Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.


Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.


Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.



Аннотация

Пояснительная записка дипломного проекта на тему « Реконструкция бойлерных установок ОТЭЦ-1 с применением пластинчатых подогревателей» содержит 114 страниц, в том числе 6 рисунков, 30 таблиц, 15 источников. Графическая часть выполнена на 6 листах формата А1.

В дипломном проекте разработана реконструкция бойлерной установки турбоагрегата № 9 ОТЭЦ-1 с заменой кожухотрубчатых теплообменных аппаратов на пластинчатые.

В пояснительной записке произведён конструкторский расчёт и выбор пластинчатых бойлеров, рассчитаны тепловые потери с поверхности изоляции и толщина изоляции. Для бойлеров применена более эффективная теплоизоляция из пенополиуретана.

Также выполнен гидравлический расчёт трубопроводов и выбор насосных агрегатов и арматуры.

По результатам расчёта произведён сравнительный анализ, показывающий преимущества пластинчатых бойлеров перед кожухотрубчатыми. После реконструкции бойлерная установка потребляет меньше пара и электроэнергии, за счёт чего предприятие экономит топливо или получает прибыль, продавая сэкономленную электроэнергию.

В электрической части произведён выбор двигателей к насосам и выбор кабелей для их подключения.

Также в пояснительной записке представлен расчет экономического эффекта от реконструкции. Рассмотрены вопросы безопасности труда при работе с бойлерной установкой.

Введение

    Характеристика объекта проектирования

      Назначение, перечень основных узлов и принцип работы оборудования бойлерной установки

    Анализ и оценка эффективности работы бойлерной установки турбины № 9

    Предлагаемая реконструкция бойлерной установки

    Преимущества пластинчатых теплообменных аппаратов

    1. Конструкция пластинчатого теплообменного аппарата

3. Расчёт существующей и проектирование предлагаемой бойлерных установок

3.1Тепловой расчёт бойлеров

3.2 Гидравлический расчёт бойлеров

3.3 Разница в значениях гидравлических потерь для кожухотрубчатых и пластинчатых бойлеров

3.4Выбор пластинчатых бойлеров

3.5 Тепловая изоляция бойлеров

3.6 Гидравлический расчёт трубопроводов бойлеров

3.7Выбор толщины изоляции для трубопроводов бойлеров

3.8 Выбор сетевых насосов

3.9 Выбор арматуры

3.10 приборы автоматического регулирования

3.11Расчёт экономии тепловой энергии за счёт реконструкции бойлерной установки

3.12Сравнительная характеристика по результатам расчёта

4 Применение частотного привода на насосах подпитки теплосети....77

5 Электрическая часть

5.1 Расчёт расхода электроэнергии на перекачку теплоносителя сетевым насосом

5.2 Расчёт кабельной линии 3 кВ для подключения двигателей насосов к питающей сети

6. Расчёт технико-экономических показателей

6.1Динамика основных технико-экономических показателей деятельности базового проекта за 2004 – 2006 гг.

6.2 Расчёт суммы капитальных вложений в новый объект

6.3Расчёт изменения себестоимости тепловой энергии

6.4 Расчёт прироста прибыли за счёт реконструкции

6.5 Экономический эффект проекта

6.6 Динамика основных технико-экономических показателей проекта после реконструкции

7 Безопасность жизнедеятельности и охрана труда

7.1 Опасные и вредные факторы

7.2 Электробезопасность

7.3 Пожарная безопасность

7.4Инструкции по охране труда для персонала, обслуживающего бойлерную установку

Заключение.

Список использованных источников

Введение

Энергетикой называется система установок и устройств для преобразования первичных энергоресурсов в виды энергии, необходимые для народного хозяйства и населения, и передачи этой энергии от источников её производства до объектов использования.

Из всех видов вырабатываемой энергии наиболее широкое применение находят два вида – электрическая энергия и теплота низкого и среднего потенциалов, на выработку которых затрачивается в настоящее время более 55 % всех используемых первичных топливно-энергетических ресурсов страны.

