В основе работы вихревой трубы лежит т.н. эффект Ранка-Хилша (1933 г). Вихревая труба представляет собой газодинамическое устройство с тангенциальным входом газа, рис. 2.3.1.

Рис. 2.3.1. Схема вихревой трубы.

Как известно, в закрученных потоках вязкого газа при наличии поперечного градиента скорости поверхности тока взаимодействуют между собой из-за наличия касательных сил вязкости. Работа, затраченная на преодоление этих сил преобразуется в тепло. При этом разные струйки могут обладать разными запасами полной энергии

.

Наличие в потоке градиента температур предопределяет теплообмен между слоями газа. Однако, большой вклад в перераспределение полной энергии принадлежит турбулентному механизму переноса.

Вихревая труба состоит из корпуса, выполненного в виде цилиндрической или диффузорной трубы с диаметром начального сечения и длиной , тангенциально расположенных по отношению к корпусу вводных сопел с площадью проходного сечения , диафрагмы с диаметром отверстия , расположенной вблизи соплового входа, и конического регулировочного вентиля на противоположном от диафрагмы конце корпуса.

Интенсивность энергетического разделения газов в вихревой трубе обычно оценивают по зависимости величин избыточных температур газа и от доли охлажденного потока . При этом

,

где - температура торможения на входе в вихревую трубу, на выходе из нее охлажденного и горячего потоков соответственно;

и - массовые расходы исходного и охлажденного потоков газа соответственно.

Рис. 2.3.2. Температура газа на выходе из ВТ.

Типичные экспериментальные зависимости величин и от относительного расхода холодного потока приведены на рисунке 2.3.2.(195).

Обычно каждой паре кривых соответствуют определенные условия проведения экспериментов: отношение давлений газа на входе в вихревую трубу и выходе охлажденного потока из диафрагмы , температура газа на входе в вихревую трубу , безразмерная площадь вводных сопел и др.

Эффект энергетического разделения газа неразрывно связан с перестройкой затухающего вихревого турбулентного движения и происходит в довольно протяженной области течения, простирающейся от соплового входа на расстояние от одного до нескольких десятков диаметров вихревой трубы. При большой длине области происходящие в ней явления не будут определяться детальной структурой потока на входе в вихревую трубу и должны зависеть от переменных, характеризующих течение в целом. т.е. от интегральных величин, таких как массовый расход поступающего в трубу газа , поток импульса в направлении оси трубы , поток энергии и массовый расход отбираемого через отверстие диафрагмы холодного газа . К этим интегральным характеристикам, необходимо, добавить характерный размер - диаметр трубы .

Следует отметить, что поток газа в вихревой трубе является развитым турбулентным потоком. Можно предположить, что турбулентность, возбуждаемая струями, истекающими из вводных сопел вихревой трубы, имеет высокий уровень, превышающий во всей области энергетического разделения уровень турбулентности, порождаемый в пограничном слое на стенках трубы.

Рабочая величина давления на входе в вихревую трубу может меняться в широких пределах; по имеющимся данным вихревая труба устойчиво работает при полном давлении на входе 0,5-0,7 МПа, известны эксперименты с пропусканием через ВТ газа с давлением до 25 МПа. Температура теплого и холодного потоков зависит от начальной температуры газа на входе; рисунок дает представление о перепаде температур в потоках; этот перепад, как правило, сохраняется. Потери энергии в ВТ связаны с трением высокоскоростного газового потока о стенки.

Таким образом, вихревая труба является весьма удобным инструментом для получения высокотемпературных (+60, +800С) и низкотемпературного (-20, -400С) газовых потоков, которые можно использовать для отопительных целей и холодильной техники.

В настоящее время вихревая техника широко внедрена в промышленность: вихревые управляющие клапаны в системах управления тягой ракетных двигателей, вихревые холодильники, вихревые системы очистки, осушки газа в газовой промышленности, вихревые системы газоподготовки для нужд пневмо-газоавтоматики.

Эффект Ранка-Хилша и его применение.Часть1.

