МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ НАУЧНО-ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ

ТИПОВАЯ ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА
ВОДОГРЕЙНОГО КОТЛА ПТВМ-100
ПРИ СЖИГАНИИ ПРИРОДНОГО ГАЗА

ТХ 34-70-014-85

СОСТАВЛЕНО предприятием «Уралтехэнерго» Производственного объединения по наладке, совершенствованию технологии и эксплуатации электростанций и сетей «Союзтехэнерго»

ИСПОЛНИТЕЛИ Н.Ф. ОВСЯННИКОВ, В.Д. СОЛОМОНОВ

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 17.07.85 г.

Заместитель начальника Д.Я. ШАМАРАКОВ

Типовая энергетическая характеристика котла ПТВМ-100 составлена на основании результатов испытаний и фактических показателей работы котлов, на которых не внедрялись реконструктивные мероприятия по повышению надежности и экономичности, и отражает технически достижимую экономичность котла.

Типовая энергетическая характеристика может служить основой для составления нормативных характеристик котлов ПТВМ-100 при сжигании природного газа.

Топливо: природный газ.

(7950 ккал/м3).

Показатель

1. Температура холодного воздуха на входе в дутьевые вентиляторы t х.в, °С

2. Расход воды через котел G к, т/ч

3. Температура воды на входе t вх, °C

t вых, °C

t ух, °C

q 2, %

q 3, %

q 4, %

q 5, %

Показатель

← ± 0,37 →

← ± 0,40 →

← ± 0,39 →

3.1. мощность, потребляемая дутьевыми вентиляторами Nдв, кВт

3.2. удельный расход электроэнергии на дутье Эдв, кВт · ч/Гкал

Показатель

Характеристика

Заводской расчет

Q к, Гкал/ч

t х.в, °C

3. Расход воды через котел G к, т/ч

t вх, °C

t вых, °C

7. Температура уходящих газов t ух, °C

8. Потери тепла с уходящими газами q 2, %

9. Потери тепла с химической неполнотой сгорания q 3, %

10. Потери тепла с механической неполнотой сгорания q 4, %

11. Потери тепла в окружающую среду q 5, %

12. Коэффициент полезного действия брутто %

13. Температура уходящих газов, приведенная к условиям теплового заводского расчета1

14. Коэффициент полезного действия брутто, приведенный к условиям теплового заводского расчета1

1 Без учета изменения коэффициентов избытка воздуха.

Топливо: природный газ.

Характеристика топлива на рабочую массу:

(7950 ккал/м3).

Показатель

1. Температура холодного воздуха на входе в дутьевые вентиляторы t х.в, °С

2. Расход воды через котел G к, т/ч

3. Температура воды на входе t вх, °C

4. Температура воды на выходе t вых, °C

5. Коэффициент избытка воздуха за котлом aух

6. Присосы воздуха в котел Daк

7. Температура уходящих газов t ух, °C

8. Потери тепла с уходящими газами q 2, %

9. Потери тепла с химической неполнотой сгорания q 3, %

10. Потери тепла с механической неполнотой сгорания q 4, %

11. Потери тепла в окружающую среду q 5, %

12. Коэффициент полезного действия брутто %

Показатель

1. Поправки к (%) на отклонение:

1.1. температуры холодного воздуха на ± 10 °C

1.2. температуры воды на входе на ± 10 °C

1.3. расхода воды через котел на +100 т/ч

1.4. расхода воды через котел на -100 т/ч

2. Поправки к температуре уходящих газов (°C) на отклонение:

2.1. температуры воды на входе на ± 10 °C

2.2. расхода воды через котел на +100 т/ч

2.3. расхода воды через котел на -100 т/ч

2.4. коэффициента избытка воздуха на +0,1

3. Вспомогательные зависимости:

3.1. мощность, потребляемая дутьевыми вентиляторами N дв, кВт

3.2. удельный расход электроэнергии на дутье Э дв, кВт · ч/Гкал

Показатель

Характеристика

Заводской расчет

1. Теплопроизводительность котла Q к, Гкал/ч

2. Температура холодного воздуха t х.в, °C

3. Расход воды через котел G к, т/ч

4. Температура воды на входе t вх, °C

5. Температура воды на выходе t вых, °C

6. Коэффициент избытка воздуха за котлом aух

7. Температура уходящих газов t ух, °C

8. Потери тепла с уходящими газами q 2, %

9. Потери тепла с химической неполнотой сгорания q 3, %

10. Потери тепла с механической неполнотой сгорания q 4, %

11. Потери тепла в окружающую среду q 5, %

12. Коэффициент полезного действия брутто %

13. Коэффициент полезного действия брутто, приведенный к условиям заводского теплового расчета1

1 Без учета изменения коэффициентов избытка воздуха.

Поправки к (%)

на ± 10 °C t х.в

на ± 10 °С t вх

на ± 100 т/ч G к

Основной режим

ТИПОВАЯ ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА КОТЛА

Основной режим

Приложение к характеристике котла

Условия построения характеристики

Поправки к (%)

на ± 10 °C t х.в

на ± 10 °C t вх

на ± 100 т/ч G к

t х.в = 5 °C

t вх = 70 °C

G к = 1235 т/ч

а) на отклонение температуры холодного воздуха от t х.в = 5 °C

б) на отклонение температуры воды на входе от t вх = 104 °C

в) на отклонение расхода воды через котел от G к = 2140 т/ч

ТИПОВАЯ ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА КОТЛА

Пиковый режим

Поправка к температуре уходящих газов

Тип ПТВМ-100

а) на отклонение температуры воды на входе от t вх = 104 °C

б) на отклонение расхода воды через котел от G к = 2140 т/ч

в) на отклонение избытка воздуха от принятого в расчете

Приложение

Значение характеристики

1. Котел ПТВМ-100:

площадь поверхности нагрева, м2:

конвективной

радиационной

водяной объем, м3

номинальная теплопроизводительности, Гкал/ч

пределы регулирования производительности, %

температура воды на входе, °C:

в основном режиме

в пиковом режиме

температура воды на выходе, °C

расход воды, т/ч:

в основном режиме

в пиковом режиме

гидравлическое сопротивление котла, кПа (кгс/см2):

в основном режиме

в пиковом режиме

2. Комбинированная газомазутная горелка:

количество, шт.

