После монтажа водяной отопительной системы или после промывки и замены теплоносителя требуется ее настройка, говоря техническим языком, балансировка. Эту процедуру необходимо выполнять и в том случае, если менялись радиаторы либо к ним добавлялись дополнительные секции. Тем домовладельцам, кто желает заняться этим вопросом самостоятельно, и посвящена данная статья. Ее цель – подсказать, как производится балансировка системы отопления в частном доме.

Зачем делать балансировку?

Любая система отопления вне зависимости от ее типа должна обеспечить доставку к батареям расчетного объема теплоносителя, чтобы те, в свою очередь, могли нормально обогревать помещение. Причем каждый радиатор должен получить именно столько горячей воды, сколько нужно. Ни в коем случае не меньше и, желательно, не больше. Однако, всем известно, что большее количество воды всегда пойдет по пути наименьшего сопротивления.

То есть, если гидравлическая балансировка системы отопления не сделана, то больше всего теплоты попадет в ближайшие к котлу батареи, а самые дальние не получают практически ничего. В одних помещениях жарко, в других – холодно. При этом котел функционирует отнюдь не в экономичном и щадящем режиме, а на максимуме. Ниже на рисунке хорошо отражена картина распределения тепла по системе в двух вариантах: разбалансированной и настроенной как полагается:

Итак, гидравлическая балансировка необходима для:

  • равномерного прогрева всех отопительных приборов;
  • работы котла в нормальном режиме и экономии энергоносителей;
  • во избежание шума больших объемов воды, протекающих через ближние батареи с высокой скоростью.

Примечание. Не нуждаются в специальной настройке небольшие двухтрубные системы на 4-6 приборов, смонтированные с предварительным гидравлическим расчетом и четко выдержанными диаметрами труб.

Методы выполнения балансировки

Процедуру настройки в домашних условиях можно выполнить двумя способами:

  • по расчетному расходу теплоносителя с помощью электронного расходомера;
  • приблизительная балансировка по температуре.

Первый метод – наиболее точный и предполагает наличие проекта и гидравлического расчета системы с указанием расхода воды на каждом участке трубопровода. Без этого точная настройка системы невозможна. В крайнем случае расчет можно сделать самостоятельно либо обратиться к специалисту в данной сфере. Вторая составляющая регулировочная арматура, установленная на каждом ответвлении или стояке. И третье – специальный электронный прибор для балансировки, подключаемый к соответствующей арматуре.

Внимание! Полнопроходные шаровые краны не являются регулирующей арматурой, они предназначены для того, чтобы полностью отсекать или открывать путь теплоносителю. То же касается термостатических радиаторных вентилей, чьей задачей является количественное регулирование тепла, подаваемое в батарею в зависимости от температуры воздуха в помещении.

Суть метода состоит в том, чтобы с помощью прибора определить реальный расход теплоносителя на каждой ветви или стояке системы. Для этого на ответвлении обратной магистрали должен быть установлен балансировочный вентиль со штуцерами для подключения электронного блока. Имея на руках схему с указанными расходами на каждую ветвь, остается только присоединить прибор к штуцерам вентиля и поворотом шпинделя отрегулировать требуемый расход. Таким способом производится и балансировка системы отопления многоэтажного дома.

Примечание. Сейчас в продаже имеются балансовые вентили с колбой расходомера, позволяющие произвести грубую настройку без прибора.

Когда все спроектировано и просчитано правильно, то все батареи, находящиеся на отрегулированном стояке или ветке, получат нужное количество тепла. Каждый нагреватель настраивать таким методом не принято, тем более, если он оснащен термостатом.

Настройка по температуре

Очень часто у домовладельца нет никакой проектной документации, а систему придумал и собрал талантливый сварщик дядя Ваня. Тогда остается только регулировать каждую батарею по температуре.

Чтобы выполнить балансировку системы отопления своими руками, надо на выходе каждого радиатора установить специальный вентиль, такой как показан на фото. Дополнительно понадобится электронный термометр, измеряющий температуру на любой поверхности.

Для справки. Балансировать систему можно и старым способом, с помощью шайб. Но проходное отверстие в шайбе все равно надо рассчитать по расчетному расходу теплоносителя.

Процесс начинается с того, что полностью открывается вентиль на самом дальнем и мощном отопительном приборе. Остальные открываются на определенное число оборотов. Например, если батарей на одной ветви – 6 шт., а клапан откручивается на 5 оборотов, то на первом радиаторе делаем 1 оборот, на втором – два и так далее, последний открываем до конца. Приблизительная балансировка двухтрубной системы отопления частного дома заключается в том, чтобы температура на выходах всех нагревателей была одинаковой.

