Количество обращений граждан, поступающих в УправлениеРоспотребнадзора по Тюменской области, об ухудшении условий проживания вследствие воздействия сверхнормативных уровней шума ежегодно возрастает.

За 2013 год поступило 362 обращения (суммарно по фактам нарушения тишины и покоя, размещения и шума), в 2014 – 416 обращений, за 2015 год уже поступило 80 обращений.

Согласно сложившейся практике, после обращения жителей Управлением назначаются измерения уровней шума и вибрации в жилом помещении. В случае необходимости измерения проводят в организациях, расположенных рядом с квартира­ми, где, например, эксплуатируется «шумящее» оборудование - источник шума (ресторан, кафе, магазин и т.д.). При обнару­жении превышений уровней шума и вибрации над допусти­мыми значениями, согласно СН 2.2.4/2.1.8.562-96 «Шум на ра­бочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки», в адрес владельцев источ­ников шума - юридических лиц, индивидуальных предпри­нимателей - Управление выдает предписание об устранении выявленных нарушений санитарного законо­дательства.

Каким образом можно снизить шум от перечисленного выше оборудования, чтобы при его эксплуатации не возни­кали жалобы жильцов дома? Конечно, идеальный вариант -предусмотреть необходимые меры на стадии проектирова­ния жилого здания, тогда и разработка шумопонижающих мероприятий всегда возможна, и внедрение их при стро­ительстве в десятки раз дешевле, чем в тех домах, которые уже построены.

Совсем по-другому обстоит дело, если здание уже постро­ено и в нем имеются источники шума, которые превышают действующие нормы. Тогда чаще всего шумные агрегаты за­меняют на менее шумные и реализуют мероприятия по виб­роизоляции агрегатов и подводящих к ним коммуникаций. Далее мы рассмотрим конкретные источники шума и меры по виброизоляции оборудования.

ШУМ ОТ КОНДИЦИОНЕРА

Применение трехзвенной виброизоляции, когда кондиционер устанавливают на раму через виброизолятор, а раму - на железобетонную плиту через резиновые прокладки (при этом железобетонная плита устанавливается на пружинные виброизоляторы на кровлю здания), приводит к снижению проникающего структурного шума до уровней, допустимых в жилых по­мещениях.

Для снижения шума необходимо, кроме усиления шумовиброизоляции стенок воздуховода и установки глушителя на воздуховод вентагрегата (со стороны помещений), крепить расширительную камеру и воздуховоды к перекрытию через виброизолирующие подвески или прокладки.

ШУМ ОТ КОТЕЛЬНОЙ НА КРЫШЕ

Для защиты от шума котельной, расположенной на кры­ше дома, фундаментную плиту крышной котельной устанав­ливают на пружинные виброизоляторы или виброизоли­рующий мат из специального материала. Оборудованные в котельной насосы и котлоагрегаты устанавливают на ви­броизоляторы и применяют мягкие вставки.

Насосы в котельной нельзя ставить двигателем вниз! Они должны быть смонтированы таким образом, чтобы на­грузка от трубопроводов не передавалась на корпус насоса. Наряду с этим уровень шума выше от насоса более высокой мощности или в случае, если установлено несколько насосов. Для снижения шума фундаментную плиту котельной также можно поставить на пружинные амортизаторы или высоко­прочные многослойные резиновые и резинометаллические виброизоляторы.

Действующими нормами не допускается размеще­ние крышной котельной непосредственно на перекры­тии жилых помещений (перекрытие жилого помещения не может служить основанием пола котельной), а также смежно с жилыми помещениями. Не допускается про­ектирование крышных котельных на зданиях детских дошкольных и школьных учреждений, лечебных кор­пусах поликлиник и больниц с круглосуточным пре­быванием пациентов, на спальных корпусах санатори­ев и учреждений отдыха. При установке оборудования на кровле и перекрытиях желательно размещать его в местах, наиболее удаленных от защищаемых объектов.


ШУМ ОТ ИНТЕРНЕТ-ОБОРУДОВАНИЯ

Согласно рекомендациям по проектированию систем связи, информатизации и диспетчеризации объектов жи­лищного строительства, антенные усилители сотовой связи рекомендуется устанавливать в металлическом шкафу с за­порным устройством на технических этажах, чердаках или лестничных клетках верхних этажей. При необходимости установки домовых усилителей на разных этажах многоэтажных зданий их следует устанавливать в металлических шкафах в непо­средственной близости от стояка под потолком, как правило на высоте не менее 2 м от низа шкафа до пола.

При монтаже усилителей на технических этажах и чердаках для устранения передачи вибрации металлическо­го шкафа с запорным устройством последний необходимо установить на виброизоляторы.

