Наименование

Теплопроизводительность, МВт (Гкал/ч)

Давление воды, МПа:

расчетное изб.

минимальное на выходе абс.

Температура воды, ºC:

на входе:

в пиковом режиме

в основном режиме, не менее

на выходе на мазуте, не менее

на выходе на газе, не более

Расход воды, т/ч, не менее:

в пиковом режиме

в основном режиме

Расход топлива:

газа, м 3 /ч

мазута, кг/ч

Температура уходящих газов (газ/мазут), ºC

Площадь поверхности нагрева, м 2:

радиационная

конвективная

Объем топочной камеры, м 3

Габаритные размеры, м:

Масса в объеме поставки, т

КПД котла, %:

на мазуте

Конвективная поверхность нагрева котлов состоит из трех пакетов, расположены в вертикальном газоходе. Каждый пакет набирается из П-образных ширм, выполненных из труб Ø 28×3 мм. Ширмы пакетов расположены параллельно фронту котла и установлены таким образом, что из трубы образуют шахматный пучок с шагами S 1 = 64 мм иS 2 = 40 мм. Боковые стены конвективного вертикального газохода закрыты трубами Ø 83×3,5 мм с шагомS = 128 мм, являющимися коллекторами для П-образных ширм конвективных пакетов.

Котлы полностью унифицированы между собой и отличаются только глубиной топочной камеры и конвективного газохода.

При работе на мазуте котлы по воде должны включаться по прямоточной схеме (подвод воды осуществляется в поверхности нагрева топочной камеры, а отвод воды – из конвективных поверхностей нагрева). При работе только на газообразном топливе включение котлов по воде выполняется по противоточной схеме (подвод вода – в конвективные поверхности нагрева, а отвод воды – из поверхностей нагрева топочной камеры).

Продукты горения выходят из топки через проход между задним экраном и потолком топочной камеры и движутся сверху вниз через конвективную шахту.

Техническая характеристика котлов типов КВ-ГМ-50-150, КВ-ГМ-100-150 приведена в табл. 3.14.

Водогрейные котлы типа ПТВМ предназначены для работы на газообразном (основное) и жидком (для кратковременной работы) топливе. Эти котлы имеют башенную компоновку, т.е. конвективные поверхности нагрева располагаются непосредственно над топочной камерой, выполненной в виде прямоугольной шахты. Топочная камера котлов полностью экранирована трубами Ø 60×3 мм, расположенными с относительным шагомS /d = 1,07. Топка котлов типа ПТВМ-180 помимо фронтового, заднего и двух боковых экранов имеет два ряда двухсветных экранов, которыми она разделяется на три сообщающиеся камеры.

Конвективные поверхности нагрева котлов типа ПТВМ различной теплопроизводительности однотипны и отличаются только длиной П-образных змеевиков и числом параллельных змеевиков, составляющих одну секцию. Змеевики выполнены из труб Ø 28×3 мм. Поперечный шаг труб равен S 1 = 64 мм, а продольный –S 2 = 33 мм. Трубы располагаются горизонтально, в шахматном порядке и омываются перпендикулярно к ним направленным газовым потоком.

Принципиальной особенностью котлов башенной компоновки является применение большого числа сравнительно мелких горелок с подводом воздуха от индивидуальных дутьевых вентиляторов. В качестве горелочных устройств на котлах типа ПТВМ используются газомазутные горелки с периферийным подводом газа и механическим распыливанием мазута. Число устанавливаемых горелок в зависимости от теплопроизводительности котла различно, но располагаются они во всех типоразмерах на двух противоположных сторонах поровну. Регулирование тепловой производительности котлов осуществляется изменением числа работающих горелок без изменения режима остальных при постоянном расходе воды и переменном температурном перепаде. Котлы работают на естественной тяге, и каждый котел имеет собственную дымовую трубу, высота которой от уровня земли должна быть не менее 55 м; как правило, трубы располагаются непосредственно над котлами и крепятся к их каркасу.

На рис. 3.21 показан котел ПТВМ-50. Газовые горелки размещаются на боковых стенах, поэтому трубы боковых экранов в местах установки горелок разведены. Фронтовой и задний экраны выполнены одинаково. Конвективные поверхности размещены по высоте в два ряда.

М . А . Соколов , начальник отдела АСУТП МУП «Теплоэнергия»
Л . Е Цветков , генеральный директор ПКП «Стелс» , г . Череповец
(по материалам СТА 1 2002 г . )

Введение

В настоящее время в России возникла ситуация, когда тепловые станции испытывают острую необходимость в модернизации технологического оборудования и особенно средств технологического контроля и управления. Оборудование большинства станций эксплуатируется 15-20 и более лет, его физический ресурс исчерпан, оно морально устарело.