Для этого надо измерять температуру металлического корпуса вентиля. Когда она высокая, то немного прикрывать его, если низкая – открывать. Следующий замер надо делать спустя 10 минут, чтобы температура после изменения успела стабилизироваться.

Заключение

Отдавая себе отчет в том, что температурной регулировкой будет пользоваться подавляющее большинство домовладельцев, хотим предупредить, что наличие балансовых вентилей вместо шаровых кранов – обязательно. Кроме того, придется затратить массу времени, пока удастся выровнять все радиаторы. Зато потом балансировка стояков и ветвей не понадобится.

Экология потребления. Усадьба: Системы отопления практически всех конфигураций требуют балансировки, исключение составляет только разводка по петле Тихельмана. Мы рассмотрим три возможных способа провести балансировку, расскажем о преимуществах, недостатках и уместности каждого из методов, дадим практические рекомендации.

В чем суть балансировки

Гидравлические системы отопления по праву считаются наиболее сложными. Их эффективная работа возможна только при условии глубокого понимания физических процессов, скрытых от визуального наблюдения. Совместная работа всех устройств должна обеспечивать поглощение теплоносителем максимального количества тепла и его равномерным распределением по всем нагревательным приборам каждого контура.

Режим работы каждой гидросистемы основан на взаимосвязи двух обратно пропорциональных величин: гидравлического сопротивления и пропускной способности. Именно ими определяется расход теплоносителя в каждом узле и части системы, а стало быть и количество подводимой к радиаторам тепловой энергии. В общем случае расчёт расхода для каждого отдельно взятого радиатора отражает высокую степень неравномерности: чем больше удалён нагревательный прибор от теплового узла, тем выше влияние гидродинамического сопротивления труб и ответвлений, соответственно теплоноситель циркулирует с меньшей скоростью.

Задача балансировки системы отопления - гарантировать, что проток в каждой части системы будет иметь примерно одинаковую интенсивность даже при временных изменениях режимов работы. Тщательная балансировка позволяет добиться такого состояния, когда индивидуальная регулировка термостатирующих головок не оказывает существенного влияния на прочие элементы системы. При этом сама возможность балансировки должна предусматриваться ещё на этапе проектирования и монтажа, ведь для настройки системы необходима как специальная арматура, так и технические данные на оборудование котельной. В частности, обязательна установка на каждом радиаторе запорных клапанов, в простонародье называемых дросселями.

Особенности работы с разными видами разводки

Однотрубные системы отопления поддаются балансирующей регулировке наиболее просто. Всё благодаря тому, что суммарный проток через радиатор и связывающий байпас всегда одинаков и не зависит от пропускной способности установленной арматуры. Поэтому в системах типа «Ленинградка» работа ведётся не столько над балансировкой протока, сколько над уравнением количества тепла, выделяемого теплоносителем в радиаторах. Говоря проще, главная цель балансировки в таком случае - обеспечить, чтобы к наиболее удалённому радиатору вода поступала при достаточно высокой температуре.

В двухтрубных тупиковых системах действует несколько иной принцип. Каждый радиатор системы представляет собой своего рода шунт, гидравлическое сопротивление которого ниже, чем у всей остальной группы, расположенной далее по направлению протока. Из-за этого значительная часть теплоносителя протекает через шунт обратно к тепловому узлу, в то время как циркуляция далее по системе имеет гораздо меньшую интенсивность. В таких системах отопления приходится трудиться именно над выравниванием протока в каждом радиаторе путем изменения пропускной способности арматуры.

Двухтрубные попутные системы отопления балансировки не требуют вовсе, но при этом имеют сравнительно высокую материалоёмкость. В этом вся прелесть петли Тихельмана: путь, который проходит теплоноситель в цепи каждого радиатора, примерно одинаков, благодаря чему эквивалентность протока в каждой точке системы поддерживается автоматически. Похожим образом дело обстоит с лучевыми системами отопления и водяным тёплым полом: выравнивание протока выполняется на общем коллекторе по поплавковым расходомерам.

Расчётное моделирование

Наиболее конструктивный и правильный метод регулировки - с помощью построения расчётной модели гидравлической системы отопления. Это можно выполнить в таком программном обеспечении как Danfoss CO и Valtec.PRG, либо же в платных продуктах вроде AutoSnab 3D. Не следует бояться платного ПО: как вы увидите позже, его стоимость не идёт ни в какое сравнение с затратами на специальные устройства автоматической балансировки, при этом расчётный проект гидравлической системы предоставит полное представление о системе, режимах её работы и физических процессах, происходящих в каждой точке.