Для организации рационального энергоснабжения страны особенно большое значение имеет теплофикация, являющаяся наиболее совершенным технологическим способом производства электрической и тепловой энергии. Комбинированная выработка тепловой и электрической энергии производится на теплоэлектроцентралях (ТЭЦ).

Теплофикационное оборудование ТЭЦ предназначено для подготовки теплоносителя к транспортировке по тепловой сети и для приёма использованного теплоносителя на ТЭЦ.

В водяных системах теплоснабжения основное теплофикационное оборудование ТЭЦ состоит из пароводяных подогревателей, сетевых насосов, деаэрационных устройств, аккумуляторов горячей воды и насосов подпитки теплосети. В совокупности это оборудование носит название подогревательной установки.

Пароводяной подогреватель – основной элемент подогревательной установки – представляет собой поверхностный рекуперативный теплообменный аппарат кожухотрубчатого типа. Он предназначен для подогрева сетевой воды, необходимой для нужд отопления и горячего водоснабжения, за счёт использования теплоты пара низкого давления, поступающего из отбора турбины.

В связи с истощением топливных ресурсов и ростом цен на них возникает проблема экономичного использования топлива. Эта проблема частично решается за счёт применения современного, более совершенного оборудования. В частности, при замене кожухотрубчатых подогревателей сетевой воды на пластинчатые, сокращается потребление пара подогревательной установкой, а, следовательно, снижается расход топлива на производство пара при одинаковых значениях его параметров.

Пластинчатый теплообменный аппарат – это аппарат поверхностного типа, теплопередающая поверхность которого образована из тонких штампованных гофрированных пластин. Его эффективность обусловлена более высоким, чем у кожухотрубчатого теплообменного аппарата, коэффициента теплопередачи. Кроме того, пластинчатый теплообменный аппарат обладает рядом преимуществ:

    компактность;

    простота обслуживания;

    надёжность.

    Характеристика объекта проектирования

      Назначение, перечень основных узлов и принцип работы оборудования бойлерной установки турбины № 9

Теплофикационные установки предназначены для снабжения потребителя теплом в виде горячей сетевой воды, с графиком теплосети 70/150 ˚С.

Подогревательная установка турбины № 9 включает в себя:

два основных бойлера № 1, № 2 типа ПСВ-500-3-23;

    один пиковый бойлер типа ПСВ-500-14-23;

    четыре сетевых насоса - № 8, № 9 типа 10НМКх2, № 21, № 22 типа КРНА-400/700/64М;

    два конденсатных насоса бойлеров №8, № 9 типа 8КСД-5х3;

    деаэратор подпитки теплосети ДС-300;

    два насоса подпитки теплосети от коллектора сырой воды типа 8К-12.

По характеру тепловой нагрузки подогреватели подразделяются на основные и пиковые. Пар на основной бойлер поступает из отбора турбины с давлением 1,2 ата, а на пиковый бойлер – с давлением 10-16 ата.

Каждый подогреватель представляет собой пароводяной вертикальный теплообменный аппарат с цельносварным корпусом. Трубный пучок состоит из прямых трубок диаметром 19 мм, выполненных из латуни марки Л-68, развальцованных с обеих сторон в трубных досках. Для жёсткости и прочности трубная система заключена в стальной каркас с перегородками. Перегородки направляют поток пара для лучшего омывания трубного пучка и являются промежуточными опорами для труб, предотвращая их вибрации. В месте выхода струи греющего пара на трубный пучок устанавливается пароотбойный лист для защиты трубок от динамического удара потока пара и распределения пара в межтрубном пространстве. Для получения больших скоростей воды подогреватели выполнены двухходовыми. Ходы образуются перегородкой в нижней камере. Перегородка делит трубный пучок на две части по числу ходов.

