электромагнитных сил и свободной тепловой конвекции интенсивно циркулирует, поступая через устье канала в ванну (шахту). Индукционные канальные печи применяют в основном в цветной металлургии для непрерывных технологических процессов в качестве плавильных агрегатов и миксеров.

Рис. 2. Схема индукционной канальной печи (разрез): 1 - ванна (шахта); 2- цилиндрический индуктор; 3- замкнутый магнитопровод; 4 - футеровка канала (подовый камень); 5 - вертикальный кольцевой канал; 6 - устье канала.

В тигельной печи (рис. 3) металл находится в огнеупорном тигле, расположенном внутри цилиндрического многовиткового индуктора. Отдельные разомкнутые магнитопроводы в качестве ферромагнитных экранов защищают кожух печи от создаваемых индуктором электромагнитных волн. Энергия затрачивается на нагрев металла и его интенсивное перемешивание. В тигле возникает двухконтурная циркуляция металла с образованием выпуклого мениска (высота 5-15% от глубины металла), что затрудняет создание шлакового слоя и ограничивает удельную мощность (не более 300 кВт/т). Тигельные печи взрывоопасны (из-за невысокой стойкости футеровки тигля), их оснащают сигнализатором состояния футеровки. Индукционные тигельные печи широко распространены в сталеплавильном производстве для периодической работы при переплаве легированных сталей; для плавки высококачественных сталей - вакуумные и индукционно-плазменные печи, для выплавки особо чистых металлов и сплавов - печи с водоохлаждаемым («холодным») тиглем в виде электроизолированных секций-труб (так называемый секционированный тигель).

Рис. 3. Схема индукционной тигельной печи (разрез): 1 - тигель; 2 - цилиндрический индуктор; 3 - ферромагнитный экран; 4 - кожух; 5 - сигнализатор состояния футеровки тигля; стрелки - траектория движения жидкого металла.

Лит.: Вайнберг А. М. Индукционные плавильные печи. М., 1967; Теплотехника металлургического производства. М., 2002. Т. 1: Теоретические основы. Т. 2: Конструкции и работа печей; Индукционные тигельные печи. 2-е изд. Екатеринбург, 2002.

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их работы явились основой для создания техники индукционного нагрева. Так как при индукционном нагреве теплота выделяется в проводящем теле - слое, равном глубине проникновения электромагнитного поля, то появляются возможности точного управления температурой для обеспечения качественного нагрева при высокой производительности. Другим преимуществом является бесконтактность нагрева.

Индукционные канальные печи с открытым каналом. Одна из первых известных конструкций индукционной канальной печи (ИКП) была предложена С. Ферранти (Италия) в 1887 г. Печь имела керамический канал, а плоские катушки индуктора были размещены над и под этим каналом. В 1890г. Е.А. Колби (США) предложил конструкцию печи, у которой индуктор охватывает круговой канал снаружи.

Первую промышленную печь со стальным сердечником и индуктором, размещенным внутри канала (рис. 7.7), создал в 1900 г. Кьеллин (Швеция). Мощность печи 170 кВт, емкость до 1800 кг, частота 15 Гц. Питание от специального генератора пониженной частоты, что необходимо из-за низкого значения коэффициента мощности. К 1907 г. в эксплуатации находились 14 подобных печей.

Рис. 7.7. Эскиз индукционной печи с открытым каналом, созданной Кьеллииым1 - канал; 2 - индуктор; 3 - магнитопровод

В 1905 г. Рёхелинг-Роденхаузер (Германия) сконструировал многофазные канальные печи (с двумя и тремя индукторами), в которых каналы соединены с ванной, питание от сети 50 Гц. В последующих конструкциях печей использовались также закрытые каналы для плавки цветных металлов. В 1918 г. В. Рон (Германия) построил вакуумную ИКП по типу печи Кьеллина (давление 2–5 мм рт.ст.), что позволило получить металл с лучшими механическими свойствами.

В связи с рядом преимуществ печей с закрытым каналом развитие печей с открытым каналом приостановилось. Однако были продолжены попытки использования таких печей для плавки стали.

В 30-х годах в США для переплава скрапа нержавеющей стали использовалась однофазная ИКП емкостью 6 т с открытым каналом и питанием от генератора мощностью 800 кВт и частотой 8,57 Гц. Печь работала в дуплекс-процессе с дуговой печью. В 40–50-е годы в Италии применялись ИКП с открытым каналом для плавки стали емкостью 4–12 т, изготовленные фирмой «Таглиаферри». В дальнейшем от использования таких печей отказались, так как они уступали по своим характеристикам дуговым и индукционным тигельным сталеплавильным печам.

Индукционные канальные печи с закрытым каналом. С 1916 г. стали разрабатываться вначале опытные, а затем промышленные ИКП с закрытым каналом. Серия ИКП с закрытым каналом разработана фирмой «Аякс - Уатт» (США). Это шахтные однофазные печи с вертикальным каналом для плавки медноцинковых сплавов мощностью 75 и 170 кВ?А и емкостью 300 и 600 кг. Они явились основой для разработок ряда фирм.