3. Дутьевой вентилятор Ц9-57:

количество, шт.

производительность по газу, м3/с (м3/ч)

давление, МПа (кгс/см2)

мощность электродвигателя, квт

частота вращения, об/мин

ТИПОВАЯ ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА КОТЛА ПТВМ-100

2.1 . При составлении характеристики использовались материалы испытаний, проведенных в разное время Уралтехэнерго, Южтехэнерго, МГП Союзтехэнерго, а также фактические показатели работы котлов ПТВМ-100 в 1983 - 1984 гг.

Характеристика соответствует руководящим документам и методическим указаниям по нормированию технико-экономических показателей котлов и отражает технически достижимую экономичность котла при нижеприведенных условиях, принятых за исходные.

2.2 . Исходные условия составления характеристики:

2.2.1 . Котел работает в основном режиме по четырехходовой схеме и в пиковом режиме по двухходовой схеме без предварительного подогрева воздуха.

2.2.2 . Котел работает на естественной тяге (без дымососа) на индивидуальную дымовую трубу.

2.2.3 . Топливо - природный газ. Низшая теплота сгорания МДж/м3 (7950 ккал/м3).

2.2.4 . Температура холодного воздуха (t х.в) на входе в дутьевые вентиляторы 5 °C.

2.2.5 . Температура сетевой воды (t вх) на входе в котел:

В основном режиме 70 °C;

В пиковом режиме 104 °C.

2.2.6 . Общая площадь конвективных поверхностей нагрева равна проектной. Отглушенные змеевики отсутствуют.

2.2.7 . Состояние внутренних поверхностей нагрева котла эксплуатационно чистое.

2.2.8 . Коэффициент избытка воздуха в режимном сечении (за конвективной частью) aух на основании результатов испытаний принят равным 1,07 при номинальной нагрузке и постоянным в диапазоне нагрузок 40 - 100 % номинальной; при нагрузках 30 и 25 % номинальной - соответственно равным 1,09 и 1,10.

Водогрейные котлы типа ПТВМ.

Рис. 7.22. Водогрейный котел ПТВМ-30 (КВГМ-30- 150М) :
1 - дробеочистительное устройство; 2- конвективная шахта; 3- конвективная поверхность нагрева; 4- газомазутная горелка; 5- топочная камера; 6- поворотная камера
Котлы данного типа выпускаются средней и большой тепловой мощностью 35; 58 и 116 МВт (30; 50 и 100 Гкал/ч), работают на газообразном и жидком топли- вах. Эти котлы бывают с П-образной компоновкой и башенной конструкции. Давление воды на входе в котел составляет 2,5 МПа (25 кгс/см2). Температура воды на входе в котел в основном режиме 70 °С, в пиковом режиме 104 °С. Температура воды на выходе 150 °С.
Водогрейный котел ПТВМ-30 (КВГМ-30-150М) (рис. 7.22) - пиковый теплофикационный водогрейный газомазутный котел тепловой мощностью 35 МВт (30 Гкал/ч), имеющий П-образную компоновку, состоит из топочной камеры 5, конвективной шахты 2 и соединяющей их поворотной камеры 6.
Все стены топочной камеры котла, а также задняя стена и потолок конвективной шахты экранированы трубами 060x3 мм с шагом S = 64 мм. Боковые стены конвективной шахты закрыты трубами 84 x 4 мм с шагом 128 мм.


Рис. 7.23. Циркуляционная схема водогрейного котла ПТВМ-30
Конвективная поверхность 3 нагрева котла, выполненная из труб 028 х 3 мм, состоит из двух пакетов. Змеевики конвективной части собраны в ленты по шесть-семь штук, которые присоединены к вертикальным стойкам.
Котел оборудован шестью газомазутными горелками 4, установленными по три встречно на каждой боковой стенке топочной камеры. Диапазон регулирования нагрузки котлов - 30... 100% номинальной производительности. Регулирование производительности осуществляется путем изменения числа работающих горелок. Для очистки внешних поверхностей нагрева от загрязнений предусмотрено дробеочистительное устройство 1. Дробь поднимается в верхний бункер пневмотранспортом от специальной воздуходувки. Тяга в котле обеспечивается дымососом, а подача воздуха - двумя вентиляторами.
Трубная система котла опирается на рамку каркаса. Облегченная обмуровка котла общей толщиной 110 мм крепится непосредственно к экранным трубам. При работе на газе КПД котла 91 %, а при работе на мазуте - 88 %. Схема циркуляции водогрейного котла ПТВМ-30 приведена на рис. 7.23.

Водогрейные котлы ПТВМ-50 и -100 (рис. 7.24) имеют башенную компоновку и выполнены в виде прямоугольной шахты, в нижней части которой находится полностью экранированная камерная топка 3. Экранная поверхность изготовлена из труб 060 х 3 мм и состоит из двух боковых, фронтального и заднего экранов. Сверху над топкой размешается конвективная поверхность нагрева 2, выполненная в виде змеевиковых пакетов из труб 28 х 3 мм. Трубы змеевиков приварены к вертикальным коллекторам.
Топка котла ПТВМ-50 оборудована двенадцатью газомазутными горелками 4 с индивидуальными дутьевыми вентиляторами 5. Горелки расположены на боковых стенах (по шесть штук на каждой стороне) в два яруса по высоте. Котел ПТВМ-100 имеет шестнадцать газомазутных горелок с индивидуальными вентиляторами.