Сетевая вода через входной патрубок подаётся в одну из половин верхней водяной камеры, проходит половину трубок и поступает в нижнюю часть. По другой половине трубок вода поднимается вверх во вторую половину верхней водяной камеры, откуда через патрубок отвода сетевой воды поступает в сборный коллектор горячей воды. По ходу своего движения вода нагревается паром. Пар в свою очередь конденсируется, и конденсат отводится через отверстие в днище.

Для продувки парового пространства для удаления воздуха в нижней части корпуса имеются дренажные отверстия.

Сетевые насосы типа № 8, № 9 и № 21, № 22, включенные параллельно, обеспечивают циркуляцию сетевой воды в системе теплоснабжения. Технические характеристики сетевых насосов представлены в таблицах 1 и 2.

Конденсатные насосы бойлеров предназначены для перекачки конденсата из межтрубного пространства подогревателей в котельный агрегат. Технические характеристики конденсатных насосов представлены в таблице 3.

Параметр

Значение

Тип насоса

Двухступенчатый, центробежный, с односторонним всасом

Производительность, м 3 /ч

Напор, м вод. ст.

Подпор, мм вод.ст.

Число оборотов, об./мин.

Мощность электродвигателя, кВт


Таблица 1 – Технические характеристики сетевых насосов типа КРНА-

400/700/64М бойлерной установки турбины № 9

Таблица 2 – Технические характеристики сетевых насосов типа 10НМКх2 бойлерной установки турбины № 9.


Таблица 3 – Технические характеристики конденсатных насосов типа 8КСД-5х3

Насосы подпитки теплосети предназначены для введения в цикл подпиточной воды, которая покрывает потери сетевой воды. Технические характеристики подпиточных насосов представлены в таблице 4.

Предварительно химически очищенная подпиточная вода подвергается деаэрации. Деаэрация, то есть удаление коррозионно-активных газов (кислорода, углекислого газа), происходит в деаэраторе струйного типа ДС-300, производительность колонки которого составляет 300 т/ч, ёмкость аккумуляторных баков – 79 м 3 , давление пара – 1,2 ата, температура выходящей из деаэратора воды – 105 ˚С.Реконструкция деаэрационной установки 5.1 Деаэрационная установка... воду на теплопункты от бойлерных установок турбин №9, 10, 11 ... пластмассовыми и т.д.); звукопоглощение (применение материалов из минерального войлока, ...

  • Реконструкция Омской ТЭЦ

    Дипломная работа >> Строительство

    Выделены приоритетные направления по реконструкции ТЭЦ-3 применение экологически чистых ресурсосберегающих технологий... 4) увеличивает экономичность работы турбины. Автоматизация бойлерных установок включает в себя автоматическое регулирование, дистанционное...

  • Комплексный анализ итогов деятельности и состояния предприятия

    Курсовая работа >> Финансовые науки

    Систем электроснабжения: строительство, реконструкция и капитальный ремонт электрических... промышленных и отопительных котельных, бойлерных установок тепловых сетей, мазутонасосных сооружений... : монтаж сосудов без применения сварки и вальцовки элементов...

  • Повышение эффективности производственно-хозяйственной деятельности на предприятии (на примере ОАО "Смолевичский молочный завод")

    Дипломная работа >> Экономика

    Объем продукции, изготовленной с применением прогрессивных технологических процессов, р. ... химической промывки котлов, бойлерных установок . Снабжение холодом... всем направлениям совершенствования, реконструкции , технического перевооружения действующего...

  • Формы планирования и виды планов и их роль в обеспечении долговременного успеха предприятия (1)

    Реферат >> Менеджмент

    Заказана проектная документация на реконструкцию старого завода с технико... химическая промывка котлов, бойлерных установок . Снабжение холодом осуществляется... базы, рост профессионализма персонала, применение компьютерной техники, стимулирование разработчиков...