В те же годы во Франции были изготовлены шахтные печи с горизонтальной трехфазной индукционной единицей (мощностью 150, 225 и 320 кВт). В Англии фирма «Дженерал электрик лимитед» предложила модификацию печи с двумя каналами на индуктор, при их несимметричном расположении, что вызывает циркуляцию расплава и снижение перегрева.

Печи Э. Русса (Германия) выпускались с двумя и тремя каналами на индуктор (вертикальное и горизонтальное исполнение). Э. Руссом также была предложена конструкция сдвоенной индукционной единицы (ИЕ), подключаемой к двум фазам.

В СССР в 30-е годы ИКП по типу печей фирмы «Аякс - Уатт» стали выпускаться на Московском электрозаводе. В 50-е годы ОКБ «Электропечь» разработало печи для плавки меди и ее сплавов емкостью 0, 4–6,0 т, а затем и 16 т. В 1955 г. на заводе в г. Белая Калитва пущена ИКП для плавки алюминия емкостью 6 т.

В 50-е годы в США и Западной Европе ИКП стали широко применяться в качестве миксеров при плавке чугуна в дуплекс-процессе с вагранкой или дуговой электропечью. Для увеличения мощности и снижения перегрева металла в канале разрабатывались конструкции ИЕ с однонаправленным движением расплава (Норвегия). Тогда же были разработаны отъемные ИЕ. В 70-е годы фирма «Аякс магнетермик» разработала сдвоенные ИЕ, мощность которых в настоящее время достигает 2000 кВт. Подобные разработки в те же годы выполнены и во ВНИИЭТО. В разработках ИКП различных типов активно участвовали Н.В. Веселовский, Э.П. Леонова, М.Я. Столов и др.

В 80-е годы развитие ИКП в нашей стране и за рубежом было направлено на увеличение областей применения и расширение технологических возможностей, например применение ИКП для получения труб из цветных металлов методом вытягивания из расплава.

Индукционные тигельные печи. Так как индукционные тигельные печи (ИТП) малой емкости могут эффективно работать только на частотах выше 50 Гц, то их создание сдерживалось из-за отсутствия соответствующих источников питания - преобразователей частоты. Тем не менее в 1905–1906 гг. ряд фирм и изобретателей предложили и запатентовали ИТП, к ним относятся фирма «Шнейдер - Крезо» (Франция), О. Цандер (Швеция), Герден (Англия). В это же время конструкцию ИТП разработал А.Н. Лодыгин (Россия).

Первую промышленную ИТП с искровым высокочастотным генератором разработал в 1916 г. Э.Ф. Нортруп (США). С 1920 г. эти печи стала выпускать фирма «Аякс электротермию). В это же время ИТП с питанием от вращающегося искрового разрядника разрабатывает Ж. Рибо (Франция). Фирма «Метрополитен - Виккерс» создала ИТП высокой и промышленной частоты. Вместо искровых генераторов использовались машинные преобразователи с частотой до 3000 Гц и мощностью 150 кВ?А.

В.П. Вологдин в 1930–1932 гг. создал промышленные ИТП емкостью 10 и 200 кг с питанием от машинного преобразователя частоты. В 1937 г. он же построил ИТП с питанием от лампового генератора. В 1936 г. А.В. Донской разработал универсальную индукционную печь с ламповым генератором мощностью 60 кВ?А.

В 1938 г. для питания ИТП (мощность 300 кВт, частота 1000 Гц) фирма «Броун - Бовери» использовала инвертор на многоанодном ртутном вентиле. С 60-х годов стали использоваться тиристорные инверторы для питания индукционных установок. С увеличением емкости ИТП стало возможным эффективное применение питания током промышленной частоты.

В 40–60-х годах ОКБ «Электропечь» разработало несколько типов ИТП: повышенной частоты для плавки алюминия емкостью 6 т (1959 г.), чугуна емкостью 1 т (1966 г.). В 1980 г. на заводе в г. Баку изготовлена печь емкостью 60 т для плавки чугуна (разработка ВНИИЭТО по лицензии фирмы «Броун - Бовери»). Большой вклад в разработку ИТП во ВНИИЭТО внесли Э.П. Леонова, В.И. Кризенталь, А.А. Простяков и др.

В 1973 г. фирма «Аякс магнетермик» совместно с исследовательской лабораторией фирмы «Дженерал моторе» разработала и ввела в эксплуатацию горизонтальную тигельную печь непрерывного действия для плавки чугуна емкостью 12 т и мощностью 11 МВт.

Начиная с 50-х годов стали развиваться специальные виды индукционной плавки металлов:

вакуумная в керамическом тигле;

вакуумная в гарнисаже;

вакуумная в холодном тигле;

в электромагнитном тигле;

во взвешенном состоянии;

с использованием комбинированного нагрева.