Вихревой эффект (эффект Ранка –Хилша) – эффект разделения газа или жидкости на две фракции при закручивании в цилиндрической или конической камере. На периферии образуется закрученный поток с большой температурой, а в центре – охлаждённый поток, закрученныё в противоположную сторону.

Впервые данный эффект был открыт при исследовании работы циклонов французским инженером Жозефом Ранком в конце двадцатых годов прошлого столетия, который и запатентовал изделие на основе этого эффекта - “Трубку Ранка” (Вихревую трубку Ранка).

На рисунке схема работы, а на фото - наиболее типичный вид серийно выпускаемых вихревых трубок

В сороковых годах дополнительными исследованиями эффекта и доработкой Трубки Ранка занимался немецкий физик Роберт Хилш. В честь этих выдающихся исследователей интересующий нас эффект и стали называть эффектом Ранка-Хилша.

Дальнейшие исследования проводились во многих странах, в том числе и в СССР. Однако исследования эти носили случайный характер. Причина-отсутствие теории достоверно объясняющей этот парадоксальный, чрезвычайно впечатляющий эффект.

А как всегда получается, - что не можем объяснить, откладываем подальше, до лучших времён.

Тем не менее, исследования пусть недостаточно, но проводились, и в СССР были выпущены две книги (две известных автору статьи, а так может и больше), целиком посвященные этому эффекту и возможности его практического применения.

Один известный в то время рационализатор пытался внедрить изготовленную им трубку для охлаждения токарных резцов непосредственно в процессе резания.

Работа предложенного к испытаниям изделия впечатлила. При подключении трубки к заводской воздушной сети из ”холодного ” конца практически пошёл снег. Эффект охлаждения был достигнут.

Однако побочный эффект, возникший при испытаниях этой, довольно большой по габаритам, трубки сразу перечеркнул возможность её использования, по крайней мере в таком виде, для охлаждения инструмента при точении. Поток воздуха был настолько силён, что мгновенно раздул металлическую стружку со станка во все стороны, в том числе и на соседние станки, на работающих на них людей. Испытания ведь проводились на станке с открытой рабочей зоной, да и других станков в то время практически и не было. Кроме того, очень сильный шум при работе этой большой трубки тоже не способствовал её дальнейшему внедрению.

Однако, вернёмся в наше время. Серийно выпускаемые вихревые трубки, специально предназначенные для охлаждения зоны резания, оснащаются эффективными глушителями шума, имеют различные приспособления для крепления к станку (механические, магнитные), имеют удобную регулировку температуры выходящего воздуха, оснащаются гибкими патрубками для подвода потока холодного воздуха непосредственно в нужное место. Выпускаются трубки различной мощности, что позволяет подобрать трубку в соответствии с поставленной задачей. Все трубки оснащаются фильтрам масло и водо –отделителями.

Кстати, как мы уже отмечали, поток воздуха разделяется в Трубке Ранка на два – холодный и горячий. Так вот, выпускаются специальные трубки, предназначенные для нагрева. Они имеют некоторые конструктивные особенности. Преимущества таких нагревателей - абсолютная безопасность, так как для их работы не используются электрические нагревательные элементы и открытое пламя.

Интересно то, что, как мы уже отмечали, в мире выпускается громадное количество вихревых трубок Ранка различных типоразмеров и видов. Вместе с тем, в открытой прессе практически не встречается информация о их практическом применении при обработке того или иного материала, режимах резания, режущих пластинах. Нам попадали статьи о применении охлаждающих трубок Ранка при обработке чугуна, но тут и так всё понятно, а для остальных обрабатываемых материалов только общая информация. Вместе с тем, теоретический эффект от внедрения этих интереснейших изделий может быть громадным. Представьте только – обработка без применения СОЖ… Не в этом то смысл практического закрытия информации? В общем – вихревая трубка Ранка, это просто “золотая жила” для различных “внедренцев” и исследователей, работающих в области обработки различных материалов. Можно предположить, что ещё много диссертаций будет защищено по этой теме. Ну и хорошо. Была бы польза.

С самого начала привлекал изобретателей кажущейся простотой технической реализации - в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы - его горячая часть. Однако на самом деле не всё так просто - добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам . Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение - например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) - область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка). Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса , энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу. Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил - стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее - возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.

