Природный газ — это самое распространенное топливо на сегодняшний день. Природный газ так и называется природным, потому что он добывается из самых недр Земли.

Процесс горения газа является химической реакцией, при которой происходит взаимодействия природного газа с кислородом, который содержится в воздухе.

В газообразном топливе присутствует горючая часть и негорючая.

Основным горючим компонентом природного газа является метан — CH4. Его содержание в природном газе достигает 98 %. Метан не имеет запаха, не имеет вкуса и является нетоксичным. Предел его воспламеняемости находится от 5 до 15 %. Именно эти качества позволили использовать природный газ, как один из основных видов топлива. Опасно для жизни концентрация метана более 10 %, так может наступить удушье, вследствие нехватки кислорода.

Для обнаружения утечки газа, газ подвергают одоризации, иначе говоря добавляют сильнопахнущее вещество (этилмеркаптан). При этом газ можно обнаружить уже при концентрации 1 %.

Кроме метана в природном газе могут присутствовать горючие газы — пропан, бутан и этан.

Для обеспечения качественного горения газа необходимо в достаточном количестве подвести воздух в зону горения и добиться хорошего перемешивания газа с воздухом. Оптимальным считается соотношение 1: 10. То есть на одну часть газа приходится десять частей воздуха. Кроме этого необходимо создание нужного температурного режима. Чтобы газ воспламенился необходимо его нагреть до температуры его воспламенения и в дальнейшем температура не должна опускаться ниже температуры воспламенения.

Необходимо организовать отвод продуктов сгорания в атмосферу.

Полное горение достигается в том случае, если в продуктах сгорания выходящих в атмосферу отсутствуют горючие вещества. При этом углерод и водород соединяются вместе и образуют углекислый газ и пары воды.

Визуально при полном сгорании пламя светло-голубое или голубовато-фиолетовое.

Полное сгорание газа.

метан + кислород = углекислый газ + вода

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Кроме этих газов в атмесферу с горючими газами выходит азот и оставшийся кислород. N 2 + O 2

Если сгорание газа происходит не полностью, то в атмосферу выбрасываются горючие вещества – угарный газ, водород, сажа.

Неполное сгорание газа происходит вследствие недостаточного количества воздуха. При этом визуально в пламени появляются языки копоти.

Опасность неполного сгорания газа состоит в том, что угарный газ может стать причиной отравления персонала котельной. Содержание СО в воздухе 0,01-0,02% может вызвать легкое отравление. Более высокая концентрация может привести к тяжелому отравлению и смерти.

Образующаяся сажа оседает на стенках котлов ухудшая тем самым передачу тепла теплоносителю снижает эффективность работы котельной. Сажа проводит тепло хуже метана в 200 раз.

Теоретически для сжигания 1м3 газа необходимо 9м3 воздуха. В реальных условиях воздуха требуется больше.

То есть необходимо избыточное количество воздуха. Эта величина обозначаемая альфа показывает во сколько раз воздуха расходуется больше, чем необходимо теоретически.

Коэффициент альфа зависит от типа конкретной горелки и обычно прописывается в паспорте горелки или в соответствие с рекомендациями организации производимой пусконаладочные работы.

С увеличением количества избыточного воздуха выше рекомендуемого, растут потери тепла. При значительном увеличение количества воздуха может произойти отрыв пламени, создав аварийную ситуацию. Если количество воздуха меньше рекомендуемого то горение будет неполным, создавая тем самым угрозу отравления персонала котельной.

Для более точного контроля качества сгорания топлива существуют приборы — газоанализаторы, которые измеряют содержание определенных веществ в составе уходящих газов.

Газоанализаторы могут поступать в комплекте с котлами. В случае если их нет, соответствующие измерения проводит пусконаладочная организация при помощи переносных газоанализаторов. Составляется режимная карта в которой прописываются необходимые контрольные параметры. Придерживаясь их можно обеспечить нормальное полное сгорание топлива.

Основными параметрами регулирования горения топлива являются:

  • соотношение газа и воздуха подаваемых на горелки.
  • коэфициент избытка воздуха.
  • разряжение в топке.

При этом под коэфициентом полезного действия котла подразумевают соотношение полезного тепла к величине всего затраченного тепла.