Рис. 7.24. Водогрейные котлы ПТВМ-50 и -100:
1 - дымовая труба; 2 - конвективные поверхности нагрева; 3 - камерная топка; 4 - газомазутная горелка; 5 - вентилятор


Рис. 7.25. Схема движения воды в котле ПТВМ-50:
а - основной режим; б - пиковый режим;
1 - подводящие и отводящие коллекторы; 2 - соединительные трубы; 3 - фронтальный экран; 4 - конвективный пучок труб; 5, 6 - левый и правый боковые экраны; 7- задний экран; 8 - коллекторы контуров; - - движение воды

Над каждым котлом устанавливают дымовую трубу 1, обеспечивающую естественную тягу. Труба 1 опирается на каркас. Котлы
устанавливаются полуоткрыто: в помещении размещаются только горелки, арматура, вентиляторы и т.д. (т.е. нижняя часть котлоагрегата), а все остальные элементы котла расположены на открытом воздухе.
Вода в котле циркулирует с помощью насосов. Расход воды зависит от режима работы котла: при работе в зимний период применяется четырехходовая схема циркуляции воды по основному режиму (рис. 7.25, а), а в летний - двухходовая по пиково¬му режиму (рис. 7.25, б).
При четырехходовой схеме циркуляции вода из теплосети подводится в один нижний коллектор и последовательно проходит через все элементы поверхности нагрева котла, преодолевая подъемы и опуски, после чего вода также через нижний коллектор отводится в тепловую сеть.
При двухходовой схеме вода поступает одновременно в два нижних коллектора и, перемещаясь по поверхности нагрева (см. рис. 7.25, б), нагревается, после чего отводится в тепловую сеть. При двухходовой схеме циркуляции через котел пропускается почти вдвое больше воды, чем при четырехходовой схеме. Это объясняется тем, что при летнем режиме работы котла нагревается большее, чем в зимний период, количество воды и она поступает в котел с более высокой температурой (110 вместо 70 °С)

Котел водогрейный ПТВМ- 30М/ 50/ 100/ 120/ 180

Техническое описание водогрейного котла ПТВМ-30М

Котёл водогрейный газомазутный предназначен установки в отопительных котельных в качестве основного источника теплоснабжения для получения горячей воды температурой 150 °С, используемой в системах отопления, горячего водоснабжения промышленного и бытового назначения.

Котел — прямоточный с П-образной сомкнутой компоновкой поверхностей нагрева. Топка котла полностью экранирована трубами Ø60×3 мм, расположенными с шагом S=64 мм, и оборудована шестью газомазутными горелками МГМГ — 6, установленными встречно на боковых стенках.

Конвективные поверхности нагрева расположены в конвективном газоходе с боковыми стенками, экранированными трубами Ø83×3,5 мм, которые являются стояками конвективных секций, выполненных из труб Ø28×3 мм. Задняя стенка конвективного газохода экранирована трубами Ø60×3 мм.

Трубная система котла ПТВМ-30М опирается на каркасную раму на отметке 5,14 м.

Диапазон регулирования нагрузки котлов 30 -100% от номинальной производительности. Изменение теплопроизводительности котла осуществляется изменением числа работающих горелок.

Расход воды через котел должен поддерживаться постоянным, при изменении тепловой нагрузки изменяется разность температур воды на входе и выходе из котла.

Котлы, работающие на мазуте , могут быть оборудованы устройством газоимпульсной очистки (ГИО) для удаления наружных отложений с труб конвективной поверхности на грева.

Котел водогрейный ПТВМ-30М

Техническое описание водогрейных котлов ПТВМ-50, ПТВМ-100, ПТВМ-120

Котлы водогрейные предназначены для получения горячей воды температурой 150 °С в отдельно стоящих котельных, используемой в системах отопления, горячего водоснабжения промышленного и бытового назначения и на ТЭЦ.

Котлы ПТВМ-50 и ПТВМ-100 могут эксплуатироваться как в основном режиме, так и в пиковом (для подогрева сетевой воды) соответственно от 70 до 150 °С и от 110 до 150 °С.

Котлы имеют башенную компоновку : над вертикальной топочной камерой располагается конвективная поверхность нагрева. Топочная камера экранирована трубами Ø60х3 мм.

Конвективная поверхность нагрева котлов ПТВМ-100 и ПТВМ-120 состоит из восьми пакетов, а котла ПТВМ-50 — из четырех пакетов, набирается из U-образных ширм из труб Ø28х3 мм. Боковые стены конвективного газохода закрыты трубами Ø83х3,5 с шагом 128 мм и являются одновременно стояками конвективных полусекций.

Трубные системы котлов подвешиваются к каркасу за верхние коллекторы и свободно расширяются вниз.

Котёл ПТВМ-50 оборудован 12 газомазутными горелками МГМГ-6 – по шесть с каждой стороны.

Котёл ПТВМ-100

Котёл ПТВМ-120 оборудован 16 газомазутными горелками МГМГ-8 – по восемь с каждой стороны.

Каждая горелка снабжена индивидуальным дутьевым вентилятором.

По согласованию котлы также могут быть оборудованы зарубежными и отечественными газовыми горелками соответствующей производительности (имеющими необходимые технические характеристики, сертификат соответствия и разрешение на применение Ростехнадзора).

Обслуживание горелочного устройства, его описание и технические характеристики приводятся в документации, прилагаемой к горелочным устройствам.

Котлы имеют облегченную обмуровку и теплоизоляцию.

Котел водогрейный ПТВМ-50


Котел водогрейный ПТВМ-100


Техническое описание водогрейного котла ПТВМ-180

Теплофикационный водогрейный газомазутный котел теплопроизводительностью 209 (180) МВт (Гкал/час). ПТВМ-180 устанавливается на ТЭЦ для покрытия пиков теплофикационной нагрузки.

Котел ПТВМ-180 башенного типа, водотрубный, радиационный прямоточный, с принудительной циркуляцией. Изменение теплопроизводительности котла осуществляется изменением количества работающих горелок при постоянном расходе воды и переменном температурном перепаде.

Котел оборудован 20 газомазутными горелками МГМГ-10 с индивидуальным дутьевым вентилятором на каждой горелке.