  • Эффективная работа теплового оборудования ТЭЦ невозможна без эксплуатации производственной (сетевой и подпиточной) воды нормативного качества. Несоблюдение отраслевых стандартов приводит к:

    • повышенному расходу энергоресурсов;
    • учащению профилактических работ по очистке теплопроводов и теплообменников от нерастворимых образований;
    • ускоренному износу оборудования, внеплановым ремонтам и даже серьезным авариям.

    Нормативы подготовки воды для ТЭЦ

    Работа водоподготавливающего оборудования теплогенерирующих предприятий (ТЭС, ГРЭС, ТЭЦ и т.п.) регламентируется РД 24.031.120-91, ГОСТ 20995-75, методы контроля качества производственной воды тепловых станций – ОСТ 34-70-953.23-92, ОСТ 34-70-953.13-90, а также прочей техдокументацией и техусловиями.

    Ключевые задачи водоподготовки для ТЭЦ:

    • снижение рисков образования наростов на пути теплоносителя, вызванных накоплением взвешенных частиц, солевыми отложениями, биологическими образованиями;
    • препятствование коррозии металлических элементов системы;
    • получение водного и парового теплоносителя высокого качества;
    • повышение КПД тепловых машин и транспортных коммуникаций, как следствие, минимизация эксплуатационных расходов.

    Этапы водоподготовки для ТЭЦ

    Установки, включенные в схему водоподготовки ТЭЦ, должны обеспечивать, определенные требованиями РД 24.031.120-91 уровни:

    Доведение параметров производственной воды до требуемых уровней возлагается на комплекс водоподготовки, включающий следующие основные этапы:

    1. Отделение крупных механических и коллоидных взвесей.

    На этом этапе водоподготовки для ТЭЦ осуществляется извлечение из подпиточной жидкости нерастворенных частиц, всегда присутствующих в ней в виде мелкого и пылеватого песка, иловых, органических, а также прочих мелкодисперсных составляющих. Механические взвеси усиливают абразивную нагрузку на оборудование ТЭЦ, способствуют увеличению гидравлического сопротивления в трубопроводах за счет формирования твердых отложений на их внутренних стенках.

    Рабочим телом традиционных фильтров для улавливания нерастворимых частиц являются насыпные материалы (гравий, песок). Для ультратонкой очистки может использовать более современный вариант фильтрации на основе волоконных мембран.

    2. Осаждение осадкообразующих химических соединений.

    Методы этого этапа направлены на выделение из раствора ионов элементов, которые при нагреве образуют нерастворимые соединения, накапливающиеся в системе, так же как и механические взвеси. В основном подобная проблема возникает с солями магния, кальция, а также солями и окислами железа.

    Задача системы водоподготовки ТЭЦ по обессоливанию питательной воды решается реагентными, обратноосмотическими, ионообменными, магнитными и прочими технологиями промышленного масштаба. В каталоге компании «ВВТ Рус» представлен обширный ассортимент средств немецкого производства для решения этих задач.

    3. Связывание коррозионных химических соединений.

    Агрессивные химические вещества, присутствующие в водных растворах, представляют не меньшую опасность, чем инертные солевые отложения. К числу таких веществ, в первую очередь, относятся растворенные газы – кислород и углекислота. Они способствуют интенсивной коррозии металлов, причем интенсивность процесса с повышением температуры теплоносителя нарастает лавинообразно. Проблема решается методами дегазации, ионного обмена, введением в теплоноситель профильных реагентов.

    Компания ВВТ РУС реализует реагентные составы для химводоподготовки для ТЭЦ в полном соответствии с действующими нормативами. Препараты способны одновременно решать задачи второго и третьего этапов нормализации качества воды для любого оборудования теплоэнергетики. Подобный подход позволяет значительно упростить построение всей схемы водоподготовки, а также обеспечить потребителю экономию средств.

    Более подробную информацию о продукции можно получить у наших сотрудников.