На мой взгляд, на данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола (в формате pdf). Как ни удивительно, в своей основе его выводы о сути явления совпадают с полученными нами «на пальцах». К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который, на мой взгляд, весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.Гуцол называет «разделением быстрых и медленных микрообъёмов».

Современное объяснение эффекта Ранка

В настоящее время наиболее общепризнанным объяснением эффекта Ранка является следующее.

Известно, что если измерять температуру движущегося (скажем, в трубе) потока двумя термометрами, то они покажут разную температуру, если один из них неподвижен относительно потока (т.е. перемещается вместе с ним), а другой вмонтирован в трубу. При этом температура, измеренная вмонтированным в трубу термометром будет связана с температурой, измеренной термометром, движущимся вместе с потоком, следующим образом:

T 0 = T + v 2 / (2 · c p) (1),

где T 0 - температура, измеренная вмонтированным в трубу термометром, «температура торможения»; T - «собственная» температура потока, измеренная термометром, движущимся вместе с ним, «статическая температура»; v - скорость движения потока по трубе; c p - удельная теплоёмкость вещества потока.

Таким образом, мы видим, что температура торможения, измеряемая неподвижным термометром, при одной и той же собственной статической температуре этого потока будет зависеть от его скорости. Если относительно такого термометра остановить весь газ, то вся его температура поднимется до этого значения - кинетическая энергия преобразуется в тепловую. Именно это явление вызывает нагрев передних кромок крыла у скоростных самолётов (прежде всего сверхзвуковых), а также сгорание в атмосфере метеоритов и отработавших свой срок космических летательных аппаратов.

Предполагается, что возле выходного отверстия диафрагмы угловые скорости и холодного и горячего потоков равны, то есть весь вихрь вращается как единое твёрдое тело («квазитвёрдый» вихрь). В таких условиях на разных радиусах вихревой трубы газ имеет различную линейную скорость, соответственно он имеет и различную термодинамическую температуру. Благодаря эффективному турбулентному перемешиванию внутри вихревой трубки, эти температуры стремятся выровняться, из-за чего и происходит перераспределение собственных («термостатических») температур различных частей потока газа, которое становится явным, когда газ выходит из вихревой трубы.

К сожалению, это объяснение нельзя признать удовлетворительным. Во-первых, оно является «чисто математическим», и если пытаться наполнить его физической сутью, то мы приходим к тому же «разделению быстрых и медленных микрообъёмов». Во-вторых, не совсем понятно, с какой стати именно температура торможения во всём сечении вихревой трубы априори принимается одинаковой? А приняв в качестве основной гипотезу обмена энергией между различными частями потока, мы должны придти к обратному распределению температур. В самом деле, внешние слои имеют наибольшую линейную скорость и, следовательно, наибольшую температуру торможения. Следовательно, энергия от них должна перетекать к медленно движущимся центральным слоям, повышая их собственную температуру. Таким образом, из середины должен выходить горячий газ, а из периферийной щели - холодный, что прямо противоречит наблюдаемым фактам. Поэтому утверждается, что быстро движущийся на периферии газ, попадая в результате турбулентного движения в центр, там тормозится и теряет свою кинетическую энергию. Но опять же, куда может деться эта энергия? Только в тепло, а значит, опять-таки, в середине температура должна расти. Наконец, есть данные, что вихрь внутри трубы Ранка отнюдь не квазитвёрдый, и более того, его центральная часть может вращаться в противоположную сторону, а в таком случае вся эта теория вообще не соответствует практике. В общем, прежде чем строить теории, необходимы практические измерения хотя бы скоростей и направлений вращения на разных радиусах и на разных расстояниях от диафрагмы.

Другие объяснения эффекта Ранка

Как ни странно, объяснить эффект Ранка можно и с помощью более простых механистических подходов к идеальному газу, изложенных при рассмотрении поворота потока идеального газа .

Если в таких механистических объяснениях есть зерно истины, то для оптимизации устройств на эффекте Ранка будут эффективны следующие советы.