Топочная камера предназначена для сжигания высокосернистого мазута и природного газа. Стены топочной камеры полностью экранированы трубами Ø60х3,5мм. Трубы экранов соединены между собой двумя горизонтальными поясами жёсткости. Топочная камера разделена на три части двумя двухсветными экранами.

Конвективная часть состоит из 176 секций (U-образные змеевики из труб Ø28х3, вваренные в стояки Ø83х4 мм). По ходу газов конвективная часть разделена на два пакета.

Каркас котла состоит их 4-х плоских рам общей высотой 13,2 м. На верхней отметке расположены грузовые ригели рам и несущие балки потолка, к которым за специальные тяги подвешивается весь котёл. Для придания общей пространственной жёсткости всей конструкции используются помосты, опоясывающие каркас на трёх отметках. Для очистки конвективной части котла от наружных загрязнений предусмотрена обмывка сетевой водой.

Котел имеет облегченную обмуровку и теплоизоляцию.

1. ОБЩИЕ ПОЛОЖЕНИЯ.

1.1. В пиковой водогрейной котельной установлены 4 водогрейные котла ПТВМ-100 ст. № 1, 2, 3, 4 предназначенные для подогрева сетевой воды. Котлы смонтированы по 2-х ходовой схеме циркуляции воды.

1.2.Краткая характеристика оборудования:

Газомазутные котлы ПТВМ-100 водотрубные, прямоточные с принудительной циркуляцией, башенной компоновки. Работает в пиковом режиме по двухходовой схеме циркуляции воды.

Каждый котел оборудован 16 мазутными горелками турбулентными, расположенными на фронтовой и задней стенке топки. Производительность горелки по мазуту - 0,6-0,8 т/ч.

Каждая горелка снабжена дутьевым вентилятором типа Ц-14-46-4 производительностью 10000 м З /ч, мощностью двигателя 10 кВт, 1440 об/мин.

Температура сетевой воды на входе в котел 104 о С поддерживается с помощью насоса

циркуляции типа СЭ-1250-45 производительностью 1250 т/ч, мощностью двигателя 200 кВт, с напором 45 м.вод.ст.

Подготовка воды для подпитки теплосети производится на ВПУ и в деаэраторе подпитки теплосети.

Наименование оборудования Тип К-во Характеристика
Водогрейные котлы ПТВМ-100 Теплопроизводительность: - на мазуте 75 Гкал/ч (314,01 ГДж/ч); - на газе – 100 Гкал/ч (418,68 ГДж/ч).
Расход воды через котёл – 2140 т/ч.
Гидравлическое сопротивление - 0,96 кгс/см 2
Аэродинамическое сопротивление - 21,8 мм.рт.ст.
Расчетный КПД - 86,8%
Вентиляторы дутьевые П-14-46-4 4х16 Q = 10х10 3 м 3 /час: Н=100 мм.в.ст. п= 1500 об/мин.
Насосы рециркуляции сетевой воды СВ2500-180 Q=1250 м 3 /час; Н=45 м.в.ст. п=1500 об/мин.
Предельная вибрация - 50 мкм
Насос откачки обмывочных вод 4к-12к-1 Q=61 м 3 /час; Н=37 м.в.ст. п=2900 об/мин.
4Х-9К-1 Q=80 м 3 /час; Н=42 м.в.ст. п=2900 об/мин. Предельная вибрац. - 30 мкм
Насос обмывки котлов ПТВМ 4МС-10 Q=40 м 3 /час; Н=190 м.в.ст. п=2950 об/мин.
Насосы откачки замасленн. вод ВКС-2/26 Q=6 м 3 /час; Н=40 м.в.ст. п=1500 об/мин. Предельная вибрац. - 50 мкм

2. ЗАЩИТЫ ПТВМ-100

2.1. Защиты котлов предназначены для предотвращения аварии в случае отклонения технологических параметров за допустимые пределы.

2.2. На котлах ПТВМ-100 N 1-4 установлены следующие защиты, действующие на останов котла:

Защита от повышения температуры воды за котлом. Уставка на срабатывание защиты +152°С. Защита выполнена на электроконтактном манометрическом термометре типа ТПГ-СК (к/а- 3,4) и приборах КПМ1-546 (к/а-1,2).

Защита от повышения или понижения давления воды за котлом. Сигналом для защиты является повышения давления на выходе из котла до 13 ати или понижения давления до 6ати, измеряемое электроконтактным манометром /ЭКМ/.

Защита от понижения расхода воды через котел. Уставка на срабатывание понижения расхода воды до 1500т/час. Защита выполнена на котлах ПТВМ-100 N 1,2 на расходомерах типа ДСП1, на котлах ПТВМ-100 N 3,4 – КСД2.

Защита от понижения давления мазута. Уставка на срабатывание защиты 10 ати, измеряется электроконтактным манометром. ЭКМ на котлах ПТВМ-100 N 1,2 и прибором КПД1 на котле, прибором КСД2 на котле N3.

Защита по погасанию факела в топке котла. Защита выполнена на базе прибора ”Факел 2М”.

На котлах ПТВМ-100 N 3,4 выполнена защита от изменения тяги в топке. Уставка срабатывания защиты ±10 мм. вод. ст. измеряется прибором КПД1.

2.3. При срабатывании любой из защит на котлах ПТВМ-100 N 1-4:

Закрываются: отсечной клапан на мазутопроводе котла, задвижки на мазутопроводе до и после котла.

Загорается световое табло, указывающее причину срабатывания и подается звуковой сигнал.

2.4. На котлах ПТВМ-100 N 1,2 выполнены следующие блокировки:

Открытие мазутной задвижки до и после котла возможно только после открытия задвижек до и после котла по сетевой воде и включения вентилятора растопочных горелок 6 и 11 или 5, 12.

Закрытие задвижек по сетевой воде возможно только после отключения вентиляторов растопочных горелок и закрытия задвижки на мазутопроводе до и после котла.