Балансировка с помощью программных расчётов производится посредством построения точной виртуальной копии системы отопления. В разных рабочих средах механизм моделирования протекает с некоторыми отличиями, тем не менее, все программы такого рода имеют дружественный и понятный пользователю интерфейс. Очень важно, чтобы построение выполнялось действительно точно: с указанием каждого фитинга, элемента арматуры, поворотов и ответвлений, присутствующих в реальной системе. Вот какие потребуются исходные данные:

  • паспортные данные котла: мощность, КПД, напорно-расходный график, рабочее давление.
  • сведения о циркуляционном насосе: скорость протока и напор;
  • тип теплоносителя;
  • материал и условный проход труб, температура окружающей их среды;
  • технические сведения обо всей запорной и регулирующей арматуре, коэффициенты местных сопротивлений (КМС) каждого элемента;
  • паспортные данные на запорные клапаны, зависимость их пропускной способности от падения давления и степени открытия.

После построения модели системы вся работа сводится к тому, чтобы обеспечить равенство расхода теплоносителя на каждом радиаторе. Для этого искусственно занижают пропускную способность запорных клапанов на тех радиаторах и цепях, где наблюдается существенное увеличение протока по сравнению с остальными. Когда виртуальная балансировка выполнена, для каждого радиатора выписывают Kvs - коэффициенты пропускной способности. Используя таблицу или график из паспорта клапана, определяют необходимое число оборотов регулировочного штока, после чего эти данные используют для балансировки реальной системы в натуре.

Эмпирический способ

Конечно, отрегулировать систему отопления при числе радиаторов до десяти можно и без предварительного расчёта. Однако этот метод достаточно трудоёмок и занимает очень много времени. Кроме прочего, при такой балансировке не удаётся предусмотреть изменение расхода при работе термостатирующих головок, что сильно снижает точность балансировки.

Алгоритм ручной балансировки несложен, для начала необходимо перекрыть абсолютно все радиаторы в системе. Это делается для того, чтобы максимально близко сравнять температуру теплоносителя на входе и выходе из теплового узла. Весь этот процесс занимает около часа, при этом необходимо установить циркуляционный насос на максимальную скорость и убедиться в отсутствии воздушных пробок в системе.

Следующий шаг - полное открытие запорного клапана на наиболее удалённом радиаторе (зачастую на последнем радиаторе этот клапан не устанавливается вовсе). Спустя 10–15 минут проводится измерение температуры нагрева крайнего радиатора, она при дальнейшей балансировке будет использоваться как эталонная.

Далее нужно приоткрыть запорный клапан на предпоследнем радиаторе. Степень открытия должна быть такой, чтобы нагрев произошёл до эталонной температуры и при этом на последнем радиаторе температура нагрева не снизилась. Грань очень тонкая, и работа сильно осложняется инерционностью радиаторов: после каждого изменения положения штока клапана на алюминиевом радиаторе необходимо выждать не менее 15 минут, на чугунном - порядка 30–40 минут. В этом и есть вся суть ручной балансировки: продвигаясь от наиболее удалённого радиатора к самому первому в цепочке необходимо снижать пропускную способность, обеспечивая поддержание одинаковой температуры на каждом нагревательном приборе. Регулировка должна проводиться очень тонко и аккуратно, ведь резкое увеличение протока в середине контура приведёт к падению температуры в отдалённой его части, соответственно нужно будет потратить еще 15–20 минут, чтобы вернуть систему к исходному состоянию.

Отладка в автоматическом режиме

Существует некая золотая середина между двумя описанными выше способами. Специальное оборудование для автоматической балансировки гидравлических систем отопления позволяет провести настройку с очень высокой точностью и в достаточно короткие сроки. На текущий момент основным техническим решением для таких целей считается «умный» насос Grundfos ALPHA 3, укомплектованный съёмным передатчиком, а также фирменное приложение для мобильных устройств. Средняя цена комплекта оборудования составляет порядка $300.

В чём суть затеи? Насос обладает встроенным расходомером и может обмениваться данными со смартфоном или планшетом, где производится обработка всей информации. Приложение работает как путеводитель: пошагово направляет пользователя и указывает, какие манипуляции нужно проводить над разными частями системы отопления. При этом в базе приложения сохраняются отдельные комнаты с указанным числом нагревательных приборов, имеется возможность выбирать разные типы радиаторов, указывать их мощность, необходимые нормы обогрева и прочие данные.