Вакуумные индукционные печи (ВИП) до 1940 г. применялись только в лабораторных условиях. В 50-х годах некоторые фирмы, в частности «Хереус», стали разрабатывать промышленные ВИП, единичная емкость которых стала быстро возрастать: 1958 г. - 1–3 т, 1961–5 т, 1964–15–27 т, 1970–60 т. В 1947 г. МосЗЭТО изготовил первую вакуумную печь емкостью 50 кг, а с 1949 г. начал серийное производство ВИП емкостью 100 кг. В середине 80-х годов производственное объединение «Сибэлектротерм» по разработкам ВНИИЭТО изготавливало модернизированные ВИП емкостью 160, 600 и 2500 кг для плавки специальных сталей.

Индукционная плавка химически активных сплавов в гарнисажных печах и печах с медным водоохлаждаемым (холодным) тиглем стала применяться в 50-х годах. Печь с порошкообразным гарнисажем была разработана Н.П. Глухановым, Р.П. Жежериным и др. в 1954 г., а печь с монолитным гарнисажем - М.Г. Коганом в 1967 г. Идея индукционной плавки в холодном тигле предложена еще в 1926 г. в Германии фирмой «Сименс - Гальске», но применения не нашла. В 1958 г. В ИМЕТ совместно с ВНИИ токов высокой частоты им. В.П. Вологдина (ВНИ-ИТВЧ) под руководством А.А. Фогеля проведены опыты по индукционной плавке титана в холодном тигле.

Стремление снизить загрязнение металла и тепловые потери в холодном тигле привели к использованию электромагнитных сил для отжатия металла от стенок, т.е. к созданию «электромагнитного тигля» (Л.Л. Тир, ВНИИЭТО, 1962 г.)

Плавка металлов во взвешенном состоянии для получения особо чистых металлов была предложена в Германии (О. Мук) еще в 1923 г., но не получила распространения из-за отсутствия источников питания. В 50-е годы этот метод начал развиваться во многих странах. В СССР много работали в этом направлении сотрудники ВНИИТВЧ под руководством А.А. Фогеля.

Плавильные ИКП и ИТП комбинированного нагрева стали применяться с 50-х годов вначале с использованием мазутных и газовых горелок, например ИКП для переплава алюминиевой стружки (Италия) и ИТП для чугуна (Япония). Позднее получили распространение плазменно-индукционные тигельные печи, например разработанная ВНИИЭТО в 1985 г. серия опытно-промышленных печей емкостью 0,16–1,0 т.

Установки индукционной поверхностной закалки. Первые опыты по индукционной поверхностной закалке проведены в 1925 г. В.П. Вологдиным по инициативе инженера Путиловского завода Н.М. Беляева, которые были признаны неудачными, так как в то время стремились к сквозной закалке. В 30-х годах В.П. Вологдин и Б.Я. Романов возобновили эти работы и в 1935 г. получили патенты на закалку с использованием токов высокой частоты. В 1936 г. В.П. Вологдин и А.А. Фогель получили патент на индуктор для закалки шестерен. В.П. Вологдин и его сотрудники разрабатывали все элементы закалочной установки: вращающийся преобразователь частоты, индукторы и трансформаторы (рис. 7.8).

Рис. 7.8. Закалочная установка для последовательной закалки

1 - закаливаемое изделие; 2 - индуктор; 3 - закалочный трансформатор; 4 - преобразователь частоты; 5 - конденсатор

С 1936 г. Г.И. Бабат и М.Г. Лозинский на заводе «Светлана» (Ленинград) исследовали процесс индукционной закалки с использованием высоких частот при питании от лампового генератора. С 1932 г. закалка током средней частоты стала внедряться фирмой ТОККО (США).

В Германии в 1939 г. Г.В. Зойлен осуществил поверхностную закалку коленчатых валов на заводах фирмы АЕГ. В 1943 г. К. Кегель предложил специальную форму индуктирующего провода для закалки зубчатого колеса.

Широкое применение поверхностной закалки началось с конца 40-х годов. За 25 лет с 1947 г. ВНИИТВЧ разработал свыше 300 закалочных устройств, в том числе введены в эксплуатацию автоматическая линия для закалки коленчатых валов и установка для закалки железнодорожных рельсов по всей длине (1965 г.). В 1961 г. пущена первая установка для закалки шестерен из стали пониженной прокаливаемости на автозаводе им. Лихачева (ЗИЛ) (технология разработана К.З. Шепеляковским).

Одним из направлений развития индукционной термообработки в последние годы стали технологии закалки и отпуска труб нефтяного сортамента и газопроводных труб большого диаметра (820–1220 мм), строительных арматурных стержней, а также упрочнения железнодорожных рельсов.