Состав воздуха

Название газа Химический элемент Содержание в воздухе
Азот N2 78 %
Кислород O2 21 %
Аргон Ar 1 %
Углекислый газ CO2 0.03 %
Гелий He менее 0,001 %
Водород H2 менее 0,001 %
Неон Ne менее 0,001 %
Метан CH4 менее 0,001 %
Криптон Kr менее 0,001 %
Ксенон Xe менее 0,001 %

Топливом для котельной является природный газ, поступающий с ГРС. Природный газ с давлением 1-2 МПа, температура, расход и давление которого регистрируются приборами коммерческого учета, поступает на первую ступень редуцирования. Давление после первой ступени редуцирования регулируется клапаном регулятора давления.

Далее топливный газ с давлением около 0,5 МПа поступает в трубное пространство подогревателя, теплоносителем которого является пар 0,3-0,6 МП. Температура топливного газа после подогревателя изменяется регулировочным клапаном, установленным на трубопроводе пара. После подогревателя давление топливного газа снижается второй ступенью редуцирования до 3-80 кПа.После второй ступени редуцирования газ поступает на горелки котлов через стандартные блоки газооборудования (СБГ). Перед СБГ каждого котла измеряется и регистрируется давление, расход, температура газа. Давление газа после СБГ каждого котла также регистрируется

5.3.2. Особенности процесса горения природного газа.

Выбор типа и количества газовых горелок, их размещение и организация процесса сгорания зависят от особенностей теплового и аэродинамического режима работы промышленной установки. Правильное решение этих задач определяет интенсивность технологического процесса и экономичность установки. Теоретические предпосылки и опыт работы свидетельствуют, что при проектировании новых газовых установок основные показатели их работы, как правило, могут быть улучшены. Однако здесь следует отметить, что неправильно выбранный способ сжигания газа и неудачное расположение горелок снижают производительность и к. п. д. установок.

При проектировании промышленных газовых установок задачи интенсификации технологического процесса и повышения эффективности использования топлива должны решаться с наименьшими материальными затратами и с соблюдением ряда других условий, таких как надежность работы, безопасность и т. д.

При сжигании природного газа в отличие от сжигания других видов топлива можно в широких пределах изменять характеристики факела. Поэтому он может быть использован практически для установок любого назначения. Здесь следует лишь помнить, что требуемая максимальная интенсификация технологического процесса, повышение к. п. д., а также удовлетворение других требований, предъявляемых к установке, не могут быть обеспечены только выбором той или иной газовой горелки, а будут достигнуты при правильном решении всего комплекса вопросов теплообмена и аэродинамики, начиная от подачи воздуха и газа и кончая удалением отработанных продуктов горения в атмосферу. Особое значение имеет начальная стадия процесса - организация сжигания газа.

Природный газ – это газ без цвета. Значительно легче воздуха. Присутствие газа в воздухе помещений, колодцах, шурфах более 20% вызывает удушье, головокружение, потерю сознания и смерть. По санитарным нормам природный газ (метан) относится к 4 классу опасности (вещество малоопасное). Малотоксичен, ядом не является.

Состав природного газа:

Метан 98,52%;

Этан 0,46%;

Пропан 0,16%;

Бутан 0,02%;

Азот 0,73%;

Углекислый газ 0,07%.

Если природный газ прошел все степени очистки, то его свойства мало отличаются от свойств метана. Метан – простейший элемент из ряда метановых углеводородов. Свойства метана:

Удельная теплота сгорания 7980 Ккал/м 3 ;

Сжижается при t°=-161°С, затвердевает при t°=-182°С;

Плотность метана – 0,7169 кг/м 3 (легче воздуха в 2 раза);

Температура воспламенения t°=645°С;

Температура горения t°=1500 ÷ 2000°С

Пределы взрываемости 5 ÷ 15%.

При взаимодействии с воздухом образуются высоко взрывоопасные смеси, способные взрываться, производить разрушения.

Горение любого топлива, в том числе и газового, является реакцией химического соединения его с кислородом и сопровождается выделением теплоты. Количество теплоты, получаемое при полном сгорании 1 м 3 (или 1 кг) газа, называется его теплотой сгорания. Различают теплоту сгорания низшую, в которой не учитывается скрытая теплота образования водяных паров, содержащихся в продуктах горения, и высшую, когда эта теплота учитывается. Разница между высшей и низшей теплотой сгорания зависит от количества водяных паров, образующихся при сгорании топлива, и составляет примерно 2500 кДж на 1 кг или 2000 кДж на 1 м 3 водяных паров.