  1. Для наиболее эффективного разделения следует всячески предотвращать возникновение турбулентностей, перемешивающих уже разделённые слои. Отсюда следуют требования к гладкости внутренних поверхностей устройства и необходимость ламинарности входного потока.
  2. Рабочий поток не должен делать слишком много оборотов: практически всё разделение происходит на первых витках, и дальнейшее движение будет лишь приводить к ненужным потерям на трение и увеличивать аэро/гидродинамическое сопротивление, затрудняя работу нагнетателя. Однако, чем выше плотность потока, тем труднее будет идти разделение и тем больше оборотов надо будет сделать.
  3. В наибольшей степени эффект Ранка должен проявляться для разреженного газа, свойства которого близки к свойствам идеального газа. При возрастании плотности газа и тем более при использовании жидкостей сокращение свободного пробега частиц и повышение вязкости среды становится существенным фактором, наряду с турбулентностью ухудшающим температурное разделение исходного потока.
  4. Оптимальная скорость потока должна быть соизмерима со скоростью теплового движения его частиц (как известно, в газах эта скорость близка к скорости звука). Слишком высокая скорость приведёт к тому, что все частицы будут отбрасываться к внешней стенке, и у внутренней стенки образуется бесполезная область вакуума, а слишком низкая ухудшит разделение частиц по их скоростям. Впрочем, в реальности энергозатраты на разгон потока до скорости звука могут оказаться менее выгодными, чем для получения того же количества тепла/холода при меньшей скорости, но большем расходе потока.

Есть и другие варианты.

Вот ещё одно заслуживающее внимание объяснение эффекта Ранка от Г.В.Трещалова , правда, оно построено на предположении максвелловского распределения молекул по скоростям в рамках молекулярно-кинетической теории газов.

А вот , в которой, среди прочего, рассмотрена и работа вихревой трубы. Она основывается на взаимодействии слоёв среды. Существование подобных слоёв маловероятно в рамках молекулярно-кинетической теории, зато неизбежно в теории глобулярной организации вещества.

Классические схемы вихревых труб на эффекте Ранка

Классическими устройствами, использующими эффект Ранка, являются вихревые трубы , которые строят по двум основным схемам: прямоточной и противоточной.

Классические схемы прямоточной (а ) и противоточной (б ) вихревых труб на эффекте Ранка. 1 - гладкая цилиндрическая труба, 2 - вход газа (завихритель тангециального или улиточного типа), 3 - дроссель, 4 - выход горячего газа через кольцевую щель, 5 - диафрагма для выхода холодного газа.

Вашему вниманию и обсуждению представлен твердотопливный котел на угле, вобравший на мой взгляд все лучшие технологии прошлого и современности.

Данный котел сможет не только обогреть дом, но и вырабывать электроэнергию и пиролизный газ для бытового использования в плите итд. Е

Конечно, я не теплотехник, и не печник, но судя по тем моделям современных котлов, что есть в продаже, вспоминаю поговорку: «Ковчег построил любитель, профессионалы построили "Титаник "».

Предыстория.

Подбирая твердотопливный котел отопления, изучил почти всех производителей котлов для использования в частном доме и такое ощущение, что «современные» котлы выпускают в сараях причем с низкой эффективностью и из консервных банок! Толщина металла у основной массы продавцов составляет от 3 мм до максимум 6 мм, а в «гарантийных обязательствах написано: котел может служить до 7 лет, «при правильной эксплуатации». То есть вам не кто не гарантирует, что эта жестянка не прогорит раньше первого сезона эксплуатации!

Все это говорит о том, что производители котельного оборудования не заинтересованы в выпуске хороших и долговечных котлов. Когда изучаешь сколько такие котлы потребляют угля или дров удивляешь цифры фантастические от 3 до 10 кг. топлива в ЧАС!

В связи с удручающей ситуацией на рынке котлов, пришлось изучить опыт начиная от древности до наших дней. Требования которые хотелось бы видеть от СОВРЕМЕННОГО КОТЛА, не то что сейчас продают, из консервных банок с низким КПД.

На мой взгляд твердотопливный котел отопления должен отвечать следующим требованиям:

1) Простой и надежный

2) Энергонезависимый

3) Потреблять минимум топлива

4) Производить тепловую энергию

5) Производить Древесный газ (ПИРОЛЕЗНЫЙ) для подключения плиты и других источников потребления.