Установки сквозного нагрева. Применение индукционного нагрева металлов для различных целей, кроме плавки, на первом этапе носило поисковый характер. В 1918 г. М.А. Бонч-Бруевич, а затем и В.П. Вологдин применили для нагрева анодов электронных ламп при их вакуумировании (дегазации) токи высокой частоты. В конце 30-х годов в лаборатории завода «Светлана» проводились опыты по использованию индукционного нагрева до температуры 800–900°С при обработке стального вала диаметром 170 и длиной 800 мм на токарном станке. Использовался ламповый генератор мощностью 300 кВт и частотой 100–200 кГц.

С 1946 г. в СССР начались работы по использованию индукционного нагрева при обработке давлением. В 1949 г. введен в эксплуатацию первый кузнечный нагреватель на ЗИЛе (ЗИСе). Эксплуатация первой индукционной кузницы начата на Московском заводе малолитражных автомобилей (МЗМА, позднее АЗЛК) в 1952 г. Интересная двухчастотная установка (60 и 540 Гц) для нагрева стальных заготовок (сечение - квадрат 160x160 мм) под обработку давлением была запущена в Канаде в 1956 г. Подобная же установка разработана в ВНИИТВЧ (1959 г.). Промышленная частота используется при этом для нагрева до точки Кюри.

Для прокатного производства в 1963 г. ВНИИТВЧ изготовил нагреватель слябов (габариты 2,5x0,38x1,2 м) мощностью 2000 кВт на частоту 50 Гц.

В 1969 г. на металлургическом заводе фирмы «Маклаут стил корп.» (США) применен индукционный нагрев стальных слябов массой около 30 т (габариты 7,9x0,3x1,5 м) с использованием шести технологических линий (18 индукторов промышленной частоты общей мощностью 210 МВт).

Индукторы имели специальную форму, обеспечивающую равномерность нагрева сляба. Работы по применению индукционного нагрева в металлургии велись также и во ВНИИЭТО (П.М. Чайкин, С.А. Яицков, А.Э. Эрман).

В конце 80-х годов в СССР индукционный нагрев использовался приблизительно в 60 кузнечных цехах (прежде всего на заводах автотракторной и оборонной промышленности) с общей мощностью индукционных нагревателей до 1 млн. кВт.

Низкотемпературный нагрев на промышленной частоте. В 1927–1930 гг. на одном из уральских оборонных заводов начались работы по индукционному нагреву на промышленной частоте (Н.М. Родигин). В 1939 г. там с успехом работали достаточно мощные индукционные нагревательные установки для термообработки изделий из легированной стали.

В ЦНИИТмаше (В.В. Александров) также проводились работы по применению промышленной частоты для термообработки, нагрева под посадку и т.д. Ряд работ по низкотемпературному нагреву выполнен под руководством А.В. Донского. В НИИжелезобетона (НИИЖБ), Фрунзенском политехническом институте и других организациях в 60–70-х годах проводились работы по термообработке железобетонных изделий с использованием индукционного нагрева на частоте 50 Гц. ВНИИЭТО также разработал ряд промышленных установок низкотемпературного нагрева для подобных целей. Разработки МЭИ (А.Б. Кувалдин) в области индукционного нагрева ферромагнитной стали были использованы в установках для подогрева деталей под наплавку, термообработки стали и железобетона, обогрева химических реакторов, пресс-форм и др. (70–80-е годы).

Высокочастотная зонная плавка полупроводников. Метод зонной плавки был предложен в 1952 г. (В.Г. Пфанн, США). Работы по высокочастотной бестигельной зонной плавке в нашей стране начались в 1956 г., и во ВНИИТВЧ был получен монокристалл кремния диаметром 18 мм. Созданы различные модификации установок типа «Кристалл» с индуктором внутри вакуумной камеры (Ю.Э. Недзвецкий). В 50-е годы изготовление установок для вертикальной бестигельной зонной плавки кремния с индуктором снаружи вакуумной камеры (кварцевой трубы) осуществлялось на заводе «Платиноприбор» (Москва) совместно с Государственным институтом редких металлов (Гиредмет). Начало серийного производства установок «Кристалл» для выращивания монокристаллов кремния относится к 1962 г. (на Таганрогском ЗЭТО). Диаметр получаемых монокристаллов достиг 45 мм (1971 г.), а позднее и свыше 100 мм (1985 г.)

Высокочастотная плавка оксидов. В начале 60-х годов Ф.К. Монфорт (США) провел плавку оксидов в индукционной печи (выращивание монокристаллов ферритов при использовании токов высокой частоты - радиочастот). Тогда же А.Т Чэпмен и Г.В. Кларк (США) предложили технологию переплавления поликристаллического оксидного блока в холодном тигле. В 1965 г. Ж. Рибо (Франция) получил расплавы оксидов урана, тория и циркония при использовании радиочастот. Плавка этих оксидов происходит при высоких температурах (1700–3250 °С), и поэтому требуется большая мощность источника питания.