Наилучшим решением в этой ситуации является разработка полномасштабных интегрированных АСУ ТП взамен устаревших систем, а также внедрение современного технологического оборудования, позволяющего максимально использовать возможности систем управления и тем самым добиться качественно нового уровня технологии. По сравнительным оценкам такой подход экономически оправдан и по размерам затрат на внедрение, и по показателям эффективности (экономии энергоресурсов, снижению аварийности, более рациональному использованию оборудования), а также привлекательности в силу возможности реализовывать широкий круг экологических мероприятий и повысить общую культуру производства.

Примером подобного решения является АСУ ТП двух водогрейных котлоагрегатов. Система разработана и внедрена совместными усилиями ЗАО «АМАКС» (г. Москва) Череповецкого монтажного управления, треста «Севзапмонтажавтоматика», МУП «Теплоэнергия» и ПКП «Стелсе» (г. Череповец) (рис. 1).

Цели создания системы и решаемые задачи

Водогрейный котлоагрегат, в конечном счете, является энергетической установкой, в процессе эксплуатации которой с высокой динамикой изменяются связанные между собой технологические параметры. АСУТП позволяет оптимизировать эти параметры по экономическим, экологическим, эргономическим и прочим показателям. Поэтому среди главных целей создания описываемой системы можно выделить следующие:

  • обеспечение безопасного технологического режима котельных агрегатов;

снижение расходов топлива и электроэнергии;

  • увеличение срока службы технологического оборудования;

снижение вредных выбросов в атмосферу;

улучшение условий труда эксплуатационного персонала.

Для достижения указанных целей приняты следующие концептуальные решения:

  • реконструкция системы газоснабжения котельных агрегатов с установкой блоков газооборудования БГ-5 (производитель ЗАО «АМАКС»);

применение IBM PC совместимых контроллеров MicroPC фирмы Octagon Systems и Fastwel и ADAM-5510 фирмы Aclvantech;

  • применение на верхнем уровне IBM PC совместимых персональных компьютеров на базе процессоров Pentium II;
  • использование супервизорного режима управления как основного;
  • применение частотно-регулируемых электроприводов тягодутьевых агрегатов;
  • реализация всех эксплуатационных режимов управления средствами операторских станций пульта управления.

Основными критериями выбора для построения системы контроллеров MicroPC и ADAM-5510 послужили их соответствие условиям эксплуатации и высокая надежность.

Блоки газооборудования БГ-5 обеспечивают системе следующие преимущества:

  • исключается возможность загазованности топок котлов за счет использования в схеме двух быстродействующих запорных клапанов (рис. 2) и клапана утечки между ними, а также специальной системы проверки газовой плотности арматуры;
  • создаются условия для розжига горелок при пониженном давлении газа, что полностью устраняет возможность «хлопка» в топке;
  • обеспечивается управление каждой горелкой, что позволяет использовать полный рабочий диапазон регулирования горелок, оптимизирует процесс горения, снижает вредные выбросы.

АСУ ТП позволяет решать следующие задачи:

  • автоматическая подготовка котлоагрегата к розжигу:
  • автоматический розжиг горелок котла с переходом в режим минимальной мощности:
  • управление нагрузкой и оптимизация соотношения газ-воздух каждой из горелок котла;
  • управление тепловым режимом котла (регулирование разрежения в топке, давления воздуха в общем воздуховоде, подачи газа в котел);
  • регулирование температуры сетевой воды на выходе из котельной в зависимости от температуры наружного воздуха;
  • защита, сигнализация и блокировка работы котла при неисправностях;
  • управление с операторских станций технологическим оборудованием (дымосос, вентиляторы, задвижки);
  • обеспечение оперативно-технологического персонала информацией о параметрах теплового режима и состоянии технологического оборудования;
  • регистрация в режиме реального времени параметров технологического процесса и действий оперативного персонала;
  • протоколирование и архивирование информации;
  • представление архивной информации и результатов расчетов.

Управляющие и информационные функции системы реализуются соответствующими подсистемами и схемами, выделенными по функциональным признакам.

Программно - технические средства и иерархия системы

Комплекс технических средств (КТС) АСУ ТП является материальной базой, на основе которой в совокупности с программой, составленной в соответствии с алгоритмами функционирования АСУ ТП, реализуются задачи управления технологическим процессом и информационного обслуживания технологического персонала.

Структура КТС является иерархической, распределенной (рис. 3).