Для решения этих задач пришлось изучать опыт от древних Аркаимцев до современных котлов с циркулирующим кипящим слоем (которые почему не производят для домашнего использования)
Привожу план схему КОТЛА, разработанного мною, где применены следующие технологии:

1) Трубка Ранке. (на рисунке с права от котла) За основу взята технология котлов с циркулирующим кипящим слоем, что способствует более тщательному сгоранию топлива. За счет использования «трубы Ранке» происходит разделение вихревых воздушных потоков на горячий и холодный, это позволяет несгоревшие частички топлива возвращать обратно в топливную камеру, а более горячий воздушный поток поднимающийся вверх использовать для разогревания воды до состояния пара. Разогретый пар можно использовать для небольшой паровой электро турбины .

2) Сухая возгонка древесины. Технология получения и очищения ДРЕВЕСТНОГО ГАЗА (пиролизного) разработанная Петр Григорьевичем Соболевским в 1811 году для освещения улиц (термолампами) и отопления домов. Эта технология ПРОСТА и прекрасно себя зарекомендовала, с успехом применялась несколько десятилетий для освещения крупных городов России: Москва, Санкт- Петербург, итд.

Принцип действия сухой возгонки древесины понятен из этих картинок:

Принципиальная схема «термолампа»
конструкции П. Г. Соболевского (1811 г.):
1 – печь; 2 – поддувало или зольник; 3 – зольная решетка;
4 – дверцы печные; 5 – чугунный цилиндр; 6 – отверстие для загрузки
дров; 7 – пространство около цилиндра, через которое проходит пламя;
8 – дымовая труба; 9 – задвижка в трубе; 10 – конец цилиндра,
сообщенный с холодильником; 11 – холодильник; 12 – приемный сосуд
для кислоты и дегтя; 13 – сосуд, наполненный до половины водой;
14 – медная труба, пропускающая газ через воду из сосуда 12 в сосуд 13;
15 – кожаная трубка с краном, по которой очищенный газ поступает
в газгольдер; 16 – газгольдер; 17 – кожаная трубка, выводящая газ
к лампам; 18 – линия, показывающая, до какой высоты может
подняться колокол газгольдера; 19 – отводная трубка для отвода
излишнего газа.

1) Создание реактивной тяги в печи .

а) Смысл технологии реактивной тяги в печи сводится к подводу охлажденного воздуха в зону горения. Для этого воздух в поддувало через трубу подводят из колодца или охлаждают прогоняя через более холодные слои земли, это способствует более интенсивному и жаркому горению топлива.

б) Создание вихревых потоков. В поддувало печи подводится воздух не с одной стороны, с двух противоположных сторон - это создает эффект «сквозняка» собственно - это и есть вихревой поток. Этот метод применяли в древнем городе Аркаиме.

С каждым годом подорожание отопления заставляет искать более дешевые способы обогрева жилой площади в холодную пору года. Особенно это относится к тем домам и квартирам, которые имеют большую квадратуру. Одним из таких способов экономии является вихревой . Он имеет массу преимуществ, а также позволяет экономить на создании. Простота конструкции не затруднит его сбор даже у новичков. Далее рассмотрим преимущества такого способа отопления, а также попытаемся составить план-схему по сбору теплогенератора своими руками.

Теплогенератор – это специальный прибор, основная цель которого вырабатывать тепло, путем сжигания, загружаемого в него, топлива. При этом вырабатывается тепло, которое затрачивается на обогрев теплоносителя, который уже в свою очередь непосредственно выполняет функцию обогрева жилой площади.

Первые теплогенераторы появились на рынке еще в 1856 году, благодаря изобретению британского физика Роберта Бунзена, который в ходе ряда проведенных опытов заметил, что вырабатываемое при горении тепло можно направлять в любое русло.

С тех пор генераторы, конечно же, модифицировались и способны обогревать гораздо больше площади, нежели это было 250 лет назад.

Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды :

  1. Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
  2. Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
  3. Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
  4. – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.


Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png