Процесс происходит предельно просто и полностью демонстрирует алгоритм работы программы. После сопряжения с передатчиком и подготовки к работе от системы отключаются все радиаторы, это необходимо для измерения нулевого расхода. После этого запорные клапаны на каждом радиаторе поочередно открываются полностью. При этом расходомер в насосе отмечает изменения в протоке и определяет максимальную пропускную способность каждого нагревательного прибора. После того как все радиаторы будут внесены в базу программы, производится их индивидуальная регулировка.

Настройка запорного клапана на радиаторах происходит в режиме реального времени. Приложение имеет звуковую индикацию для возможности работы в труднодоступных местах. Балансировка требует тонкой подстройки запорного штока до такого положения, при котором текущий расход в системе сравняется со значением, рекомендованным программой. По завершении работы с каждым радиатором приложение формирует отчёт, в который включены все нагревательные приборы системы и расход теплоносителя в них. После выполнения балансировки насос ALPHA 3 может быть снят и заменён на другой с аналогичными параметрами производительности. опубликовано

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Старые системы обогрева со временем из-за своей длительной эксплуатации начинают функционировать с нарушениями (ухудшается распределение теплоносителя, циркуляция и прочие показатели), тем самым ухудшая комфортность проживания и работы в помещениях.

Как выйти из такой ситуации, неужели придется делать капитальную реконструкцию всего отопления? Именно этот вопрос мы с вами и будем рассматривать в этой статье и надеемся, что вы извлечете из нее максимум полезной информации.

Суть проблемы

Причиной всех проблем является плохое распределение по трубопроводам, происходит это из-за гидравлического дисбаланса. Расход горячей воды по трубопроводам зависит от местных сопротивлений самих участков. Этот показатель изменяется из-за засорений и коррозии труб, реконструкций или ремонтов, при добавлении потребителей и так далее.

Важно. В системах, у которых нарушена гидравлическая работа, первые потребители получают достаточное количество тепла, а последние остаются недогретыми.

В старых схемах балансировка систем отопления не продумана, потому что не было путей выхода из таких ситуаций. Дисбаланс решался различными способами, причем не всегда успешными:

  • Первый способ – увеличение мощности Такой метод приведет к тому, что последние потребители получают недостаточное количество тепла, а первые будут перегреты. Следовательно, у первых потребителей будут излишки тепла, которые они будут удалять через распахнутые окна и двери. Такой метод экономически не эффективен из-за больших потерь теплоты, а также из-за увеличенного потребления электрической энергии насосом;
  • Второй способ – увеличение температуры подаваемого теплоносителя. Такое решение проблемы приводит к такому же эффекту, как и в первом случае. Цена на топливо возрастет, так как его понадобится значительно больше.

Подробно о самом процессе

Главная задача, которую выполняет балансировка отопления – это обеспечение потребностей в теплоте всех потребителей при наихудших условиях (при минимально возможной температуре). При других условиях работа обогрев происходит, как и ожидается.

Важным моментом является факт проведения работ – после проведения балансировки должно использоваться минимальное количество электрической и тепловой энергии.

Для получения такого результата применяют:

  • балансировочный клапан для отопления с точным измерением;
  • различные варианты балансировки и измерительные приборы.

Результат проведения работ напрямую зависит от всех вышеперечисленных фактов.

Элементы для проведения работ

В этом разделе мы подробно рассмотрим оборудование, которое можно применять, его фото и видео, а также раскроем его функциональные возможности:

  • Клапан для балансировки Y-типа. Имеет возможность преднастройки, за счет этого происходит ограничение расхода, который отмечен на ручке со шкалой. Обладает двумя измерительными ниппелями для измерений перепада расхода, температуры и давления.

Называют этот клапан Y-типа из-за его конуса, который к потоку теплоносителя находится под оптимальным углом. Эта конструкция нужна, чтобы свести к минимуму влияние потока жидкости на измерения, что в итоге улучшит точность балансировки.

К тому же такие клапаны применяются как запорная арматура и для дренажирования воды. Чтобы качественно произвести балансировку нужно подобрать нужный размер клапана, правильно установить и рассчитать.

  • Специальные приборы, которые нужны для измерения перепада давления, расхода и перепада температуры на балансировочных клапанах. Это устройство изображено на рисунке ниже.