    На сегодняшний день водоподготовка в энергетике остается важным вопросом отрасли. Водя является главным источником на ТЭС, включая ТЭЦ, к которому предъявлены повышенные требования. Наша страна расположена в холодной климатической зоне, зимой случаются сильные морозы. Поэтому ТЭС являются неотъемлемой частью комфортной жизни людей. ТЭЦ, паровые и газовые котельные страдают от жесткой воды, выводящей из строя дорогостоящее оборудование. Для более четкого понимания, разберемся с принципами работы ТЭЦ.

    Принцип работы ТЭЦ

    ТЭЦ (теплоэлектромагистраль) считается разновидностью ТЭС. Она генерирует электрическую энергию и является источником тепловой в системе теплоснабжения. С ТЭЦ в дома людей и на предприятия промышленности поступает горячая вода и пар.

    Принцип ее работы схож с конденсационной электростанцией. Существует только одно важное отличие: часть тепла можно посылать на другие потребности. Количество отобранного пара регулируется на предприятии. Тепловая турбина определяет способ сбора энергии. В подогревателях собирают отделенный пар. Затем энергия передается воде, которая движется по системе. Она передает энергию в пиковые водонагревательные котельные и теплопункты.


    Водоподготовка может иметь два графика нагрузки:
    • тепловая;
    • электрическая.

    Если основной является тепловая нагрузка, тогда электрическая ей подчиняется. Если установлена электрическая нагрузка, то тепловая может даже отсутствовать. Возможен вариант совмещенной нагрузки, что дает возможность использовать остаточное тепло для отопления. Такие ТЭЦ обладают КПД 80%.

    При возведении ТЭЦ учитывается отсутствие передачи тепла на большие расстоянии. Поэтому она располагается на территории города.

    Проблемы ТЭЦ

    Главный недостаток производства энергии на ТЭС – образование твердого осадка, выпадающего при нагреве воды. Что бы очистить систему, потребуется остановка и разборка всего оборудования. Накипь убирают на всех поворотах и в узких отверстиях. Кроме накипи, слаженной работе будут препятствовать коррозия, бактерии и прочее.

    Накипь


    Основной недостаток накипи – снижение теплопроводности. Даже ее незначительный слой приводит к большому расходу топлива. Постоянно удалять накипь не возможно. Допускается только ежемесячная чистка, которая несет убытки от простоя и портит поверхность оборудования. Количество потребляемого топлива будет увеличиваться, а оборудование будет быстрее выходить из строя.

    Как определить, когда производить очистку? Оборудование сообщит само: сработают системы защиты от перегрева. Если не убрать накипь, в дальнейшем теплообменники и котлы не будут работать, образуются свищи или произойдет взрыв. Все дорогостоящее оборудование выйдет из строя без возможности восстановить его.

    Коррозия

    Главная причина коррозии – кислород. Циркуляционная вода должна иметь его на минимальном уровне – 0,02 мг/л. Если кислорода достаточно, то вероятность образовании на поверхности коррозии будет увеличиваться с ростом количества солей, особенно сульфатов и хлоридов.

    Большие ТЭЦ имеют деаэраторные установки. На небольших установках используют корректировочные химические продукты. Значение pH воды должен лежать в диапазоне 9,5-10,0. С ростом pH происходит снижение растворимости магнетита. Особенно важно, если в системе присутствуют латунные или медные детали.

    Пластик – источник локального выброса кислорода . Современные системы стараются избегать гибких пластиковых труб или создают специальные барьеры для кислорода.

    Бактерии


    Бактерии влияют на качество используемой воды и образуют некоторые виды коррозии (бактерии на металле и бактерии, снижающие сульфаты). Признаки роста бактерий:
    • специфический запах циркуляционной воды;
    • отклонение содержания химических веществ при дозировании;
    • коррозия медных и латунных компонентов, а так же батарей.

    Бактерии поступают с грязью из почвы или при ремонте. Системы и нижняя часть батареи обладают благоприятными условиями для их роста. Дезинфекция проводится при полном отключении системы.