Теплота сгорания различных видов топлив может значительно различаться. Так, например, дрова и торф имеют низшую теплоту сгорания до 12500, лучшие каменные угли-до 31000, а нефть около 40000 кДж/кг. Природный газ имеет низшую теплоту сгорания 40-44 МДж/кг.

Полное время сгорания  определяется временем  д смесеобразования (диффузионных процессов) и временем  к протекания химических реакций горения (кинетических процессов). С учетом того, что может происходить наложение этих стадий процесса, получаем  д + к.

При  к  д (горение протекающее одновременно со смесеобразованием в топке называется диффузионным , так как это смесеобразование включает процессы турбулентной (в заключительной стадии - молекулярной) диффузии).

При  д  к  к (горение заранее подготовленной смеси нередко условно называют кинетическим , оно определяется кинетикой химических реакций).

Когда  д и к соизмеримы, процесс горения называют смешанным.

Следующий этап за смесеобразованием - нагрев и воспламенение топлива. При смешивании струи горючего газа со струёй воздуха и постепенном повышении их температуры при некоторой температуре произойдет воспламенение смеси. Минимальную температуру, при которой смесь воспламеняется, называют температурой воспламенения.

Температура воспламенения не является физико-химической константой вещества, так как кроме природы горючего газа зависит от концентрации газа и окислителя, а также от интенсивности теплообмена между газовой смесью и окружающей средой.

Существуют верхний и нижний пределы концентрации газа и окислителя и вне этих пределов при данной температуре смеси не воспламеняются. При повышении температуры газо-воздушной смеси согласно закону Аррениуса происходит увеличение скорости реакции пропорционально е -Е/ RT , этой же величине пропорционально тепловыделение. Если тепло потери зоны горения, связанные с теплообменом с окружающей средой, превышают тепловыделение, то воспламенение и горение невозможны. Обычно разогрев протекает одновременно со смесеобразованием.

Газо-воздушная смесь, в которой содержание газа находится между нижним и верхним пределами воспламенения, является взрывоопасной. Чем шире диапазон пределов воспламенения (называемых также пределами взрываемости), тем более взрывоопасен газ. По химической сущности взрыв газо-воздушной (газокислородной) смеси - процесс очень быстрого (практически мгновенного) горения, приводящий к образованию продуктов горения, имеющих высокую температуру, и резкому возрастанию их давления. Расчетное избыточное давление при взрыве природного газа 0,75, пропана и бутана - 0,86, водорода-0,74, ацетилена-1,03 МПа. В практических условиях температура взрыва, не достигает максимальных значений и возникающие давления ниже указанных, однако они вполне достаточны для разрушения не только обмуровки котлов, зданий, но и металлических емкостей, если в них произойдет взрыв.

В результате воспламенения и горения возникает пламя, которое является внешним проявлением интенсивных реакций окислителя вещества. Движение пламени по газовой смеси называется распространением пламени. При этом газовая смесь делится на две части- сгоревший газ, через который пламя уже прошло, и несгоревший газ, который вскоре войдет в область пламени. Граница между этими двумя частями горящей газовой смеси называется фронтом пламени.

Факелом называют поток, содержащий смесь воздуха, горящих газов, частиц топлива и продукты сгорания, в котором происходит разогрев, воспламенение и горение газообразного топлива.

При обычных температурах в топках (1000-1500 °С) углеводороды, включая метан, даже в очень малые промежутки времени в результате термического разложения дают заметные количества элементарного углерода. В результате появления в факеле элементарного углерода процесс горения в известной степени приобретает элементы гетерогенного, т. е. протекающего на поверхности твердых частиц. Наличие катализаторов (окислов железа, никеля) значительно ускоряет процесс разложения метана и других углеводородов.

Таким образом, в топке или рабочем пространстве печи между моментом ввода газа и воздуха и получением конечных продуктов горения в результате наложения процесса термического распада углеводородов и цепной реакции окисления наблюдается весьма сложная картина, характеризующаяся наличием как продуктов окисления СО 2 и Н 2 О, так и СО, Н 2 , элементарного углерода и продуктов неполного окисления (из последних особо важное значение имеет формальдегид). Соотношение между указанными компонентами будет зависеть от условий и длительности нагревания газа, предшествующего реакциям окисления.

При горении топлива происходят химические процессы окисления его горючих составляющих, сопровождающиеся интенсивным тепловыделением и быстрым подъемом температуры продуктов сгорания.