Нужно сказать, что это компьютерное устройство очень многофункционально, оно имеет: точные датчики, интегрированные функции измерения, устранение возникающих ошибок и балансировку, дополнительный гидравлический аккумулятор и прочие необходимые функции, помогающие точно и быстро настроить систему.

Инструкция по установке подразумевает о связи с персональным компьютером посредством специальной программы для передачи данных и обновлений программы, а также отправке результатов.

Важно. Применять лишь клапаны и измерительные приборы недостаточно, нужно обязательно знать, что с ними делать. Иначе процесс настройки своими руками не увенчается успехом, а обогрев будет работать неправильно, не будет комфортного климата в помещении и будет перерасход потребления тепловой и электрической энергии. Чтобы качественно сбалансировать систему необходимо знать правильную методику.

Метод для настройки

Для начала гидравлическая система разделяется на модули, благодаря клапанам «партнерам».

Затем нужно сбалансировать все модули, применяя ТА методы. Это нужно сделать от потребителей, магистралей, стояков, коллекторов, ответвлений и до тепловых пунктов. При применении методики все клапаны и модули в такой системе будут обладать проектными расходами и минимальными потерями давления на самих клапанах.

Когда вся система прошла балансировку и имеет минимальные потери давления, переключаем насос на расчетную скорость движения теплоносителя и проводим настройку общего расхода на главном модуле у насоса. В итоге нагнетательное оборудование будет потреблять минимальный объем электроэнергии, а тепловая энергия будет качественно расходоваться на обогрев помещений.

После проведения балансировочных работ, вы получаете данные о необходимых и достигнутых значениях в результате настройки балансировочных клапанов. Эти данные подтверждают качество балансировки системы и дают гарантию ее качественной работы.

Еще одна очень важная функция рассмотренных балансировочных клапанов – это возможность самостоятельной диагностики системы теплоснабжения. Когда все установлено и функционирует, проблематично определить качество функционирования отопления и его эффективность, но это в том случае, если нет возможности это измерить.

Применяя клапаны с измерительными ниппелями, удается определить неисправности при работе системы обогрева, а также узнать ее состояние и характеристики, а также принимать правильные решения при возникновении неисправностей. Диагностика помогает выявить разные ошибки, а также быстро их ликвидировать.

Заключение

Благодаря развитию теплотехники у владельцев старых домов появилась возможность качественно настроить систему отопления, помимо этого получать данные о её работе и о ходе возникших ошибок и нарушений.

Своего частного или загородного дома, ожидает, что эти инвестиции улучшат условия его проживания, сделают их комфортными, а также позволят сэкономить часть денег, которые тратятся на оплату энергоресурсов, то есть повысят эффективность работы отопительного контура. Но установить новое супермодное оборудование — это еще полдела. Ведь если оно неправильно настроено, то может получиться, что в одних помещениях температура будет выше нормы, а в других, наоборот, будет холодно, причем про снижение затрат на оплату энергоресурсов вообще не может быть речи. Поэтому нужно знать как можно больше о системах обогрева.

Воздушное отопление загородного дома

По принципу работы отопление разделяется на несколько типов:

  • воздушный;
  • конверторный;
  • водяной.

Среди них признанным лидером является . Это объясняется простотой управления и регулирования температуры, а также рациональным использованием энергоносителя. Принцип обогрева при этом способе очень прост и понятен.

Составные части системы

Котел при работе нагревает воду, попадающую затем через трубы в радиаторы. В них, отдавая тепловую энергию для нагревания помещения, вода охлаждается и снова течет в котел для нагрева. В результате получается замкнутый контур, главными элементами которого есть котел, радиаторы и трубы.

Теплоносителем может быть как антифриз, так и техническая вода. Физические свойства антифриза по теплоотдаче намного лучше воды.

Основным агрегатом системы водяного отопления по праву считается котел, ведь именно он осуществляет нагрев рабочей жидкости.

Составные части схемы для обогрева дома

Применяемый для обеспечения тепла контур имеет достаточно сложную конфигурацию. Для его эффективной работы нужно оптимально подобрать все компоненты.

Виды котлов и дополнительное оборудование

В зависимости от применяемого топлива котлы бывают нескольких типов.