В СССР технология высокочастотной плавки оксидов разработана в Физическом институте АН СССР (A.M. Прохоров, В.В. Осико). Оборудование разрабатывали ВНИИТВЧ и Ленинградский электротехнический институт (ЛЭТИ) (Ю.Б. Петров, А.С. Васильев, В.И. Добровольская). Созданные ими установки «Кристалл» в 1990 г. имели общую мощность свыше 10 000 кВт, на них производились сотни тонн оксидов высокой степени чистоты в год.

Высокочастотный нагрев плазмы. Явление высокочастотного разряда в газе известно с 80-х годов XIX в. В 1926–1927 гг. Дж.Дж. Томсон (Англия) показал, что безэлектродный разряд в газе создается индуцированными токами, а Дж. Таунсенд (Англия, 1928 г.) объяснял разряд в газе действием электрического поля. Все эти исследования проводились при пониженных давлениях.

В 1940–1941 гг. Г.И. Бабат на заводе «Светлана» при дегазации электронных ламп с использованием высокочастотного нагрева наблюдал плазменный разряд, а затем впервые получил разряд при атмосферном давлении.

В 50-е годы в разных странах проводились работы по высокочастотной плазме (Т.Б. Рид, Ж. Рибо, Г. Баркхофф и др.). В СССР они велись с конца 50-х годов в Ленинградском политехническом институте (А.В. Донской, С.В. Дресвин), МЭИ (М.Я. Смелянский, С.В. Кононов), ВНИТВЧ (И.П. Дашкевич) и др. Исследовались разряды в различных газах, конструкции плазмотронов и технологии с их использованием. Были созданы высокочастотные плазмотроны с кварцевой и с металлической (для мощностей до 100 кВт) водоохлаждаемой (создана в 1963 г.) камерами.

В 80-х годах высокочастотные плазмотроны мощностью до 1000 кВт на частоты 60 кГц - 60 МГц применялись для получения особо чистого кварцевого стекла, пигментного диоксида титана, новых материалов (например, нитридов и карбидов), особо чистых ультрадисперсных порошков и разложения отравляющих веществ.

Из книги История электротехники автора Коллектив авторов

7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ Начальный период. Первые эксперименты по нагреву проводников электрическим током относятся к XVIII в. В 1749 г. Б. Франклин (США) при исследовании разряда лейденской банки обнаружил нагрев и расплавление металлических проволочек, а позднее по его

Из книги автора

7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ Начальный период. В 1878–1880 гг. В. Сименс (Англия) выполнил ряд работ, которые легли в основу создания дуговых печей прямого и косвенного нагрева, в том числе однофазной дуговой печи емкостью 10 кг. Им было предложено использовать магнитное поле для

Из книги автора

Из книги автора

7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ Начальный период. Начало работ по плазменному нагреву относится к 20-м годам XX в. Сам термин «плазма» ввел И. Ленгмюр (США), а понятие «квазинейтральная» - В. Шоттки (Германия). В 1922 г. X. Гердиен и А. Лотц (Германия) провели опыты с плазмой, полученной при

Из книги автора

7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ Начальный период. Техника электронно-лучевого нагрева (плавка и рафинирование металлов, размерная обработка, сварка, термообработка, нанесение покрытий испарением, декоративная обработка поверхности) создана на основе достижений физики,

Из книги автора

7.1.7. ЛАЗЕРНЫЙ НАГРЕВ Начальный период. Лазер (сокращение английского Light Amplification by Stimulated Emission of Radiation) создан во второй половине XX в. и нашел определенное применение в электротехнологии.Идею процесса вынужденного излучения высказал еще А. Эйнштейн в 1916 г. В 40-х годах В.А.

Индукционный нагрев

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла. Система «индуктор-заготовка» представляет собой трансформатор без сердечника, в котором индуктор является первичной обмоткой. Заготовка является как бы вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху. На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ, в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки. Если деталь из ферромагнитного материала, то она ещё подвергается перемагничиванию и дополнительному нагреву из-за магнитного гистерезиса. Нагрев детали, вызванный магнитным гистерезистом, длится до тех пор, пока температура детали не достигнет температуры, при которой вещество теряет магнитные свойства (точка Кюри). Выделяющееся в теле при возникновении вихревых токов количество тепла пропорционально квадрату тока в данном участке проводника.

Для немагнитных материалов и материалов, имеющих температуру выше точки Кюри, относительная магнитная проницаемость равна единице. Глубина проникновения Δ возрастает с увеличение удельного электрического сопротивления ρ v (Ом·м) и уменьшается с увеличением частоты f (Гц) и относительной магнитной проницаемости материала μ. При частоте тока более 1 кГц можно получать тонкий нагретый слой, т.е. проводить поверхностную термическую обработку изделия, а используя ток промышленной частоты (50 Гц), - сквозной прогрев изделия.