На нижнем уровне располагаются датчики давления и перепада давления («Сапфир-22»), температуры с нормирующими преобразователями (ТСПТУ), исполнительные механизмы (МЭО-100, 250), блоки питания (БП-96/24-4, БП-99/24-2 «Элемер», Wago 230/24-2-228-812), средства выбора режимов управления, пускатели (ПБР-2, 3), промежуточные реле, блоки бесперебойного питания серии Sman-UPS фирмы АРС, а также средства дистанционного управления исполнительными механизмами, с задвижками и клапанами, позволяющие оператору вести технологический процесс при неисправности АСУ ТП, т. е. предусмотрен и ручной (аварийный) режим работы.

На среднем уровне системы расположены три блока УСО-1. Конструктивно они выполнены в виде отдельных шкафов со своими пультами управления и панелями индикации (рис. 4). Блоки УСО-1 выполняют функции управления технологическим оборудованием горелки. В них также реализованы локальные функции защиты и блокировок для каждой отдельной горелки. В состав УСО-1 входят:

  • защитный блок, выполненный на базе однокристальной микроЭВМ и реализующий локальные функции защиты для одной горелки на основе обработки входных дискретных сигналов и формирования управляющих сигналов для внешних устройств;
  • блок управления, предназначенный для обработки входных аналоговых и дискретных сигналов и управления внешними устройствами по заданному алгоритму, представляющий собой контроллер с модулями гальванической изоляции входных и выходных дискретных сигналов и с выходом в сетевой интерфейс RS-485.

На этом уровне реализуются основные управляющие и информационные функции системы, локальные блокировки и защита, а также производится первичная обработка информации. По интерфейсу RS-485 через преобразователь МТВ-485 три блока УСО-1 (по одному на каждую газовую горелку) связаны с управляющим контроллером котлоагрегата, построенным на аппаратных средствах MicroPC фирмы Octagon Systems и Fastwel и использующим процессорную плату 5066 с производительностью Pentium и модули последовательного интерфейса 5558, ввода-вывода UNI096-5, контроллера НГМД/НЖМД 5815 (3,5 " " FDD) в выставочном каркасе 5278-RM с блоком питания 7115. На IBM PC совместимом контроллере ADAM-5510 с модулями аналогового и дискретного ввода ADAM-5017 и ADAM-5052 и с релейным выходным модулем ADAM-5060 реализована система защиты и блокировок котлоагрегата, которая дублируется также и контроллером MicroPC. Гальваническую изоляцию между контроллером MicroPC и устройствами нижнего уровня обеспечивают модули фирмы Grayhill, установленные в клеммные платы TBI-24L (Fastwel). Контроллеры и модули изоляции размещены в шкафу PROL1NE фирмы Schroff (pис. 5).

Программное обеспечение контроллеров MicroPC и ADAM-5510 было разработано при помощи пакета UltraLogik (рис 6). Программное обеспечение инженерной станции и станции защиты реализовано на языке ассемблера.

Персональные компьютеры операторских и инженерной станций связаны по интерфейсу RS-232 (протокол ModBus) с контроллером MicroPC каждого котла. Программное обеспечение операторских станций разработано при помощи графической инструментальной системы Трейс Моуд v4.20 для ОС MS-DOS.

Операторские станции предназначены для оперативного управления котлоагрегатами и горелками, ведения архива и т. д. (рис. 7, 8). Они полностью равноправны и взаимозаменяемы, в случае выхода из строя одной из них можно вести управление со второй.

Инженерная станция служит для программирования, наладки и диагностики контроллеров MicroPC и ADAM-5510, а также используется для настройки коэффициентов всех регуляторов системы, масштабирования входных аналоговых сигналов, задания контрольных точек режимных карт, блокировок, уставок и т. д. Изменение параметров настройки системы управления может осуществляться в рабочем режиме без установки технологического оборудования.

Рабочие станции верхнего уровня системы располагаются на столе оператора пульта управления котлоагрегатами (рис. 9).

Такое построение системы повышает ее живучесть, так как отказ отдельных технических средств на различных уровнях иерархии приводит лишь к отказу выполнения части функций системы. Высокую надежность АСУ ТП во многом определяет система электропитания: все блоки УСО-1, контроллеры и компьютеры запитываются через источники бесперебойного питания Smart-UPS.

Заключение

Испытания и опытно-промышленная эксплуатация системы продемонстрировали ее высокие эксплуатационные характеристики и надежность. За полтора года не произошло ни одного сбоя на уровне контроллеров. Несомненным достоинством внедренной АСУТП является возможность изменения технологических параметров и коррекции алгоритмов работы системы без остановки оборудования, что крайне важно в условиях непрерывного технологического процесса.