  1. Твердотопливные, работающие на твердом топливе различного типа (брикетах, дровах, угле, стружке и других), наиболее часто применяются на негазифицированных участках.
  2. , использующие электричество, требуют стабильного подключения к центральному энергоснабжению. Эффективность применения электрического котла возрастает, если вместе с ним использовать электрические радиаторы.
  3. , применяющие в работе природный газ, наиболее популярны и экономичны. Единственным недостатком является то, что для их функционирования к дому должен быть проведен газопровод, что не всегда выполнимо. Еще одним нюансом, от которого зависит принятие решения, является необходимость постоянного надзора и контроля над состоянием газового оборудования специальными коммунальными службами.
  4. Жидкостные работают на жидких видах топлива, как мазут и , которые имеют лучшую, чем у других моделей, теплоотдачу, но и их стоимость намного выше. К тому же, для хранения такого топлива нужен специальный резервуар, который должен отвечать всем пожаробезопасным нормам.

Дополнительно в комплекте водяного отопления применяется ряд элементов, обеспечивающих оптимальные условия функционирования:

  • расширительный бак — применяется для отвода излишков воды или антифриза;
  • — приводит в движение теплоноситель;
  • терморегуляторы — контролируют уровень температуры на каждом радиаторе;
  • воздухоотводчик необходим для удаления лишнего воздуха из труб и радиаторов;
  • манометр – специальный прибор для измерения давления внутри отопительных элементов;
  • предохранительные клапаны, предназначенные для регулирования давления внутри трубопровода.

Большое значение в конструкции системы отопления занимают трубы, а конкретно, их материал изготовления:

Трубы водного отопления

  • стальные оцинкованные на сегодняшний день применяются редко. Для их монтажа необходимо специальное оборудования, а также навыки сварки металла. Со временем могут поддаваться коррозии;
  • медные самые надежные и самые дорогие трубы, могут выдерживать значительные перепады температуры, не поддаются влиянию коррозии. Медные трубы, можно не боясь о последствиях замуровывать в стены;
  • металлопластиковые наиболее широко применяются, имеют хорошие эксплуатационные свойства. Большим недостатком является плохая переносимость резких перепадов температур, что способствует быстрому разрушению трубы.

Схемы разводки

Стандартная схема водного отопления двухэтажного загородного дома

В зависимости от способа движения теплоносителя различают несколько типов систем:

  • однотрубная разводка;
  • двухтрубная, имеющая более сложную конфигурацию;
  • коллекторная.

Достаточно распространенная однотрубная схема представляет собой несколько нагревательных приборов, последовательно соединенных друг с другом и по очереди пропускающих через себя теплоноситель. Преимуществом этой разводки является простота и дешевизна монтажа. Недостатком — трудность в регулировании, а также то, что в процессе движения рабочая жидкость охлаждается и, как следствие, последнему элементу отопительной схемы будет недоставать тепловой энергии для нагревания помещения.

Двухтрубная система, как видно из названия, состоит из двух отдельных труб, которые монтируются параллельно движению воды в контуре. Достоинством такой схемы является простота регулировки, а также возможность в случае необходимости оперативного изменения температуры. Но, как говорится, за удобства нужно платить: для монтажа двухтрубной отопительной цепи нужно покупать больше оборудования.

Коллекторная, самая дорогая схема разводки, предоставляет полный доступ к любому элементу нагревательной цепи из распределительного шкафа.

Состоит из собственных подающих и обратных трубопроводов, которые сведены вместе с помощью специальных распределительных коллекторов.

Настройка оборудования

В некоторых случаях бывает, что после установки теплового оборудования в одних помещениях холодно, зато в других слишком жарко. Причин тому может быть несколько: подобраны несоответствующие агрегаты или же, как часто бывает, теплоноситель неправильно распределяется по контуру.

Чтобы привести в порядок систему водяного отопления, проводят ее балансировку. Принцип этого процесса заключается в том, чтобы равномерно распределить рабочую жидкость по всему контуру.

Гидравлическая балансировка важна как для больших дворцов, так и для небольших загородных домов. Ведь неправильная подача теплоносителя одинаково отрицательно влияет на обеспечение комфортных условий как в больших, так и компактных домах.

Монтаж клапана

Балансировка отопительного контура осуществляется с помощью регулировочных и перепускных клапанов, компенсаторов расхода и давления. Это оборудование непосредственно влияет на скорость движения теплоносителя и нормализует давление внутри контура.

Измерительное оборудование, которое применяется для балансировки отопительной системы и применяются для определения температуры, перепада давления и расхода тепла:

  • специальный клапан Y-типа благодаря своей конструкции обладает возможностью предварительной настройки и состоит из двух измерительных ниппелей;
  • другие специальные электрические высокотехнологические приборы.