    Водоподготовка для ТЭЦ

    Справиться с перечисленными проблемами поможет водоподготовка в энергетике. На ТЭС устанавливают множество фильтров. Основная задача – найти оптимальное сочетание разных фильтров. Вода на выходе должна быть смягченной и обессоленной.

    Ионообменная установка


    Самый распространенный фильтр. Она представляет собой высокий цилиндрический бак с дополнительным регенерационным баком для фильтра. Круглосуточная работа ТЭЦ нуждается ионообменной установки с несколькими ступенями и фильтрами. Каждый из них имеет свой бак для восстановления. Вся система имеет общий контроллер (блок управления). Он следит за параметрами работы каждого фильтра: количество воды, скорость очистки, время очистки. Контроллер не пропускает воду через фильтры с полными картриджи, а посылает ее на другие. Грязные картриджи вынимаются и отправляются в бак для восстановления.

    Картридж первоначально наполнен смолой со слабым натрием. При прохождении жесткой воды происходят химические реакции: сильные соли заменяются слабым натрием. Со временем в картридже скапливаются соли жесткости – следует провести его регенерацию.

    В восстановительном баке растворены соли высокой степени. Выходит сильно насыщенный раствор соли (более 8-10%), который удаляет из картриджа соли жесткости. Сильносоленые отходы дополнительно очищаются, а потом утилизируются по специальному разрешению.

    Плюсом установки является высокая скорость очистки. К минусам относятся дорогостоящее обслуживание установки, высокая стоимость соленых таблеток и затраты на утилизацию.

    Электромагнитный умягчитель воды


    Так же распространен на ТЭЦ. Основными элементами системы являются:

    Перечисленные элементы создают сильное электромагнитное поле. С противоположных сторон прибор имеет намотанную проводку, по которой идут волны. Каждый провод наматывают более 7 раз на трубу. Во время эксплуатации следят, чтобы вода не контактировала с проводкой. Концы проводов изолируют.

    Вода проходит по трубе и облучается электромагнитными волнами. Соли жесткости трансформируются в острые иголки, которым неудобно «прилипать» к поверхности оборудования из-за маленькой площади контакта. Дополнительно иголки качественно и тонко очищают поверхность от старого налета.

    Основные преимущества:

    • самообслуживание;
    • не надо ухаживать;
    • срок эксплуатации более 25 лет;
    • отсутствие дополнительных затрат.

    Электромагнитный умягчитель работает со всеми поверхностями. Основа установки – монтаж на чистый участок трубопровода.

    Обратный осмос

    На производстве подпиточной воды система обратного осмоса незаменима. Она единственная может очистить воду на 100%. В ней используется система различных мембран, обеспечивающие необходимые характеристики воды. Минусом становится отсутствие возможности самостоятельного использования. Установку обратного осмоса обязательно нужно дополнять умягчителями воды, что влияет на стоимость системы.

    Только полная система водоподготовки и водоочистки гарантирует стопроцентный результат и компенсирует высокую стоимость оборудования.

    Способ обработки воды оказывает сильное влияние на работу теплоснабжения. От него зависят экономические показатели эксплуатации и защитная функция системы. При строительстве или плановом ремонте ТЭЦ нужно уделять особое значение водообработке.

    В конце 40-ых годов в связи с предстоящим развитием ММК и жилых районов города, для обеспечения их возрастающей потребности в тепловой и электрической энергии было принято решение о строительстве на ММК мощной ТЭЦ. В 1951 году было начато её строительств, 25 февраля 1954 года принят в эксплуатацию первый энергетический паровой котёл паропроизводительностью 170 т/час и турбогенератор мощностью 50 МВт.

    Свой окончательный облик ТЭЦ обрела в 1970 году: введены в работу 8 котлов общей мощностью 60 т/час и 6 турбогенераторов мощностью по 50 МВт каждый. Для покрытия возрастающей потребности города и комбината в тепловой энергии введена в работу пиковая водогрейная котельная, состоящая из двух пиковых водогрейных котлов.