2.5. На котлах ПТВМ-100 N 3,4 выполнены блокировки:

Открытие мазутных задвижек до и после котла возможно только после открытия задвижек до и после котла по сетевой воде.

Закрытие задвижек до и после котла по сетевой воде возможно только после закрытия задвижек до и после котла на мазутопроводе.

Отключение подачи мазута в горелку при снижении давления воздуха перед ней на 50 мм. вод. ст.

3. ПОРЯДОК РАБОТЫ ЗАЩИТЫ.

3.1. Порядок работы защиты котлов ПТВМ-100 N 1,2.

При превышении параметра уставки любой из защит (см. п2 инструкции), замыкается соответствующий контакт прибора (датчика) и напряжения переменного тока 220в подается на обмотку соответствующего реле РПI-РПX (см. схему электрическую принципиальную).

При срабатывании реле замыкаются контакты 3-4; падающие напряжения на соответствующие табло сигнализации. Замкнутые контакты 7-8 реле РПV1, V, VШ, IV подают напряжения на реле РПЗ (реле защиты). Замкнутые контакты 7-8 РПЗ подают напряжения в цепь звуковой сигнализации. Съем звука осуществляется кнопкой КСЗ, которая включает реле РС.

Реле РС разрывая свои контакты 1- 2 отключает звуковой сигнал. Реле РП1У замыкая свои контакты 7- 8 подает напряжение на реле РВ (реле времени), работающее с выдержкой времени 9 сек. (защита по понижению давления мазута). Через контакты 4- 6 реле РВ напряжение подается в цепь реле РПЗ. Защита от погасания факела срабатывает при замыкании контактов 9-10 реле РП12, РП6, РП5, РП11.

В схеме защиты предусмотрен переключатель опробования (ПО) звука и табло сигнализации.

При срабатывания любой из защит закрываются задвижки на мазутопроводе до и после котла, а также отсечной клапан на мазутопроводе котла.

На котлах N 1,2 предусмотрены блокировки, включаемые переключателем ПБ.

Блокировки открытия мазутной задвижки до и после котла производятся через контакты 3-4 реле РПЗ, а по сетевой воде через контакты 3-4, 3-6 реле РП20 (реле блокировки по сетевой воде) и контакты 3-4 РПЗ.

3.2. Порядок работы защит котлов ПТВМ 100 N 3,4.

Порядок работы защиты котлов N 3,4 аналогичен работе защиты описанной п. 3.1.

За исключением:

3.2.1. Введена защита по изменению тяги в топке котла. Защита работает от контактов прибора КПД1 подающих напряжение на обмотку реле РП IX. Через контакты 9-10 РП IХ напряжение подается на обмотку РПЗ.

Цепочка: контакты датчиков ДН-160, ключ 1КУ-16КУ обмотка реле РП1-РП16 служит для включения блокировки подачи мазута в горелку при снижении давления воздуха пред ней. Контакты реле РП1-РП16 участвуют в схеме управления соответствующей горелке 1-16 (см. схему электрическую принципиальную).

Контакты 7-8 (8-9) РПЗ, 9-10 (7-8) РПШ 3-4 (6-5) РБМ участвуют в схеме блокировки задвижек мазута до и после котла.

4. ПИТАНИЕ СХЕМЫ ЗАЩИТ.

4.1.Питание схемы защит напряжением переменного тока 220В осуществляется:

На котлах N 1,2 пакетным выключателем, расположением в щите управления.

На котлах N 3,4 автоматом типа АП-50, расположенном в сборках задвижек 3Ш-6, 4Ш-6.

4.2. Питание схемы отсечных клапанов напряжением постоянного тока 220В осуществляется автоматами питания типа АП-50, расположенными в сборке 3ВК-3,4ВК-3- для котлов N 3,4, в щите управления – для котлов N 1,2.

5. ПОРЯДОК ОПРОБОВАНИЯ ЗАЩИТ.

5.1. Проверка защит котлов с целью определения полноты выполнения функций надежности и связанной с защитой, сигнализацией проводится при каждом пуске котлов после их простоя более 3 суток и если во время останова на срок менее 3 суток в цепях ТЗ проводились ремонтные работы, а также по графику.

Опробование защиты проводится машинистом котла ПТВМ совместно со старшим машинистом котельного оборудования под руководством начальника смены КТЦ и при участии оперативного персонала ЦТАИ.

5.2. Опробование защит на действующим оборудовании в соответствии с “Нормами технического обслуживания технологических защит теплоэнергетического оборудования на тепловых электростанциях” проводится путем замыкания контактов прибора с воздействием на сигнал. Проверить работоспособность защиты на действующим котле можно только на ПТВМ-100 N 1,2. При этом необходимо переключатель защиты поставить в положение “ВЫКЛЮЧЕНО” и далее поочередно замыкая контакты приборов проверить появление сигнала о срабатывании опробуемой защиты.

5.3. Опробование защит на остановленном котле проводится в следующем порядке:

При снятом напряжении питания приборов, участвующих в схемах ТЗ, ввести стрелки в положение, соответствующее нормальным эксплуатационным параметрам,

Убедится, что отсечной клапан, все задвижки, участвующие в схеме защиты находятся в рабочем положении,

Убедится по свечению табло в отсутствии сигналов по каждому каналу защиты, при необходимости искусственным путем устранить сигналы,

Перевести ключ защит в положение “ВКЛЮЧЕНО” на котлах ПТВМ-100 N 1,2, а для ПТВМ-100 N 3,4 включить автомат питания защит.

Последовательно имитируя условия срабатывания защит проверить их техническое состояние.

Имитация производится путем выставления на приборах, участвующих в цепях защит, уставок срабатывания. Срабатывание защиты контролируйте по появлению светозвукового сигнала на щите управления. При срабатывании защиты зафиксируйте:

Уставку срабатывания по показанию вторичного прибора,

Выпадание блинкера,

Закрытие задвижек и отсеченного клапана на мазутопроводе котла.