Предварительные расчеты экономической эффективности показывают, что внедрение системы позволяет в среднем за год добиться снижения расхода природного газа на 3,2 млн м 3 , электроэнергии на 1,6 млн кВт.ч, уменьшения аварийных остановов котлов на 80%, снижения затрат на капитальный ремонт на 15%. Срок окупаемости затрат на внедрение описанной АСУ ТП по предварительным расчетам составляет 3 г.

1 Краткое описание водогрейного котла КВГМ-100

2 Технико-экономические показатели котла

3 Горелки

4 Конструкция

5 Металлоконструкции

6 Обмуровка

7 Гидравлическая схема.

8 Тепловая схема пиковой котельной

9 Перечень уставок технологических защит

10 Блокировка >

Г

11 Техсигаализация

12 Сигнализация котла

13 Подготовка котла к растопке

14 Растопка котла

15 Обслуживание котла во время работы

16 Остановка котла

17 Аварийное положение

18 Схема циркуляции пикового водогрейного котла КВГМ-100

19 Обслуживание вспомогательного оборудования

20 Пуск вспомогательного оборудования

21 Основные указания по технике безопасности и пожаробезопасности при эксплуатации котла

22 Вспомогательное оборудование

1. Краткое описание водогрейного котла КВГМ-100

Газомазутный водогрейный котел КВГМ-100 предназначен для установки на ТЭЦ с целью покрытия пиков теплофикационных нагрузок, и в качестве основного источника теплоснабжения на ТЭЦ или в районных отопительных котельных.

Котёл - прямоточный, П-образной компоновки, рассчитан для подогрева воды до 150°С, с температурными перепадами 40°С для пикового режима, 80°С для основного режима. Габаритные размеры котла: высота 14450 мм ширина 9600 мм глубина 14160 мм.

Топочная камера котла полностью экранирована трубами диаметром 60*3 мм с шагом S= 64 мм. Объем топочной камеры 388 м 3 лучевоспринимающая поверхность нагрева равна 325 м 2 .

Конвективные поверхности нагрева котла расположены в опускном газоходе, образованном боковыми, промежуточным и задним экранами. Они выполнены в виде пакетов высотой 1220 мм каждый.

Пакеты набираются из секций, состоящих из вертикальных стояков 83*4 мм (сталь 20), и горизонтально расположенных U-образных змеевиков из труб диаметром 28*3 мм, с шагами в шахматном пучке Sr= 64 мм и S2= 40 мм.

Вертикальные стояки имеют шаг S=128 мм. Они присоединены к верхним и нижним камерам, расположенным на боковых стенах конвективной части. Поверхность нагрева конвективной части F = 2385 м 2 .

2. Технико-экономические показатели котла

3. Горелки

Топочная камера котла КВГМ оборудована тремя форсунками паромеханическими типа ФПМ 6000/1000, предназначенными для распиливания топочного мазута по ГОСТ 10585-75 в стационарных паровых котлах.

Характеристика горелки:

Производительность 6000 кг/час

Давление мазута на номинальном режиме

перед форсункой 35 кгс/см 2

Давление распыливающего пара 4 кгс/см 2

При работе на режимах с производительностью более 0,8 номинальной в условиях, исключающих перегрев форсунок, допускается снижение давления распыливающего пара перед форсунками до 2 кгс/см 2

Топливо должно быть профильтровано. Допустимый размер частиц после фильтрации 0,5 (ТУ 108.1043-81).

При нагрузке свыше 60% от номинальной распыл топлива производится, в основном, механической ступенью форсунки и паровая часть в этом случае может быть отключена. При низких нагрузках и пусковых режимах подача пара обязательна.

4. Конструкция

Основными рабочими элементами форсунки являются ствол, колодки с соединительными деталями, распределитель топливный, гайка, сопло паровое и гайка накидная.

Ствол служит для транспортировки жидкого топлива и пара к головке форсунки и представляет собой две концентрические трубы.

Мазут, подводится по внутренней трубе, через отверстия распределителя в кольцевой канал и далее по тангенциальным каналам топливного завихрителя в камеру завихрения приобретая вращательно-поступательное движение.

Из камеры завихрения топливо вытекает через сопло в виде пленки, которая распадается на капли.

Паровое сопло имеет несколько тангенциальных каналов для закручивания парового потока, камеру завихрения и выходное отверстие. По наружной трубе пар подходит к каналам парового завихрителя и, выходя закрученным потоком рядом с топливным соплом, участвует в процессе распыливания мазута.