    Таким образом, к началу 1971 года установленная электрическая мощность ТЭЦ составила 300 МВт, а тепловая по отпуску тепла с горячей водой – 760 Гкал/час.

    В настоящее время в общем объеме производимых в ОАО ММК собственных энергоресурсов доля ТЭЦ составляет по электрической энергии – 50-60%.

    На ТЭЦ вырабатываются следующие виды энергии:

    Электроэнергия (300 МВт), отпускаемая по 3 – м направлениям:

    1) По ЛЭП 10.5 кB- производится электроснабжение кислородно-компрессорного производства, задача - получение кислорода для технологических нужд доменного и мартеновского производства.

    2) По ЛЭП 35 кBосуществляется электроснабжение промышленных предприятий левого берега.

    3) По ЛЭП 110 кBимеется связь с центральной электростанцией и энергосистемой Челябэнерго.

    Тепловая энергия. (590Гкал/ч):

    1) Тепловая энергия с острым паром отпускается ККП (ККЦ-1) для привода турбокомпрессоров.

    2) Тепловая энергия с паром паропреобразовательной установки отпускается комбинату для технологических нужд листопрокатных цехов.

    3) Тепловая энергия с горячей водой для нужд теплофикации и горячего водоснабжения комбината и города.

    От ТЭЦ осуществляется теплоснабжение комбината и левобережной части города, а также части правого берега, район от улицы Гагарина до улицы Советской Армии. Северная часть правого берега снабжается теплом от ЦЭС, южная от пиковой водогрейной котельной.

    ТЭЦ отпускает:

    а) промышленную воду с насосных станций № 16, 16а для технологических нужд ККП.

    в) Химически очищенную воду с химводоочистки ТЭЦ для нужд комбината.

    1. Структура тэц

    На ТЭЦ шесть участков: топливно-транспортный, котельный, турбинный, электрический, участок тепловой автоматики и измерений, водо-химический участок и производственно- технический отдел.

    Топливно-транспортный участок нужен для приёма, складирования и подачи в котельный участок твёрдого топлива. На ТЭЦ используют два вида топлива:

    Природный газ;

    Твердое топливо - промпродукт отходов углеобогащения коксохимического производства.

    Природный газ подается к котлоагрегату ТЭЦ от газорегуляторного пункта (ГРП) по двум газопроводам. Твёрдое топливо - промпродукт на ТЭЦ в саморазгружающихся вагонах. Вагоны разгружаются летом на разгрузочной эстакаде, а в зимнее время в разгрузочном сарае, где имеется подвод горячего воздуха для оттаивания мерзлого угля. На участке имеется открытый склад угля с краном - перегружателем. Топливо подаётся с открытого склада с помощью крана - перегружателя по двум ленточным конвейерам.

    Котельный участок предназначен для выработки острого пара, используемого для привода паровых турбин. В котельном участке установлено восемь энергетических котлов: 4 котла типа ТП-170-1 (Р раб =110 ат.Т п/п =510 0 С); 5 и 6 котлы типа ТП-10 (Р раб =100 ат. Т п/п =510 0 С); 7 и 8 котлы типа ТП-80 и ТП-85 (Р раб =130 ат. Т п/п =510 0 С).

    Все котлоагрегата барабанного типа, П - образной компоновки, с естественной циркуляцией.

    Топка котла имеет призматическую форму, экранирована трубами 60 мм и оборудована несколькими турбулентными или плоскофакельными горелками.

    К горелкам подается топливо - угольная пыль или природный газ и горячий воздух. Топливо сгорает при температуре 1600 - 1690 °С. Тепло с помощью излучения и теплопередачи передается котловой воде, нагревая её до температуры кипения (314 °С), вода поступает в барабан котла и там происходит сепарация - отделение пара от воды. Пар направляется в пароперегреватель для нагрева до температуры (510-540 °С), а вода возвращается в экранную систему для дальнейшего испарения. Для полного испарения 1 кг воды делает 5 оборотов.