Различают гомогенное горение, протекающее в объеме, когда топливо и окислитель находятся в одинаковом агрегатном состоянии, и гетерогенное горение, происходящее на поверхности раздела фаз, когда горючее вещество и окислитель находятся в различных агрегатных состояниях.

Горение газообразного топлива является процессом гомогенным. При горении скорость прямого процесса несоизмеримо больше скорости обратного, поэтому обратной реакцией можно пренебречь. Напомним, что для гомогенной реакции горения выражение скорости прямой реакции будет иметь вид:

где -время; Т- абсолютная температура; К- универсальная газовая постоянная; k - константа скорости реакции, зависящая от природы реагирующих веществ, действия катализаторов, температуры; k 0 - эмпирическая константа; Е- энергия активации, характеризующая наименьшую избыточную энергию, которой должны обладать сталкивающиеся частицы, чтобы произошла реакция.

Из выражений (второе из них называют уравнением Аррениуса) следует, что скорость реакции возрастает с увеличением концентраций (давления в системе) и температуры и с уменьшением энергии активации. Экспериментальные измерения дают для энергии активации значительно меньшую величину, чем приведенные закономерности химической кинетики. Это объясняется тем, что процессы горения газов относятся к цепным реакциям и протекают через промежуточные стадии с непрерывным образованием активных центров (атомов или радикалов).

Например, при горении водорода (рис. 3) с помощью свободных атомов кислорода и радикалов гидроксила образуются три активных атома водорода вместо одного, имевшегося в начале рассматриваемого этапа реакции. Такое утроение происходит на каждом этапе, и в цепных реакциях лавинообразно нарастает количество активных центров. Кроме того, взаимодействие между неустойчивыми промежуточными продуктами идет гораздо быстрее, чем между молекулами.

Рис. 3. Схема цепной реакции горения водорода

Суммарная скорость реакции горения водорода определяется скоростью наиболее медленной реакции (выражаемой уравнением Н+О 2 ОН+Н 2) =kC н С о, где С н, С о - концентрации атомарного водорода и молекулярного кислорода.

Процессы окисления углеводородов, составляющих органическую часть природных и попутных газов, являются наиболее сложными. До сего времени отсутствуют четкие представления о кинетическом механизме протекания реакций, хотя можно с уверенностью сказать, что горение имеет цепной характер при наличии периода индукции и протекает с образованием многочисленных промежуточных продуктов частичного окисления и раз­ложения.

Приближенная схема стадийного горения метана может быть представлена набором следующих реакций:

Хотя начальные и конечные продукты реакции горения – газы, в промежуточных продуктах помимо газов может быть элементарный углерод в виде мельчайшей сажистой взвеси.

Скорость реакции горения окиси углерода зависит от концентраций в зоне реакции окиси углерода и водяных паров, а скорость цепного горения метана и других углеводородов - от концентраций атомарного водорода, кислорода и водяных паров.

Горение газового топлива представляет собой совокупность сложных аэродинамических, тепловых и химических процессов. Процесс горения газообразного топлива состоит из нескольких стадий: смешение газа с воздухом, нагрев полученной смеси до температуры воспламенения, зажигание и горение.

Горение газообразного топлива представляет собой сочетание следующих физических и химических процессов: смешение горючего газа с воздухом, подогрев смеси, термическое разложение горючих компонентов, воспламенение и химическое соединение горючих элементов с кислородом воздуха.

Устойчивое горение газовоздушной смеси возможно при непрерывном подводе к фронту горения необходимых количеств горючего газа и воздуха, их тщательном перемешивании и нагреве до температуры воспламенения или самовоспламенения (табл. 5).

Воспламенение газовоздушной смеси может быть осуществлено:

  • нагревом всего объема газовоздушной смеси до температуры самовоспламенения. Такой способ применяют в двигателях внутреннего сгорания, где газовоздушную смесь нагревают быстрым сжатием до определенного давления;
  • применением посторонних источников зажигания (запальников и т. д.). В этом случае до температуры воспламенения нагревается не вся газовоздушная смесь, а ее часть. Данный способ применяется при сжигании газов в горелках газовых приборов;
  • существующим факелом непрерывно в процессе горения.

Для начала реакции горения газообразного топлива следует затратить определенное количество энергии, необходимой для разрыва молекулярных связей и создания новых.