5. Металлоконструкции

Котлы унифицированной серии опираются нижними камерами всех экранов на металлический портал, представляющий собой сварную конструкцию, состоящую из колонн и балок, жестко связанных между собой.

Дополнительно боковые экраны нижним поясом жесткости опираются на опорные фермы, имеющиеся на портале. Для обслуживания имеется система площадок и лестниц.

6. Обмуровка

Обмуровка котлов выполнена облегченной, с креплением к экранным трубам. Натрубная обмуровка состоит из 3-х слоев теплоизоляционных материалов: огнеупорного шамотобетона на глиноземистом цементе (20 мм) армированного металлической сеткой, минеральной ваты в виде матрацев в металлической сетке (80 мм) и уплотнительной магнезиальной обмазки (12 мм). Общая толщина обмуровки 112 мм.

7. Гидравлическая схема.

1. Сетевая вода для питания котлов подается сетевыми насос турбинного цеха.

2. Конструкция котлов допускает работу как в основном режиме (температурный график 70150°С),так и в пиковом режиме (110-150°С).

8. Тепловая схема пиковой котельной

Сетевая вода по прямой линии от насосов 1-го подъема поступает на общий всасывающий трубопровод 01220 мм 4 сетевых насосов. После чего через задвижки 1СН-1, 2СН-1, ЗСН-1, 4СН-1 поступает на насосы. После сетевых насосов вода поступает в распределительный коллектор котлов 01220 мм. Из него сетевая вода через задвижки на входе 4КОС-Л, 4КОС-П,

5КОС-Л, 5КОС-П, 6КОС-Л, 6КОС-П, 7КОС-Л, 7КОС-П попадает в котлы, где нагревается до

150°С. Через задвижки 4КПС-Л, 4КПС-П, 5КПС-Л, 5КПС-П, 6КГ1С-Л, 6КПС-П, 7КПС-Л, 7КПС-П поступает в прямую линию теплосети.

Для создания циркуляции в теплосети с помощью сетевых насосов пиковой котельной (при отключении всех котлов) служит перемычка между распределительным коллектором котлов и прямой линией теплосети с задвижкой П-10.

9. Перечень уставок технологических защит

Перечень уставок технологических защит, действующих на останов котла КВГМ-100 при основном режиме работы с паромеханическими форсунками.

Наименование Параметра Величина защиты Уставки сигнализации
1 Падение давления мазута 5 кгс/см 2 8 кгс/см 2
2 Падение давления вторичного воздуха в общем коробе 40 мм. вод. ст. 60 мм. вод. ст.
3 Повышение давления воды за котлом 26 кгс/см 2 25 кгс/см 2
4 Понижение давления воды за котлом 8 кгс/см 9 кгс/см 2
5 Повышение температуры воды за котлом 155°С 150°С
6 Понижение расхода воды через котёл 4 кгс/см 2 4 кгс/см 2
7 Аварийный останов дутьевых вентиляторов 4 кгс/см 2 4 кгс/см 2
8 Аварийный останов дымососов 4 кгс/см 2 4 кгс/см 2

Ю.Блокировка

10.1. Вентиля на подводе мазута к форсункам закрываются:

а) при останове котла;

б) при погасании 3-х форсунок.

а) при открытых задвижках на входе и выходе сетевой воды на котёл (1 и 2 нитка);

б) при открытой задвижке на продувочном паропроводе форсунок.

10.3. Задвижки на сетевой воде к котлу и от котла (1 и 2 нитка):

а) запрет на закрытие задвижки при открытом вентиле на подводе мазута к котлу;

б) при погасании форсунки (через время);

в) запрет на открытие мазутных вентилей при закрытых задвижках по сетевой воде.

П.Техсигнализация

11.1. Температура подшипников: дымососов, дутьевых вентиляторов №1 и 2 высока 70°С.

11.2. Температура газов конвективного пучка высока-800°С.

11.3. Температура дымовых газов высока-180°С.

12.Сигнализация котла

12.1. Давление мазута низко.

12.2. Падение разряжения в топке котла.

12.3. Давление вторичного воздуха в общем коробе низко-60 мм.вод.ст.

12.4. Температура подшипников дымососа высока-70°С.

12.5. Температура подшипников дутьевого вентилятора-70°С.

12.6. Температура воды перед котлом низка-70°С.

12.7. Отклонение температуры воды за котлом-150°С.

12.8. Понижение давления воды за котлом-8 кгс/см 2 .