Для гидравлической балансировки каждой схемы используют свою аппаратуру. Так, для однотрубных схем работы проводятся вручную, потому используются соответствующие краны. В более сложных двухтрубных системах применяются автоматические терморегуляторы и монтируются балансировочные клапаны. На практике применяют несколько способов регулировки.

Первый, простой, но более трудоемкий, основывается на постоянных измерениях параметров в регулировочных клапанах. Другой, более эффективный, заключается в разделении схемы на элементы, которыми могут быть радиатор, несколько нагревательных приборов, стояк с трубами и другие модули. На выходе каждой группы монтируется балансировочный узел, при помощи которого можно отдельно отрегулировать каждую часть отопительной схемы. Наличие такого устройства позволяет каждой отдельной группе элементов контура отопления работать автономно.

Во время настройки можно поэтапно добавлять регулировочные клапаны, начиная установку от циркуляционного насоса.

Далее продолжают монтаж клапанов по всем частям контура. Во время проведения гидравлической балансировки обязательно нужно провести проверку системы, для чего при открытых кранах и вентилях включают насос и чистят фильтры. После проверки функционирования всех компонентов трубопровод промывают и заливают в него техническую воду. Потом включают отопления и с помощью воздухоотводов удаляют лишний воздух.

В результате работа системы нормализуется, повышается ее эффективность и увеличивается долговечность всех ее компонентов.

От правильности гидравлической балансировки двухтрубной системы отопления (далее СО) зависит энергосбережение системы отопления (расход топлива). А часто даже сама возможность для системы отопления хоть как-то функционировать. (Все картинки увеличиваются при нажатии на них).

Двухтрубная СО устроена так, что через каждый отопительный прибор (далее ОП) должно протекать заданное количество в единицу времени. Не больше и не меньше. Наверняка, Вы когда-нибудь поливали огород из шланга. И пробовали пальцем разделить струю на две части. Так вот, если у Вас установлено двадцать ОП, то для двухтрубной СО нужно «разделить струю» на «двадцать разных по силе струек», каждая из которых должна нести свое разное количество . На самом деле, это не так сложно сделать, как кажется на первый взгляд.

Для возможности проведения гидравлической балансировки системы на отопительных приборах (далее ОП) должна быть установлена арматура, позволяющая это осуществлять. Это делается балансировочно-запорным вентилем, устанавливаемым на выходе (обратке) из ОП. Либо термостатическим вентилем с «преднастройкой», устанавливаемым на входе (подаче) в ОП. Установка термостатического вентиля с «преднастройкой» делает применение балансировочного вентиля на обратке ОП не обязательным. Так как термовентиль с «преднастройкой» является и обычным термовентилем и балансировочным вентилем «в одном флаконе». Т.е. при применения термовентиля с «преднастройкой» на обратке ОП, можно применять обычный шаровый кран или, что более эстетично – отсечной вентиль. Или вообще ничего из арматуры не устанавливать на обратке ОП из соображений экономии.

Термостатические вентили (термоклапаны).

Бывают изготовлены только для ручной регулировки теплоотдачи ОП, а бывают с возможностью установки термоэлемента (далее термоголовки). Примеры термовентилей с преднастройками. Вместо красного колпачка ручной регулировки можно установить термоголовку (термоэлемент):

Под красными колпачками находиться шкала преднастройки термовентиля.

На входе (подаче) в ОП устанавливается термостатический вентиль (далее термовентиль) для ручной или автоматической регулировки мощности теплоотдачи ОП (регулировки температуры в конкретном помещении).

Термовентиль без «преднастройки» на подаче ОП служит только для комфорта, но не для гидравлической балансировки СО.

Примеры термовентилей без преднастроек. Вместо сине-красного колпачка ручной регулировки можно установить термоголовку (термоэлемент):






Есть вариант, сэкономить средства на приобретение термовентилей с преднастройками, купив термовентили без преднастроек. Ведь термовентили с преднастройками существенно дороже, чем без преднастроек. Это можно сделать, рассчитав и установив дроссельные шайбы, либо на подаче, либо на обратке ОП. Их местное сопротивление рассчитывается таким образом, чтобы получить проектный массовый расход . Т.е. они будут выполнять роль преднастроек. Шайбы можно изготовить из монеток, подложив их во внутреннюю резьбу арматуры или при использовании стальных труб просверлить отверстие в магистралях расчетного диаметра (рассчитанного в гидравлическом проекте). Вот так выглядят "дроссельные шайбы" в многоэтажном доме в двухтрубной системе.


Балансировочно-отсечной вентиль (балансировочно-запорный клапан).