6.ТЕХНОЛОГИЧЕСКАЯ СИГНАЛИЗАЦИЯ.

6.1. Технологическая предупредительная сигнализация информирует машиниста котлов ПТВМ об отклонениях параметров, неисправностях в цепях защит, выполненных на базе табло ТСБ, расположенных на щитах управления котлов.

Каждый вновь появившийся сигнал технологической сигнализации сопровождается световым и звуковым сигналом. Съем звука производится кнопкой съема звука.

В схеме сигнализации предусмотрен ключ, с помощью которого можно производить опробование ламп табло и звука.

Схема сигнализации включает следующие табло сигнализации:

Котел N 1,2:

HL 1- нет напряжения на сборках задвижек. Срабатывает при отключении одного из автомата сборок задвижек.

НL 2- понижение температуры мазута. Срабатывает при понижении температуры мазута до 95°С от прибора КПМ1-546.

НL 3- погасание факела. Срабатывает при срабатывании прибора “Факел 2М”, расположенного на щите управления.

НL 4- понижение давления мазута. Срабатывает при понижении давления мазута до 10 кг/см 2 . Сигнал от ЭКМ1У.

НL 5- понижение расхода воды через котел. Срабатывает при понижении расхода воды через котел ниже 1500 т/час и прибора ДСР1-05 расположенного на щите управления.

НL 6- повышение давления воды за котлом. Срабатывает от ЭКМ1У при повышении давления до 13 кгс/см 2 .

НL 7- понижение давления воды за котлом. Срабатывает от ЭКМ1У при понижении давления до 6 кгс/см 2 .

НL 8- температура воды за котлом повысилась. Срабатывает при повышении температуры до 152°C. Сигнал поступает от прибора КПМ1-546.

Котел N 3,4:

НL1 1- нет напряжения в цепях защит. Срабатывает при отключении автомата питания защит, расположенного в сборке задвижек ЗШ-6, 4Ш-6.

НL 2- понижение давления мазута. Срабатывает при понижении давления до 10 кгс/см 2 . Срабатывает от прибора КПД1-503 (К-4) и КСД2 (К-3) на щите управления.

НL 3- повышения давления воды за котлом. Срабатывает при увеличении давления воды до 13 кгс/см 2 от ЭКМ1У.

НL 4- понижение давления воды за котлом. Срабатывает от ЭКМ-1У при понижении давления до 6кгс/см 2 .

НL 5- понижение расхода воды через котел. Срабатывает от прибора КСД2 – 054 расположенного на щите управления, до 1500 т/час.

НL 6- повышение температуры воды после котла. Срабатывает при увеличении температуры выше 152°С, от прибора ТПГ-СК.

НL 7- понижение температуры мазута. Срабатывает при понижении температуры до 95°С от ТГП100ЭК (К3), ТПГ-СК (К4).

НL 8- погасание факела. Срабатывает при срабатывании “Факел-2М”, расположенного на щите управления.

НL 9- изменение тяги. Уставка на срабатывание ±10 мм.вод.ст. срабатывает от датчика типа ДКО-3702 и прибора КПД-503 расположенного на щите управления.

НL 10- реле Т3. Срабатывает при срабатывании реле защиты РПЗ, расположенного в щите управления.

НL 11- не поднят блинкер. Срабатывает при не взведении блинкеров защит, расположенных на щите управления.

НL 12- блокировка горелок N 1,3,5,7 от уменьшения давления воздуха. Срабатывает при понижении давления воздуха до 50мм.вод.ст. Сигнал от датчика типа ДН-250.

НL 13- блокировка горелок N 9,11,13,15 от уменьшения давления воздуха. Срабатывает при понижении давления до 50мм.вод.ст. Сигнал от датчика типа ДН-250.

НL 14- блокировка горелок N 2,4,6,8 от уменьшения давления воздуха. Аналогично Н1 12,13.

НL 15- блокировка горелок N 10,12,14,16 от уменьшения давления воздуха. Аналогично НL 12,14.

НL 16- отключение АП панели 1-В-1. Срабатывает при отключении автомата питания панели 1-В-1, расположенной около котлов 3,4.

НL 17- отключение АП на панелях котла. Срабатывает при отключении автоматов питания, расположенных в щите управления.

НL 18- вызов на сборку задвижек N 1. Срабатывает при отключении любого автомата сборки задвижек N 1.

В данной статье представлен анализ работ, проведенных в Казахстане, по повышению эффективности и надежности башенных водогрейных котлов ПТВМ-100

Показано, что проведенная на ТЭЦ и котельных реконструкция котлов ПТВМ-100 направлена в большей степени на повышение надежности и сохранение длительной теплопроизводительности, при этом эффективность работы котлов осталась практически на прежнем уровне. Конструктивные изменения котельного агрегата, предложенные авторами, наряду с повышением надежности работы котла и его тепловой производительности, позволяют поднять его КПД до уровня 93 %.

Длительный опыт эксплуатации водогрейных котлов ПТВМ-100 башенной компоновки показал наличие серьезных конструктивных недостатков, которые привели к снижению нагрузок, надежности и экономичности их работы. В свою очередь это привело к увеличению ремонтных и эксплуатационных затрат, а также необоснованному увеличению вредных выбросов и снижению экологических показателей.

Основные конструктивные недостатки водогрейного котла ПТВМ-100, отмеченные эксплуатирующими, наладочными и научно-исследовательскими организациями теплоэнергетического профиля (СКБ ВТИ, ЦКБЭ (г.Москва), КТЭ (Казтехэнерго, г.Алматы), КазНИИЭнергетики (г.Алматы), НПФ «Квазар» и др.), акцентировались на следующих моментах:

  • малый объем и высота топки с высокими удельными тепловыми напряжениями объема топки (479086 ккал/м3) , конвективных поверхностей нагрева первых двух рядов труб (3,04×106 ккал/м2) ;
  • небольшие расстояния (относительный поперечный шаг труб) в местах U - образных изгибов конвективных труб, приводящие к заносу и частичному перекрытию газовых сечений частицами золы и сажи;
  • малый диаметр труб конвективного пучка (28×3 мм), приводящий при недостаточном качестве сетевой воды к заносу внутренними отложениями до полного перекрытия поперечного сечения конвективных труб;
  • низкие скорости газов во втором конвективном пакете, приводящие к забиванию пространства между трубами частицами золы и сажи;
  • отсутствие аппаратов для обдувки и очистки конвективных пакетов;
  • сжигание топлива в холодном воздухе.