Форма и размеры индуктора зависят от геометрии нагреваемого изделия. Индуктор изготавливают из медной трубки специального профиля в виде цилиндрической спирали или плоских витков с короткими наклонными переходами между витками. Для охлаждения индуктора по нему пропускают воду.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электропроводящая керамика и т. д.) μ примерно равна единице. Формула для вычисления глубины скин-слоя в мм:

где = 4π·10 −7 - магнитная постоянная Гн/м, - удельное электрическое сопротивление материала заготовки при температуре обработки, - частота электромагнитного поля, генерируемого индуктором. Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием.

Достоинствами электроустановок индукционного нагрева являются:

Высокая скорость нагрева, пропорциональная вводимой мощности;

Хорошие санитарно-гигиенические условия труда;

Возможность регулирования зоны действия вихревых токов в про-странстве (ширина и глубина прогрева);

Простота автоматизации технологического процесса;

Неограниченный уровень достигаемых температур, достаточных для нагрева металлов, плавления металлов и неметаллов, перегрева, расплава, испарения материалов и получения плазмы.

Недостатки:

Требуются более сложные источники питания;

Повышенный удельный расход электроэнергии на технологические операции.

К особенностям индукционного нагрева можно отнести возможность регулирования пространственного расположения зоны протекания вихревых токов.

Эффективность передачи энергии от индуктора к нагреваемому телу зависит от величины зазора между ними и повышается при его уменьшении. Глубина нагрева тела увеличивается с ростом его удельного сопротивления и снижается с увеличением частоты тока. Ток индукторов составляет от сотен до нескольких тысяч ампер при средней плотности тока 20 А/мм 2 . Потери мощности в индукторах могут достигать 20-30 % от полезной мощности.

Индукционные нагревательные установки (ИНУ) широко применяются в различных технологических процессах в машиностроительной и других отраслях промышленности. Их подразделяют на два основных типа: установки сквозного и поверхностного нагрева.

Установки для закалки и сквозного нагрева в зависимости от назначения питаются от сетей переменного тока на частоте от 50 Гц до сотен кГц. Питание установок повышенной и высоких частот производится от тиристорных или машинных преобразователей..

По режиму работу установки сквозного нагрева подразделяют на установкипериодического и непрерывного действия.

В установках периодического действия нагревается только одна заготовка или ее часть. При нагреве заготовок из магнитного материала происходит изменение потребляемой мощности: вначале она возрастает, а затем по достижении точки Кюри снижается до 60-70 % от начальной. При нагреве заготовок из цветных металлов мощность в конце нагрева несколько увеличивается за счет роста удельного электрического сопротивления.

В установках непрерывногодействияодновременно находится несколько заготовок, расположенных в продольном или поперечном магнитном поле (рис.3.1). В процессе нагрева они перемещаются по длине индуктора, нагреваясь до заданной температуры. В нагревателях непрерывного действия полнее используется мощность источника питания, поскольку средняя мощность, потребляемая ими от источника питания, выше, чем средняя мощность, потребляемая нагревателем периодического действия.

Индукционные нагреватели непрерывного действия имеют более высокий КПД источника питания. Производительность выше, чем у установок периодического действия. Возможно питание нескольких нагревателей от одного источника, а также подключение нескольких генераторов к одному нагревателю, состоящему из нескольких секций (рис. 3.1, в)

Конструкция индуктора для сквозного нагрева зависит от формы и размеров деталей. Индукторы выполняют круглого, овального, квадратного или прямоугольного сечения. Для нагрева концов заготовок индукторы выполняют щелевыми или петлевыми (рис.3.1, г, д).

Необходимость поддержания высокого электрического и теплового КПД системы индуктор-нагреваемое тело определяет исключительно большое количество форм и размеров индукторов. Схемы некоторых индукторов для поверхностного нагрева показаны на рис.3.2. Между индуктором и огнеупорным цилиндром проложен слой теплоизолирующего материала, что снижает тепловые потери и защищает электрическую изоляцию индуктора.

Электрический КПД системы индукционного нагрева увеличивается с уменьшением зазора индуктором и нагреваемым изделием, а также с увеличением отношения удельных сопротивлений нагреваемого изделия и материала индуктора.

Резистивный нагрев

Нагрев проводящего тела при прохождении через него электрического тока по закону Джоуля-Ленца называют резистивным нагревом. Для выделения тепла в твёрдом проводнике можно использовать постоянный и переменный электрический ток. Применение постоянного тока затруднено и экономически не выгодно из-за отсутствия источников (генераторов) большой силы тока и низкого напряжения, которые необходимы для выделения тепла в твёрдом проводнике, обладающей высокой электропроводностью. Способность переменного тока к трансформации позволяет получать требуемые напряжения. При переменном токе под сопротивлением проводника постоянному току. Это объясняется наличием скин-эффекта, влияние которого возрастает с увеличением частоты, диаметра проводника, магнитной проницаемостью и падает с ростом электрического сопротивления.

Принцип выделения тепла в проводнике при пропускании тока находит применение в печах прямого (контактного) и косвенного нагрева.