На выходе (обратке) из ОП устанавливается балансировочно-запорный вентиль, если на подаче в ОП не устанавливается термовентиль или устанавливается термовентиль без «преднастроек».

Примеры балансировочно-запорных вентилей (клапанов). Под съемным шестигранным металлическим колпачком, располагается регулировочный латунный шпиндель. Настраивается по количеству полных оборотов от закрытого состояния:

Чтобы идеально правильно сделать гидробалансировку СО, потребуется сначала выполнить гидравлическое проектирование СО. Еще до монтажа СО. Тогда после монтажа системы, перед пуском системы отопления, каждый термовентиль и/или запорно-балансировочный вентиль на отопительном приборе (далее ОП) просто устанавливается в рассчитанное в проекте положение. Вместо балансировочно-отсечного вентиля можно вложить во внутреннюю резьбу отсечного шарового крана дроссельную шайбу, сделанную из монетки (с рассчитанным диаметром отверстия). Тогда система сразу же после включения будет являться уже правильно гидравлически сбалансированной.

Но, если у Вас нет проекта системы отопления, то придется ограничиться приблизительной гидробалансировкой СО. Для этого потребуется цифровой мультиметр с контактным термодатчиком (можно самый недорогой китайский). Наденьте на правую руку для точности измерений (и не обжигаться) сразу две ХБ перчатки. И прижимая термодатчик к выходной арматуре ОП (обратке), измерьте таким образом температуру на обратках всех ваших ОП. Измеряя температуру на обратках ОП, нужно достичь того, чтобы температура отличалась друг от друга в пределах +-1 градус. Балансировку делайте в положении полностью открытых радиаторных клапанов (при вывернутых на максимум температуры термоголовках).

Поставьте изначально настройку балансировочных вентилей в самое открытое положение на самых мощных и дальних ОП. Например, если в балансировочном вентиле шпиндель откручивается на пять оборотов, то если на контуре пять одинаковых ОП, то на самом ближнем к котлу, установите 1, на самых дальних 5. Еще точнее будет, если сможете подсчитать для стартового положения пропорцию в зависимости от мощности ОП. Чем мощнее ОП, тем больше ему требуется проток .

У тех ОП, у которых температура обратки выше, чем на других ОП, нужно уменьшать проток . Закручивая регулировочный шпиндель в балансировочно-запорных вентилях. Или уменьшая значение преднастройки на термовентилях с преднастройками ориентируясь по шкале.

У тех же ОП, у которых температура обратки ниже, чем на других ОП, нужно увеличивать проток . Откручивая шпиндель или увеличивая значение преднастройки на термовентилях с преднастройками.

В двухтрубной системе (также и в коллекторно-лучевой системе) отопления остывание в ОП задается проектом системы отопления и составляет обычно 8-20 градусов. В среднем - обычно градусов 10-15. Ваша задача при гидравлической балансировке, состоит в том, чтобы, например, при температуре подачи с котла +75 градусов, добиться, чтобы на обратках ОП температура была, например, +62 градуса. Для хорошей экономичности Вашей СО на основе настенного газового котла, СО должна работать обычно в тепловом режиме 80/60 градусов для неконденсационных (подача/обратка котла). Также, по возможности, при балансировке желательно отключить модуляцию мощности котла, чтобы котел работал с постоянной мощностью во время балансировки системы.

Верхний температурный предел ограничен настенным (как правило не выше +84) и материалом используемых труб. Нижний предел ограничен, например, не ниже +58 градусов, тем, насколько образующийся (при более низкой температуре обратки котла) кислотный конденсат может навредить Вашему котлу (коррозионная стойкость материала из которого изготовлен теплообменник котла). Если же Ваш котел является конденсационным, то кислотный конденсат котлу не повредит. Напротив, пониженная температура и повышенное конденсатообразование в конденсационном будет экономить Вам расход газа. Об экономии газа, и в частности об экономии газа конденсационными котлами, можно прочесть по ссылке -

После каждого изменения настроек, ждите несколько минут, чтобы температура успела измениться на обратке ОП. Придется потратить на гидробалансировку достаточное количество времени и побегать, так как каждое произведенное изменение настройки балансировочного клапана влияет и на остальные отопительные приборы. Поэтому, наличие гидравлического расчета значительно бы облегчило эту задачу…

Естественно, при такой сугубо приблизительной гидравлической настройке не получится получить максимальную экономию газа. Но без проекта отопления сделать систему максимально экономичной невозможно...

Перепечатка не возбраняется,
при указании авторства и ссылки на этот сайт.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png