12.9. Расход воды через котёл низок:

12.10. основной режим-1100 т/ч;

12.11. пиковый режим-2100 т/ч.

12.12. Температура газов в конвективном пучке-800°С.

12.13. Температура дымовых газов за котлом-180°С.

12.14. Аварийное отключение дутьевого вентилятора.

12.15. Аварийное отключение дымососа.

12.16. Аварийный останов котла.

12.17. Понижение давления мазута в котельной магистрали-1.5 кгс/см 2 .

12.18. Аварийное отключение паромеханических форсунок.

12.19. Отсутствие напряжения в цепях защиты.

13.Подготовка котла к растопке

13.1. Проверить наличие и исправность противопожарного инвентаря.

5. Эксплуатация котла КВГМ-100-150

5.1 Общие положения

5.1.1. На промышленной котельной теплосилового цеха ОАО ОЭМК установлено три водогрейных котла типа КВГМ-100-150, стационарные номера 2, 3 и 4 (далее КВГМ-2, КВГМ-3, КВГМ-4 соответственно). Котел КВГМ-4 по составу вспомогательного оборудования и оснащению контрольно-измерительными приборами имеет отличия от котлов КВГМ-2 и КВГМ-3, поэтому здесь он не рассматривается. Котлы изготовлены Дорогобужским котельным заводом в 1980 году. Котлы смонтированы в 1982 году трестом «Теплоэнергомонтаж». В 1982 году приняты в эксплуатацию.

5.1.2. Допуск к обслуживанию.

К обслуживанию котлов КВГМ-100-150 допускаются лица, не моложе 18 лет, прошедшие: медицинское освидетельствование, вводный и первичный инструктаж на рабочем месте по безопасности труда, обученные по специальным программам в учебно-курсовом комбинате или на курсах, аттестованные и имеющие: удостоверение квалификационной комиссии по профессии на право обслуживания котлов среднего давления на жидком и газообразном топливе, обученные безопасным приемам и методам работы, прошедшие проверку знаний производственно-технической инструкции и инструкции по охране труда для своей профессии.

Лица, обслуживающие газопроводы котлов, дополнительно должны быть обучены по специальной программе, аттестованы и иметь удостоверение на право обслуживания объектов газового хозяйства.

5.2 Применяемыеобозначения.

В инструкции и в схемах трубопроводов применена нумерация задвижек, вентилей, регулирующих и отсечных клапанов, шиберов и направляющих аппаратов, состоящая из буквенных обозначений и порядковых номеров. Буквенные обозначения являются сокращенным наименованием рабочей среды, потока и оборудования; цифра, стоящая после буквенного обозначения, является порядковым номером котла, а следующие за ней цифры является порядковым номером запорного органа.

Буквенным обозначениям соответствуют:

ПС - Прямая Сетевая вода

ОС - Обратная Сетевая вода

ВУП - Вода Умягченная Подпиточная

ГП - Газ Природный

МВ - Мазут к Водогрейным котлам

ПМ - Пар для Мазутопроводов (на распыл, продувку, пропарку)

ГЗУ - Газ к Запальному Устройству

Вз - ВоЗдух

К - Котел

Г - Горелка

О - Отсечной

Р - Регулирующий

Д - Дренаж

П - Продувка

Ц - Циркуляция

Н - Насос

Д – Деаэратор

В настоящей инструкции при описании выполняемых операций использованы обозначения арматуры и оборудования котла КВГМ-100-150 №2. Для котла КВГМ-100-150 №3 обозначения аналогичны. Только в цифровой части вместо первой цифры 2 используется цифра 3.

5.3 Устройства сигнализации, защит, блокировок водогрейных котлов, сетевой установки, деаэрационно-вакуумной установки

5.3.1. Нарушения и отклонения в работе основных элементов котла, его котельно-вспомогательного оборудования, арматуры, регулирующих органов, а также неправильные действия обслуживающего персонала могут создать условия для возникновения аварии с возможными разрушениями, травмами и человеческими жертвами. Для предотвращения возможных аварий котел оборудован устройствами технологических защит, блокировок, сигнализации, которые останавливают котел, изменяют его рабочую схему, блокируют неправильные действия персонала или автоматики, предупреждают и оповещают персонал об отклонениях параметров от рабочих.

5.3.2. Для водогрейных котлов действие защит заключается в прекращении подачи топлива.

5.3.3. Основной частью системы защиты котла является отсечной клапан ГПО-2в. Он является быстродействующим запорным устройством. Управляющим сигналом для закрытия клапана является исчезновения напряжения на катушке электромагнита.