Химическая формула сгорания газового топлива с указанием всего механизма реакции, связанного с возникновением и исчезновением большого количества свободных атомов, радикалов и других активных частиц, сложна. Поэтому для упрощения пользуются уравнениями, выражающими начальное и конечное состояния реакций горения газа.

Если углеводородные газы обозначить С m Н n , то уравнение химической реакции горения этих газов в кислороде примет вид

C m H n + (m + n/4)O 2 = mCO 2 + (n/2)H 2 O ,

где m - количество атомов углерода в углеводородном газе; n - количество атомов водорода в газе; (m + n/4) - количество кислорода, необходимое для полного сгорания газа.

В соответствии с формулой выводятся уравнения горения газов:

  • метана СН 4 + 2O 2 = СO 2 + 2Н 2 O
  • этана С 2 Н 6 + 3,5O 2 = 2СO 2 + ЗН 2 O
  • бутана С 4 Н 10 + 6,5O 2 = 4СO 2 + 5Н 2 0
  • пропана C 3 H 8 + 5O 3 = ЗСO 2 + 4Н 2 O.

В практических условиях сжигания газа кислород берется не в чистом виде, а входит в состав воздуха. Так как воздух состоит по объему на 79 % из азота и на 21 % из кислорода, то на каждый объем кислорода требуется 100: 21 = 4,76 объема воздуха или 79: 21 = = 3,76 объема азота. Тогда реакцию горения метана в воздухе можно записать следующим образом:

СН 4 + 2O 2 + 2*3,76N 2 = CO 2 + 2H 2 O + 7,52N 2 .

Из уравнения видно, что для сжигания 1 м 3 метана требуется 1 м 3 кислорода и 7,52 м 3 азота или 2 + 7,52 = 9,52 м 3 воздуха.

В результате сгорания 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 водяных паров и 7,52 м 3 азота. В таблице ниже приведены эти данные для наиболее распространенных горючих газов.

Для процесса горения газовоздушной смеси необходимо, чтобы количество газа и воздуха в газовоздушной смеси было в определенных пределах. Эти пределы называются пределами воспламеняемости или пределами взрываемости. Различают нижний и верхний пределы воспламеняемости. Минимальное содержание газа в газовоздушной смеси, выраженное в объемных процентах, при котором происходит воспламенение, называется нижним пределом воспламеняемости. Максимальное содержание газа в газовоздушной смеси, выше которого смесь не воспламеняется без подвода дополнительной теплоты, называется верхним пределом воспламеняемости.

Количество кислорода и воздуха при сжигании некоторых газов

Для сжигания 1 м 3 газа требуется, м 3

При сжигании 1 м 3 газа выделяется, м 3

Теплота сгорания Он,кДж/м 3

кислорода

диоксида

углерода

Оксид углерода

Если в газовоздушной смеси содержится газа меньше нижнего предела воспламеняемости, то она не будет гореть. Если в газовоздушной смеси недостаточно воздуха, то горение протекает не полностью.

Большое влияние на величины пределов взрываемости оказывают инертные примеси в газах. Увеличение содержания в газе балласта (N 2 и СO 2) сужает пределы воспламеняемости, а при повышении содержания балласта выше определенных пределов газовоздушная смесь не воспламеняется при любых соотношениях газа и воздуха (таблица ниже).

Количество объемов инертного газа на 1 объем горючего газа, при котором газовоздушная смесь перестает быть взрывоопасной

Наименьшее количество воздуха, необходимое для полного сжигания газа, называется теоретическим расходом воздуха и обозначается Lt, то есть если низшая теплота сгорания газового топлива 33520 кДж/м 3 , то теоретически необходимое количество воздуха для сжигания 1 м 3 газа

L T = (33 520/4190)/1,1 = 8,8 м 3 .

Однако действительный расход воздуха всегда превышает теоретический. Объясняется это тем, что очень трудно достигнуть полного сгорания газа при теоретических расходах воздуха. Поэтому любая газовая установка для сжигания газа работает с некоторым избытком воздуха.

Итак, практический расход воздуха

L n = αL T ,

где L n - практический расход воздуха; α - коэффициент избытка воздуха; L T - теоретический расход воздуха.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет α = 1,05 - 1,2. Коэффициент α показывает, во сколько раз действительный расход воздуха превышает теоретический, принимаемый за единицу. Если α = 1, то газовоздушная смесь называется стехиометрической .