В печах сопротивления прямого нагрева ток проводиться непосредственно к нагреваемому изделию. При расчёте электрических параметров нагрева необходимо учитывать изменение в процессе нагрева сопротивления материала.

В качестве материала нагревателей применяют сплавы на основе Fe, Ni, Cr , Mo и Al. В виде проволоки или ленты. Также используют нагреватели из графита. Электронагреватели трубчатые (ТЭН) предназначены для нагрева различных сред путём конвекции, теплопроводности или излучения посредством преобразования электрической энергии в тепловую (рис.3.3). Применяются в качестве комплектующих изделий в промышленных устройствах. ТЭНы используются для следующих целей: нагрев жидкости, воздуха и прочих газов; нагрев воды и слабых растворов кислот и щелочей; нагрев подложек в вакуумных камерах.

Рисунок 3.3 – Конструкция трубчатого электронагревателя

Конструкция двухконцевого трубчатого элетронагревателя круглого сечения представляет собой расположенный внутри металлической оболочки нагревательный элемент 5 (спираль или несколько спиралей из сплава с высоким сопротивлением) с контактными стержнями 1. От оболочки 4 нагревательный элемент изолирован спрессованным электроизоляционным наполнителем 6. Для предохранения от попадания влаги из окружающей среды торцы ТЭН герметизируют. Контактные стержни изолируют от оболочки диэлектрическими изоляторами 3,7. Для присоединения проводов используются гайки с шайбами 2.

Преимущества резистивного нагрева: высокий КПД, простота, и низкая стоимость.Недостатки: загрязнение материалом нагревателя, старение нагревателя.

Многих привлекает электрическое отопление тем, что оно работает автономно и не надо за ним постоянно присматривать. Негативной стороной таких отопительных котлов является стоимость и технические требования.

В некоторых местах их просто нельзя применить. Но многих владельцев это не пугает, и они считают, что именно простота эксплуатации перекрывает все недостатки.

Особенно тогда, когда на рынках сбыта появились новые типы , имеющих индуктивные катушки, а не ТЕНы. Они с мгновенной скоростью разогревают и экономно отапливают здание, по мнению владельцев агрегатов. Новый тип котлов называют индукционным.

Новый вид нагревателей удобен в эксплуатации. Считаются безопасными, в сравнении с газовыми нагревателями, нет сажи и копоти, что не скажешь о приборах с твёрдым топливом. И самое главное преимущество – нет нужды заготавливать твёрдое топливо (уголь, дрова, ).

И как только появились индукционные нагреватели, сразу нашлись умельцы, которые в целях экономии, пытаются создать такую установку своими руками.

В этой статье мы поможем вам сконструировать нагревательный прибор самостоятельно.

Устройство, где происходит нагревание металла и продуктов ему подобных без контакта, называют индукционным нагревателем. Работой управляет переменное индукционное поле, воздействующее на металл, и токи внутри образуют тепло.

Токи высокой частоты воздействуют на продукцию помимо изоляции, из-за чего конструкция является необыкновенной перед другими видами нагрева.

В сегодняшних индукционных нагревателях присутствуют полупроводниковые редукторы частоты. Такой тип нагревания широко используется в термообработке поверхностей из стали и различных соединений, сплавов.

Компактность оборудования используются в новаторских технологиях, при этом, присутствует огромный экономический эффект. Разнообразные модели помогают внедряться гибким и автоматизированным сочетаниям, включающие в себя транзисторные редукторы частот всестороннего типа и соединительные блоки, когда предпочитается индукционная система.

Описание


Устройство нагревателя

В состав типового нагревательного элемента входят следующие узлы:

  1. Нагревательный элемент в виде прутка или металлической трубки.
  2. Индуктор – это медная проволока, обрамляющая витками катушку. В процессе работы он исполняет роль генератора.
  3. Генератор переменного тока. Отдельная конструкция, где происходит преобразование стандартного тока в величину с высокой частотой.

На практике, индукционные установки используются недавно. Теоретические изучения намного опережают. Такое можно объяснить одной преградой – получение высокой частоты магнитных полей. Дело в том, что использовать установки с низкой частотой считается неэффективным. Как только появились с высокой частотой, проблема разрешилась.

Генераторы ТВЧ прошли свой эволюционный период; от ламповых, до современных моделей, выполняющихся на базе IGBT. Теперь они более эффективные, имеют малый вес и размеры. Частотное ограничение их 100 кГц за счёт динамических потерь транзисторов.

Принцип работы и область применения

Генератором повышается частота тока и передаёт свою энергию катушке. Индуктором ведётся преобразование высокочастотного тока в переменное электромагнитное поле. С высокой частотой меняются электромагнитные волны.

Нагревание происходит за счёт разогрева вихревых токов, которые провоцируются переменными вихревыми векторами электромагнитного поля. Почти без потерь передаётся энергия с высоким КПД и энергии достаточно на разогрев теплоносителя и даже больше.