Высокое сопротивление заводских горелок в сочетании с недостаточной производительностью индивидуальных вентиляторов, разбежками в производительности вентиляторов и расходных характеристик форсунок приводили к неудовлетворительному горению, ограничению расчетной производительности, как горелок, так и котла ПТВМ-100 в целом.

В течение всего периода эксплуатации водогрейных котлов ПТВМ-100 проектными, наладочными, конструкторскими организациями совместно с эксплуатационным персоналом котельных и ТЭЦ предпринимались серьезные попытки улучшить конструкцию котлов, достичь фактических показателей, приближенных к их проектным значениям.

Одним из первых мероприятий по реконструкции котла ПТВМ-100 (рисунок 1) по проекту СКБ ВТИ было увеличение объема топки на 30 м3 путем частичного уменьшения угла наклона скатов холодной воронки и переноса верхнего яруса горелок ниже основного (рисунок 2).

Рисунок 1 - Водогрейный котел ПТВМ-100 до реконструкции

В дополнение к названному проекту КТЭ предложил организовать ступенчатое сжигание (рисунок 2), в котором крайние горелки верхнего яруса убирались.

Воздух от вентиляторов этих горелок объединенным коробом выводился выше основных горелок и из этого короба соплами под углом 10° вниз относительно горизонтальной оси вводился над основными горелками в топочный объем. Оси оставшихся основных горелок наклонялись вниз на 15°, крайние горелки основного яруса дополнительно были развернуты к центру топки на 15°, а две горелки верхнего яруса были перенесены под основной ярус горелок .

Рисунок 2 - Водогрейный котел ПТВМ-100, реконструированный по проектам СКБ ВТИ (топка) и КТЭ (ступенчатое сжигание)

Конструктивно горелки подверглись реконструкции: увеличивалось проходное сечение по воздуху, были применены закручивающие лопатки с безударным входом, в результате производительность горелок увеличилась на 20-30 % относительно первоначальной заводской конструкции. Такая схема реконструкции первоначально была произведена на котлах №3, 4, 7 (АО «АлЭС») .

Предварительное опробование результатов реконструкции показало рост тепловой мощности и увеличение межобмывочного периода, снижение выбросов окислов азота на 21%. Поэтому ступенчатое сжигание было предложено распространить на котлы Западного Теплового Комплекса ЗТК (г.Алматы) .

Одним из вариантов реконструкции была замена 16 газомазутных горелок с индивидуальными вентиляторами шестью двухпоточными по воздуху вихревыми горелками, установленными на отметке 6450 мм на всех стенах топки под разными углами с организацией вихревого горения в центре топки со средним углом наклона горелок вниз на - 20°. Для распыливания мазута были применены паро-механические форсунки «Титан». Испытания показали ряд недостатков в работе реконструированного котла ПТВМ-100, и, учитывая большой объем работ при указанной реконструкции и недостаточный эффект, эта реконструкция на другие котлы не распространялась.

В дополнение к объему работ по реконструкции СКБ ВТИ, на котле №3 Алматинской ТЭЦ-1 была выполнена реконструкция конвективного пакета труб с переходом на прямые трубы диаметром Ø32×3 мм вместо труб диаметром Ø 28×3 мм U - образной формы по проекту НПФ «Квазар» .

В Республике Казахстан в эксплуатации находится 44 водогрейных котла ПТВМ-100. Увеличение тепловой производительности и КПД водогрейных котлов ПТВМ-100 до 93,5-94% от реальных эксплуатационных 86,8% , при грамотной модернизации, в расчете за время работы в 3600 часов в 1 год даст экономию 124645 тонн мазута .

Авторы работы провели подробный расчетный анализ всех выполненных мероприятий по реконструкции водогрейных котлов ПТВМ- 100 по Республике Казахстан, основанный на сравнении результатов тепловых расчетов и результатов тепловых испытаний указанных котлов между собой и с базовым заводским вариантом котла ПТВМ-100 без проведения реконструкции.

Анализ результатов реконструкции водогрейных котлов ПТВМ-100 показал, что технико-экономические показатели реконструированных котлов и не реконструированных практически не меняются. Для ряда реконструированных котлов удалось поднять расчетный КПД только до 90,5%, у некоторых произошло даже снижение эффективности за счет сокращения конвективной части.

В результате проведенных реконструкций температура газов на выходе из топки практически не изменилась. Исключением явились варианты реконструкции водогрейного котла ПТВМ-100 с отсутствующими сбросными горелками и низкотемпературным вихревым сжиганием мазута.

В середине 90-х была предпринята попытка установить вместо 16-ти горелок восемь вихревых предтопков по Патенту РК № 2318 «Циклонная топочная камера» , и по Патенту РК №21479 «Водогрейный котел» . Первый вариант был реализован на ТЭЦ-1 в г. Астана на водогрейном котле ПТВМ-100. Основной идеей авторов этой реконструкции была организация предварительной термической подготовки распыленного мазута с регулируемыми избытками воздуха в вихревой камере. Это позволяло регулировать термическую подготовку распыленного мазута вне топочного объема, в зависимости от качества топочного мазута и режимов работы котла. Однако номинальной тепловой производительности и в этом варианте не удалось достичь. Следует учесть и достаточно серьезный объем работ по реконструкции топочных экранов и схем установки восьми вихревых камер с подбором дутьевых вентиляторов.