При α = 1,2 сжигание газа производится с избытком воздуха на 20 %. Как правило, сжигание газов должно проходить с минимальным значением а, так как с уменьшением избытка воздуха снижаются потери теплоты с уходящими газами. Воздух, принимающий участие в горении, бывает первичным и вторичным. Первичным называется воздух, поступающий в горелку для смешения в ней с газом; вторичным — воздух, поступающий в зону горения не в смеси с газом, а отдельно.

К атегория: Газоснабжение

Процесс горения газа

Основным условием для горения газа является наличие кислорода (а следовательно, воздуха). Без присутствия воздуха горение газа невозможно. В процессе горения газа происходит химическая реакция соединения кислорода воздуха с углеродом и водородом топлива. Реакция происходит с выделением тепла, света, а также углекислого газа и водяных паров.

В зависимости от количества воздуха, участвующего в процессе горения газа, происходит полное или неполное его сгорание.

При достаточном поступлении воздуха происходит полное сгорание газа, в результате которого продукты его горения содержат негорючие газы: углекислый газ С02, азот N2, водяные пары Н20. Больше всего (по объему) в продуктах горения азота - 69,3-74%.

Для полного сгорания газа также необходимо, чтобы он смешивался с воздухом в определенных (для каждого газа) количествах. Чем выше калорийность газа, тем требуется большее количество воздуха. Так, для сжигания 1 м3 природного газа требуется около 10 м3 воздуха, искусственного - около 5 м3, смешанного - около 8,5 м3.

При недостаточном поступлении воздуха происходит неполное сгорание газа или химический недожог горючих составных частей; в продуктах сгорания появляются горючие газы-окись углерода СО, метан СН4 и водород Н2

При неполном сгорании газа наблюдается длинный, коптящий, светящийся, непрозрачный, желтого цвета факел.

Таким образом, недостаток воздуха приводит к неполному сгоранию газа, а избыток - к чрезмерному охлаждению температуры пламени. Температура воспламенения природного газа 530 °С, коксового - 640 °С, смешанного - 600 °С. Кроме того, при значительном избытке воздуха также происходит неполное сгорание газа. При этом наблюдается конец факела желтоватого цвета, не вполне прозрачный, с расплывчатым голубовато-зеленым ядром; пламя неустойчиво и отрывается от горелки.

Рис. 1. Пламя газа я - без предварительного смешения газа с воздухом; б -с частичным пред. верительным смешением газа с воздухом; в - с предварительным полным смешением газа с воздухом; 1 - внутренняя темная зона; 2 - коптящий светящийся конус; 3 - горящий слой; 4 - продукты сгорания

В первом случае (рис. 1,а) факел имеет большую длину и состоит из трех зон. В атмосферном воздухе горит чистый газ. В первой внутренней темной зоне газ не горит: он не смешан с кислородом воздуха и не нагрет до температуры воспламенения. Во вторую зону воздух поступает в недостаточном количестве: его задерживает горящий слой, и поэтому он не может хорошо смешаться с газом. Об этом свидетельствует ярко светящийся, светло-желтый коптящий цвет пламени. В третью зону воздух поступает в достаточном количестве, кислород которого хорошо смешивается с газом, газ горит голубоватым цветом.

При этом способе газ и воздух подаются в топку раздельно. В топке происходит не только сжигание газовоздушной смеси, но и процесс приготовления смеси. Такой метод сжигания газа широко применяют в промышленных установках.

Во втором случае (рис. 1,6) сжигание газа происходит значительно лучше. В результате частичного предварительного смешивания газа с воздухом в зону горения поступает приготовленная газовоздушная смесь. Пламя становится короче, несветящимся, имеет две зоны - внутреннюю и наружную.

Газовоздушная смесь во внутренней зоне не горит, так как она не нагревалась до температуры воспламенения. В наружной зоне сгорает газовоздушная смесь, при этом в верхней части зоны резко повышается температура.

При частичном смешении газа с воздухом в этом случае полное сгорание газа происходит только при дополнительном подводе воздуха к факелу. В процессе горения газа воздух подводят дважды: первый раз - до поступления в топку (первичный воздух), второй раз - непосредственно в топку (вторичный воздух). Этот метод сжигания газа положен в основу устройства газовых горелок для бытовых приборов и отопительных котельных.