Аккумуляторная энергия передаётся на теплоноситель, который находится внутри трубы. Теплоноситель, в свою очередь, является охладителем нагревательного элемента. За счёт чего, увеличивается срок эксплуатации.

Промышленность является наиболее активным потребителем индукционных нагревателей, так как многие проектирования предусматривают вести с высокой термообработкой. С их использованием повышается прочность продукции.

В высокочастотных кузницах устанавливаются приборы с высокой мощностью.

Кузнечно-прессовые компании, используя такие агрегаты, повышают производительность труда и уменьшают износ штампов, сокращают расход металла. Установки со сквозным нагревом могут охватывать сразу некоторое количество заготовок.

При поверхностном упрочнении деталей, применение такого нагрева позволяет увеличить в несколько раз износостойкость и получить значительный экономический эффект.

Общепринятой областью применения устройств, являются пайка, плавка, нагрев перед деформацией, закалка ТВЧ. Но есть ещё зоны, где получают монокристаллические полупроводниковые материалы, наращивают эпитаксиальные плёнки, вспенивают материалы в эл. поле, ТВЧ сварка оболочек и труб.

Преимущества и недостатки

Плюсы:

  1. Высокое качество нагрева.
  2. Высокая точность управления и гибкость.
  3. Надёжность. Может работать автономно, имея автоматику.
  4. Греет любую жидкость.
  5. КПД прибора 90%.
  6. Длительный срок службы (до 30 лет).
  7. Простота монтирования.
  8. Нагревательный прибор не собирает накипь.
  9. За счёт автоматики, экономия электроэнергии.

Минусы:

  1. Высокая стоимость моделей с автоматикой.
  2. Зависимость от электроснабжения.
  3. Некоторые модели шумят.

Как сделать своими руками?

Электрическая схема индукционного нагревателя

Допустим, вы решили сделать лично индукционный нагреватель, для этого подготавливаем трубу, в неё насыпаем небольшие куски стальной проволоки (9 см в длину).

Труба может быть пластиковой или металлической, главное, с толстенными стенками. Затем, она закрывается специальными переходниками со всех сторон.

Далее, на неё накручиваем медную проволоку до 100 витков и располагаем по центральной части трубки. В результате получится индуктор. К этой обмотке подсоединяем выходную часть инвертора. В качестве помощника прибегаем к .

В качестве нагревателя выступает труба.

Подготавливаем генератор и всю конструкцию собираем.

Необходимые материалы и инструменты:

  • проволока из нержавеющей стали или катанка (диаметр 7 мм);
  • вода;
  • провод из эмалированной меди;
  • сетка из металла, имеющая маленькие отверстия;
  • переходники;
  • толстостенная труба из пластика;


Пошаговое руководство:

  1. Режим проволоку на кусочки , длиною 50 мм.
  2. Подготавливаем оболочку для нагревателя. Используем толстостенную трубу (диаметр 50 мм).
  3. Дно и верх корпуса закрываем сеткой.
  4. Готовим индукционную катушку. Медным проводом делаем намотку на корпус 90 витков и располагаем их в центре оболочки.
  5. Из трубопровода вырезаем часть трубы и устанавливаем индукционный котёл.
  6. Катушку соединяем с инвертором и заполняем котёл водой.
  7. Заземляем полученную конструкцию.
  8. Проверяем систему в работе. Без воды использовать нельзя, так как может расплавиться пластиковая труба.

Из сварочного инвертора


Самым простым бюджетным вариантом является изготовление индукционного нагревателя, используя сварочный инвертор:

  1. Для этого берём полимерную трубу , стенки её должны быть толстыми. С торцов монтируем 2 вентиля и подсоединяем разводку.
  2. Засыпаем в трубу кусочки (диаметр 5 мм) металлической проволоки и монтируем верхний вентиль.
  3. Далее, делаем 90 витков вокруг трубы медной проволокой , получаем индуктор. Нагревательным элементом является труба, генератором используем сварочный аппарат.
  4. Прибор должен стоять в режиме переменного тока с высокой частотой.
  5. Подсоединяем медную проволоку к полюсам сварочного аппарата и проверяем работу.

Работая индуктором, будет излучаться магнитное поле, при этом, вихревые токи будут раскалять рубленую проволоку, что приведёт к закипанию воды в полимерной трубе

.


  1. Открытые участки конструкции, в целях безопасности, следует изолировать.
  2. Применение индукционного нагревателя рекомендовано только в закрытых системах отопления, где обустроен насос для циркуляции теплоносителя.
  3. Конструкцию с индукционным нагревателем размещают на 800 мм от потолка, 300 – от мебели и стен.
  4. Установка манометра обезопасит вашу конструкцию.
  5. Нагревательное устройство желательно оснастить автоматической системой управления.
  6. Нагревательный прибор к электросети следует подсоединять специальными переходниками.


Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png