Поэтому в целом выполненные на котлах ПТВМ-100 мероприятия были направлены, прежде всего, на повышение надежности отдельных узлов, включавших схемы циркуляции котла, работы конвективных пакетов труб, топки котла и горелок, чем на повышение и достижение номинальных паспортных значений нагрузок. Расчетные экономические показатели работы реконструированных котлов остались на уровне заводских. Отдельные недостатки остались и после проведения реконструкции.

Наиболее близко к решению задачи повышения эффективности работы котлов и доведения до номинальной величины тепловой производительности водогрейного котла башенной конструкции ПТВМ-100 подошли специалисты ОАО «Дорогобужкотломаш» (РФ), конструктивно изменившие схему циркуляции и конструкцию топочных экранов.

Начавшийся выпуск на ОАО «Дорогобужкотломаш» новых башенных водогрейных котлов КВ-ГМ-69,8-150 (ПТВМ-60 Э) и КВ-ГМ-139,6-150 (ПТВМ-120 Э) с одним двусветным экраном и разведенными далее по бокам от центра наклонными трубами в верхней части топки перед конвективным пакетом, позволили решить только часть проблемы .

В заводском решении ОАО «Дорогобужкотломаш» отношение радиационной поверхности Нр к конвективной составило только Нр/Нкон = 10,8%. Тепловые расчеты башенных пиковых котлов ПТВМ-100 при работе на мазуте, проведенные авторами, показывают, что величина радиационной поверхности Нр все еще недостаточна. Поэтому количество тепла не воспринятое в топке направляется на первый конвективный пакет труб и далее. Наклонные и разряженные (трехрядные) трубы двусветного экрана, расположенные в 4 м от верхнего яруса горелок недостаточно экранируют и защищают первый конвективный пакет труб водогрейного котла КВ-ГМ-139,6- 150 (рисунок 3).

Авторами настоящей работы было предложено принципиально отличающееся от всех предыдущих работ по модернизации старых котлов ПТВМ-100 конструктивное решение по использованию двух двусветных экранов. При этом, величина радиационной поверхности нагрева в топочном пространстве доведена авторами до нормативных значений Нр/Нполн = 15,7% , как у П-образных серийных котлов.

Новое конструктивное решение обеспечивает полную тепловую защиту первого конвективного пакета труб от прямого лучистого воздействия факела из короткой топки котла холодными разряженными трубами. Второй конвективный пакет труб с переменным поперечным сечением в каждом последующем продольном ряду труб сохраняет высокий уровень скорости газового потока и соответственно коэффициент теплоотдачи. Такое конструктивное решение позволяет переводить водогрейные башенные котлы из разряда пиковых в водогрейные котлы, которые могут нести базовую (основную) нагрузку с высокими технико-экономическими показателями.

Рисунок 3 - Водогрейный котел КВ-ГМ-139,6-150 ОАО «Дорогобужкотломаш»

Реконструкция заключается в том, что в ячейке старого котла ПТВМ- 100, установлены внутри топки два двусветных экрана и холодный разряженный пучок труб перед первым конвективным пакетом (рисунок 4).

Рисунок 4 - Водогрейный котел ПТВМ-125 по проекту АУЭС

Это позволит достигнуть тепловой мощности в 1,25 раза превосходящей 116 МВт. При этом КПД водогрейного котла увеличится с 86,5-88,5 до 93,5%. Радиационная поверхность нагрева топки модернизированного котла будет увеличена на 246 м2 Отношение радиационной поверхности по отношению к конвективной поверхности будет увеличено до 15,8%, тогда как у старых котлов ПТВМ-100 оно составляло всего 7,5%. Это и являлось основным недостатком старых водогрейных котлов ПТВМ-100. Дополнительная радиационная поверхность в 246 м2 принимает большее количество тепла в пределах топки, а разряженные холодные трубы полностью экранируют и защищают собой первые ряды труб конвективных пакетов. Новые конвективные пакеты работают в более благоприятных тепловых условиях как и в водогрейных котлах П - образной компоновки, не «видя» факела. При этом значительно понижается температура уходящих газов, даже при некотором снижении конвективных поверхностей нагрева.

Выводы:

  1. Для старых водогрейных котлов башенного типа ПТВМ-100 предложена схема реконструкции с применением двух двусветных экранов и холодных разреженных труб, расположенных перед первым конвективным пакетом.
  2. Второй конвективный пакет труб выполнен с переменным поперечным сечением, уменьшающимся по ходу газов и сохраняющим высокий уровень скорости газов и коэффициента теплоотдачи.
  3. Предложенная реконструкция позволит увеличить теплопроизводительность водогрейного котла, повысить надежность работы конвективных пакетов котла, поднять его КПД до 93 %.

СПИСОК ЛИТЕРАТУРЫ

  1. Роддатис К.Ф., Полтарецкий А.Н. Справочник по котельным установкам малой производительности / Под. Ред. К. Ф. Роддатиса. - М.: Энергоатомиздат, 1989. - 488 с.
  2. Отчет. НПФ «Квазар». Анализ реконструктивных мероприятий на котлах ПТВМ-100 и ПТВМ-50. Департамент энергосбережения по г. Алматы. 1999. - 87 с.
  3. Орумбаев Р.К. Автореферат диссертации д.т.н. «Исследование, разработка и организация серийного производства водогрейных котлов нового поколения». Алматы, 2002. - 53 с.
  4. Кожахметов Д.Б. Патент РК №2318, «Циклонная топочная камера». Бюл. №6, 15.06.1999.
  5. Орумбаев Р.К., Орумбаева Ш.Р. и др. Патент РК №21479, «Водогрейный котел». Бюл.№11, 15.11.2011.
  6. Каталог Котлы водогрейные мощностью от 11,63 до 209 МВт. Дорогобужкотломаш. Том.2. Издание 4. 2007. С. 79.
  7. Орумбаев Р.К., Кибарин А.А., Орумбаева Ш.Р., Орумбаев А.Р. Инновационный патент «Водогрейный котел». Бюл. №7, 15.07.2015.


Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png