В третьем случае факел значительно укорачивается и газ сгорает полнее, так как газовоздушная смесь была предварительно приготовлена. О полноте сгорания газа свидетельствует короткий прозрачный факел голубого цвета (беспламенное горение), которое применяют в приборах инфракрасного излучения при газовом отоплении.



- Процесс горения газа

Метан представляет собой газообразное химическое соединение с химической формулой CH4. Это самый простой представитель алканов. Другие названия этой группы органических соединений: предельные, насыщенные или парафиновые углеводороды. Они характеризуются наличием простой связи между атомами углерода в молекуле, а все остальные валентности каждого углеродного атома насыщены атомами водорода. Для алканов наиболее важной реакцией является горение. Они горят с образованием газообразной двуокиси углерода и паров воды. В результате выделяется огромное количество химической энергии, которая превращается в тепловую или электрическую. Метан является горючим веществом и основным компонентом природного газа, что и делает его привлекательным топливом. В основе широкого использования природного ископаемого лежит реакция горения метана. Поскольку он в нормальных условиях является газом, то его трудно транспортировать на далекие расстояния от источника, поэтому часто его предварительно сжижают.

Процесс горения заключается в реакции между метаном и кислородом, то есть в окислении простейшего алкана. В результате образуется вода и много энергии. Горение метана может быть описано уравнением: CH4 [газ] + 2O2 [газ] → CO2 [газ] + 2H2O [пар] + 891 кДж. То есть одна молекула метана при взаимодействии с двумя молекулами кислорода образует молекулу и две молекулы воды. При этом выделяется равная 891 кДж. Природный газ является самым чистым для сжигания ископаемым, так как уголь, нефть и другие виды топлива более сложные по составу. Поэтому при сгорании они выделяют в воздух различные вредные химические вещества. Поскольку природный газ в основном состоит из метана (примерно на 95%), то при его сжигании практически не образуются побочные продукты или их получается намного меньше, чем в случае с другими видами ископаемого топлива.

Теплотворная способность метана (55,7 кДж/г) выше, чем его гомологов, например, этана (51,9 кДж/г), пропана (50,35 кДж/г), бутана (49,50 кДж/г) или других видов топлива (древесина, уголь, керосин). Горение метана дает больше энергии. Для обеспечения в течение года работы лампочки накаливания мощностью 100 Вт необходимо сжечь 260 кг древесины, или 120 кг угля, или 73,3 кг керосина, или всего 58 кг метана, что соответствует 78,8 м³ природного газа.

Простейший алкан является важным ресурсом для получения электроэнергии. Происходит это за счет сжигания его в качестве топлива котла, вырабатывающего пар, который приводит в движение паровую турбину. Также горение метана используется для получения горячих дымовых газов, энергия которых обеспечивает работу (сжигание осуществляется до турбины или в самой турбине). Во многих городах метан подается по трубам в дома для внутреннего отопления и приготовления пищи. По сравнению с другими видами углеводородного топлива сжигание природного газа характеризуется меньшим выделением углекислого газа и большим количеством полученного тепла.

Горение метана используется для достижения высоких температур в печах различных химических производств, например, крупнотоннажных этиленовых установок. Природный газ в смеси с воздухом подается в горелки печей пиролиза. В процессе сгорания образуются дымовые газы с высокой температурой (700—900 °С). Они нагревают трубы (находятся внутри печи), в которые подается смесь сырья с (для снижения образования кокса в трубах печей). Под действием высоких температур происходит множество химических реакций, в результате которых получают целевые компоненты (этилен и пропилен) и побочные продукты (смола пиролизная тяжелая, водородная и метановая фракции, этан, пропан, углеводороды С4, С5, пироконденсат; каждый из них имеет свое применение, например, пироконденсат используют для получения бензола или компонентов автомобильного бензина).

Горение метана является сложным физико-химическим явлением на основе экзотермической окислительно-восстановительной реакции, характеризующейся высокой скоростью течения и выделением огромного количества тепла, а также теплообменными и массообмеными процессами. Поэтому расчетное определение температуры горения смеси представляет собой сложную задачу, так как кроме состава горючей смеси сильно влияют ее давление и начальная температура. С их увеличением наблюдается рост температуры горения, а теплообменные и массообменые процессы способствуют ее снижению. Температура горения метана при проектировании процессов и аппаратов химических производств определяется расчетным методом, а на действующих установках (например, в печах пиролиза) ее измеряют с помощью термопар.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png