5.3.4. Если закрыта хотя бы одна из задвижек ПС-21, ПС-22, ПС-23, ПС-24, то по одному из трубопроводов котла отсутствует движение сетевой воды. Подача газа в горелки и сжигание его приведет к перегреву и разрушению труб поверхностей нагрева котла. Поэтому, открытие задвижек ГПГ-21в, ГПГ-22в, ГПГ-23в блокируется независимо от показаний приборов по расходу сетевой воды через котел. После открытия всех задвижек ПС-21, ПС-22, ПС-23, ПС-24 дается разрешение на открытие задвижек ГПГ-21в, ГПГ-22в, ГПГ-23в.

5.3.5. Если закрыта хотя бы одна из задвижек ПС-21, ПС-22, ПС-23, ПС-24, то по одному из трубопроводов котла отсутствует движение сетевой воды. Подача газа в горелки и сжигание его приведет к перегреву и разрушению труб поверхностей нагрева котла. Поэтому, открытие вентилей МВГ-21в, МВГ-22в, МВГ-23в блокируется независимо от показаний приборов по расходу сетевой воды через котел. После открытия всех задвижек ПС-21, ПС-22, ПС-23, ПС-24 даетсяразрешение на открытие вентилей МВГ-21в, МВГ-22в, МВГ-23в.

МИНИСТЕРСТВО ТОПЛИВА И ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТИПОВАЯ ИНСТРУКЦИЯ
ПО ЭКСПЛУАТАЦИИ ГАЗОМАЗУТНОГО
ВОДОГРЕЙНОГО КОТЛА
ТИПА КВГМ-100

РД 34.26.507-91

СЛУЖБА ПЕРЕДОВОГО ОПЫТА ОРГРЭС

Москва 1993

РАЗРАБОТАНО фирмой по наладке, совершенствованию технологии и эксплуатации электростанций и сетей ОРГРЭС

ИСПОЛНИТЕЛИ И.М. ГИПШМАН, И.В. ПЕТРОВ

УТВЕРЖДЕНО Главным научно-техническим управлением энергетики и электрификации бывшего Минэнерго СССР 24.12.91 г.

Заместитель начальника А.П. БЕРСЕНЕВ

Срок действия установлен

с 01.01.93 г.

до 01.01.98 г.

. ОБЩИЕ ПОЛОЖЕНИЯ

Карбонатный индекс И к (мг∙экв/л) 2 при температуре сетевой воды, °С

Открытая

Закрытая

И к - предельное значение произведения общей щелочности и кальциевой жесткости воды, выше которого в водогрейном котле протекает интенсивное карбонатное накипеобразование.

Значение показателя для системы теплоснабжения

открытой

закрытой

Растворенный кислород, мг/л

Не более 0,05

Свободная углекислота, мг/л

Показатель рН

Взвешенные вещества, мг/л

Не более 5

Масла и нефтепродукты, мг/л

2. Недостаточная надежность верхнего конвективного пакета

Растворенный кислород, мг/л

Свободная углекислота, мг/л

Щелочность по фенолфталеину, мг∙экв/л

Показатель рН

Взвешенные вещества, мг/л

Масла и нефтепродукты, мг/л

Открытая

Не более 0,02

Не более 0,1

Не более 0,3*

Не более 5

Не более 0,3

Не более среднегодовых допустимых концентраций (СДК), устанавливаемых действующими нормами радиационной безопасности

Закрытая

Не более 0,02

Не более 0,5

Не более 5

Не более 1

* По согласованию с СЭС возможно 0,5 мг/л

** Верхний предел - при глубоком умягчении воды

(Измененная редакция, Изм. № 1).

Газомазутный водогрейный котел КВГМ-100 предназначен для установки на ТЭЦ в целях покрытия пиков тепловых нагрузок и в качестве основного источника теплоснабжения в районных отопительных котельных.

Котел - прямоточный, П-образной компоновки, рассчитан для подогрева воды до 150 °С с перепадами 40 ° С при пиковом режиме эксплуатации и 80 °С в основной схеме (рис. ). Как типовое решение применительно к основному режиму принято однопоточное питание котла от фронтового экрана топки. Гидравлическая схема пикового режима включает два параллельных потока, охватывающих только топочные или конвективные поверхности.