    Дымовые газы на выходе из топки имеют температуру 1200°С. Эти газы сначала поступают в пароперегреватель, далее в водяной экономайзер и затем в воздухонагреватель. На выходе из котлоагрегата дымовые газы имеют температуру 100 – 120 °С. Затем дымовые газы очищаются от золы твёрдого топлива в электрофильтрах и через дымовые трубы высотой 120 м выбрасываются в атмосферу.

    Электрический участок предназначен для выработки электрической энергии и распределение её между потребителями.

    С ротором паровой турбины, жестко, с помощью муфты соединён ротор электрического генератора. Ротор вращается со скоростью 3000 об/мин. Электрические генераторы ТЭЦ вырабатывают 3-х фазный ток напряжением 10.5 кB. Для отпуска потребителям напряжение повышают до 35 кBили 110 кB, а для потребления на собственные нужды оно снижается в трансформаторах до ЗкВ.

    Участок тепловой автоматики и измерений предназначен для автоматического регулирования основных технологических процессов, протекающих в котлоагрегатах и турбогенераторах, а так же изменения параметров этих технологических процессов.

    Котлы и турбины оборудованы регуляторами, которые автоматически поддерживают заказанную нагрузку и параметры, защитами, действующими на снижение нагрузки и полный остановки агрегатов при аварийной ситуации, оборудованы так же звуковой и световой сигнализацией, помогающими машинистам котлов и турбин управлять агрегатами.

    Функции системы автоматики и управления

    Текущий контроль параметров;

    Защита оборудования от повреждения;

    Аварийная сигнализация;

    Аварийное переключение в технологической схеме;

    Автоматическое регулирование.

    Для того чтобы оперативный персонал мог вовремя вмешаться в управление установкой контрольно-измерительные приборы, устройства сигнализации, средства дистанционного управления механизмами, арматурой и системы автоматического регулирования размещаются на щитах и пунктах контроля и управления.

    Для котлов высокого давления ТЭЦ требуется вода очень высокого качества. На химводоочистке вода из пруда реки Урал проходит очистку от механических примесей в двух камерных механических фильтрах (засыпка антрацит). Затем вода проходит химическое умягчение в Na- катионитовых фильтрах. КатионыCa 2+ ,Mg 2+ заменяются катионамиNa + и образуется соединение Na 2 SO 4 , которое не образует при нагреве отложений, а выпадает в виде шлама и удаляется при продувках.

    Деаэрированная вода поступает в испарители, где нагревается отборным паром турбин, превращается в пар. Пар конденсируется в охладителях выпара. Этот конденсат и идёт на восполнение потерь конденсата в цикле электростанции и для питания котлоагрегатов.

    Для обеспечения заданной тепловой и электрической мощности установлено следующее энергетическое оборудование:

    Четыре паровые котла ТП 170 - 1, ст..№1 - 4;

    Два паровых котла ТП - 10, ст.№5,6;

    Паровой котёл ТП - 81, ст.№8;

    Пиковый водонагревательный котёл ПТВМ - 100, ст..№1;

    Пиковый водонагревательный котёл ПТВМ - 180, ст.№2;

    Три турбогенератора Т - 50 - 90, ст.№ -3;

    Турбогенератор ПТ - 50 - 90/13, ст.№4;

    Два турбогенератора Т - 50 – 13, ст.Х25,6;

    Рисунок 1.Схема порового котла

    1 топочная камера (топка); 2 - горизон­тальный газоход. 3 - конвективная шахта; 4- топочные экраны; 5 - потолочные экра­ны; 6 - опускные трубы; 7 - барабан; 5 - радиационно-конвективный паропере­греватель, 9 - конвективный пароперегре­ватель, 10 - водяной экономайзер, 11 - воздухоподогреватель; 12 - золоуловитель, 13 - дымосос, 14 - дутьевой вентилятор: 15 - нижние коллекторы экранов; 16 - шлаковый комод: 17 - холодная воронка 18 - горелки.



    Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png