Котел оборудован тремя газомазутными горелками РГМГ-30 с ротационными форсунками Р-3500, установленными на фронтовой стене топки в два яруса треугольником вершиной вверх. Производительность горелки по газу - 4175 м 3 /ч, мазуту - 3835 кг/ч. Требуемое давление газа перед горелкой - 0,04 МПа (0,4 кгс/см 2), мазута - 0,2 МПа (2 кгс/см 2). К горелкам, сжигающим мазут, подаются два потока воздуха - общий и первичный, на газе поступает только общий воздух. По согласованию с потребителями производится поставка котла с газомазутными горелками ПГМГ-40, имеющими паромеханические форсунки ФМП 4600/1000. Давление мазута перед форсунками принято менее 2 МПа (20 кгс/см 2). ´ 2 и теми же вентиляторами первичного воздуха.

В новых котлах с целью подавления оксидов азота предусматривается устройство в топке воздушных сопл и системы рециркуляции дымовых газов. Тягодутьевая установка в этом случае включает вентилятор дутьевой ВДН-17 и острого дутья ВДН-15, дымосос общий ДН-24 ´ 2 и рециркуляции газов ДН-15НЖ.

Расчетные данные и конструктивные характеристики водогрейного котла КВГМ-100

Номинальная теплопроизводительность, МВт (Гкал/ч)................................ 116,3 (100)

Давление воды, МПа (кгс/см 2):

расчетное................................................................................................... 2,5 (25)

минимальное на выходе.......................................................................... 1,0 (10)

Температура воды, °С:

на входе..................................................................................................... 70/110

на выходе................................................................................................... 150

Недогрев воды до кипения на выходе, °С...................................................... 30

Расход воды, т/ч................................................................................................. 1235/2460

Минимальное гидравлическое сопротивление тракта, МПа (кгс/см 2):

при первоначальной заводской конструкции верхнего конвективного пакета 0,25 (2,5)

после реконструкции заводом верхнего конвективного пакета......... 0,35 (3,5)

Минимальный КПД котла брутто, %:

на газе........................................................................................................ 93,2

на мазуте.................................................................................................... 91,8

Максимальный удельный расход условного топлива, кг/МВт (кг/Гкал∙ч -1), м 3 /МВт (м 3 /Гкал∙ч -1) 134 (156)

Диапазон регулирования теплопроизводительности от номинальной, %.. 20 - 100

Время растопки котла не более, ч.................................................................... 0,5

Средняя наработка на отказ не менее, ч.......................................................... 5500

Срок службы между капитальными ремонтами не менее, год..................... 2

Полный назначенный срок службы, год......................................................... 20

Удельный выброс оксидов азота, г/м 3

на мазуте.................................................................................................... 0,38

на газе........................................................................................................ 0,3

Габаритные размеры, мм:

длина.......................................................................................................... 14680

ширина....................................................................................................... 9850

высота........................................................................................................ 14365

Масса металла, кг............................................................................................... 135000 Температура воды на входе, ° С

Температура воды на выходе, ° С

Недогрев воды до кипения на выходе, ° С

Расход воды, т/ч

Гидравлическое сопротивление тракта, МПа (кгс/см 2)

Число работающих горелок, шт.

Расход топлива, м 3 /ч

Давление топлива за регулирующим клапаном, МПа (кгс/см 2)

Давление топлива перед горелками, МПа (кгс/см 2)

Давление общего воздуха за вентиляторами, кПа (кгс/м 2)

Давление общего воздуха перед горелками, кПа (кгс/м 2)

Давление первичного воздуха за вентиляторами для ротационных форсунок, кПа (кгс/м 2)

Температура мазута, ° С

Разрежение в верху топки, Па (кгс/м 2)

Температура уходящих газов, ° С

КПД котла брутто, %

Удельные выбросы оксидов азота, г/м 3

Разделение на два пакета с сохранением U-образной конструкции, диаметра труб и уменьшением вдвое числа змеевиков в каждой части

Разделение на два пакета из прямых труб диаметром 32 мм с организацией перемешивания воды в рассечке между частями

ЦКТИ, завод-изготовитель котла Союзтехэнерго, ВТИ, Харьковский филиал ЦКБ НПО «Энергоремонт»

3. Малая эффективность дробеочистительной установки

Устройство газоимпульсной очистки труб конвективной шахты

Уралтехэнерго, завод-изготовитель котла

4. Повышенные выбросы оксидов азота с уходящими газами в атмосферу

Установка воздушных сопел на фронтовой и боковых стенах топки, устройство системы рециркуляции дымовых газов

ЦКТИ, завод-изготовитель котла, ВНИПИэнергопром

Установка воздушных сопел на фронтовой и боковых стенах топки

ВТИ, СКБ ВТИ

Перенос горелок на боковые стены топки, устройство воздушных сопел над ними

Харьковский филиал ЦКБ НПО «Энергоремонт»



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png