ВЫХОД - ВИБРОИЗОЛЯТОРЫ И «ПЛАВАЮЩИЕ» ПОЛЫ

Для вентиляционного, холодильного оборудования на верхних, нижних и промежуточных технических этажах жилых зданий, гостиниц, многофункциональных комплексов или при соседстве с нормируемыми по шуму помещениями, где постоянно пребывают люди, можно установить агрегаты на заводские виброизоляторы на железобетонную плиту. Эту плиту монтируют на виброизолированном слое или пружинах на «плавающий» пол (дополнительная железобе­тонная плита на виброизолирующем слое) в техническом помещении. Следует учесть, что вентиляторы, наружные конденсаторные блоки, которые сейчас выпускаются, вибро­изоляторами комплектуют только по заявке заказчика.

«Плавающие» полы без специальных виброизоляторов можно использовать лишь с оборудованием, имеющим ра­бочие частоты более 45-50 Гц. Это, как правило, небольшие машины, виброизоляция которых может быть обеспечена и другими способами. Эффективность полов на упругом осно­вании на столь низких частотах невелика, поэтому применяют их исключительно в сочетании с другими видами виброизоля­торов, что обеспечивает высокую виброизоляцию на низких частотах (за счет виброизоляторов), а также на средних и вы­соких (за счет виброизоляторов и «плавающего» пола).

Стяжку плавающего пола необходимо тщательно изоли­ровать от стен и несущей плиты перекрытия, так как образо­вание даже небольших жестких мостиков между ними может существенно ухудшить его виброизолирующие свойства. В мес­тах примыкания «плавающего» пола к стенам должен быть шов из нетвердеющих материалов, не пропускающий воду.

ШУМ ОТ МУСОРОПРОВОДА

Для снижения шума необходимо соблюдать требования норм и не проектировать ствол мусоропровода смежно с жилыми помещениями. Ствол мусоропровода не должен примыкать или располагаться в стенах, ограждающих жи­лые либо служебные помещения с нормируемыми уровнями шума.

Из мероприятий по уменьшению шума мусоропроводов наиболее распространены следующие:

  • в помещениях для сбора мусора предусматривается «плавающий» пол;
  • по согласию жильцов всех квартир подъезда мусоро­провод заваривается (или ликвидируется) с размещением в помещении мусорокамеры колясочных, комнаты для кон­сьержки и т.д. (положительной момент в том, что кроме шума исчезают запахи, ликвидируется возможность появления крыс и насекомых, вероятность пожаров, грязь и т.д.);
  • ковш загрузочного клапана монтируют обрамленными резиновыми или магнитными уплотнителями;
  • декоративная теплошумозащитная облицовка ствола мусоропровода из строительных материалов отделяется от строительных конструкций здания звукоизолирующими прокладками.

Сегодня многие строительные фирмы предлагают свои услуги, различные конструкции для увеличения звукоизоля­ции стен и обещают полную тишину. Следует обратить вни­мание на то, что на самом деле никакие конструкции не смо­гут снять структурный шум, передающийся по перекрытиям пола, потолка и по стенам при сбрасывании твердых быто­вых отходов в мусоропровод.

ШУМ ОТ ЛИФТОВ

В СП 51.13330.2011 «Защита от шума. Актуализирован­ная редакция СНиП 23-03-2003» сказано, что лифтовые шах­ты целесообразно располагать в лестничной клетке между лестничными маршами (п. 11.8). При архитектурно-планиро­вочном решении жилого здания следует предусматривать, чтобы к встроенной лифтовой шахте примыкали помещения, не требующие повышенной защиты от шума и вибрации (хол­лы, коридоры, кухни, санитарные узлы). Все лифтовые шахты независимо от планировочного решения должны быть само­несущими и иметь самостоятельный фундамент.

Шахты надлежит отделить от других конструкций здания акустическим швом 40-50 мм или виброизолирующими про­кладками. В качестве материала упругого слоя рекомендова­ны плиты из акустической минеральной ваты на базальтовой или стекловолокнистой основе и различные вспененные по­лимерные рулонные материалы.

Для защиты от структурного шума лифтовой установки ее приводной двигатель с редуктором и лебедкой, устанав­ливаемые обычно на одной общей раме, виброизолируют от опорной поверхности. Современные лифтовые привод­ные агрегаты комплектуют соответствующими виброизо­ляторами, установленными под металлическими рамами, на которых жестко крепят двигатели, редукторы и лебедки, в связи с чем дополнительная виброизоляция приводного агрегата, как правило, не требуется. При этом дополнительно рекомендуется сделать двухкаскадную (двузвенную) систему виброизоляции, установив опорную раму через виброизоля­торы на железобетонную плиту, которая также отделена от пола виброизоляторами.

Эксплуатация лифтовых лебедок, установленных на двухка-скадных системах виброизоляции, показала, что уровни шума от них не превышают нормативные значения в ближайших жи­лых помещениях (через 1-2 стены). В практических целях не­обходимо следить за тем, чтобы виброизоляция не была нару­шена случайными жесткими мостиками между металлической рамой и опорной поверхностью. Подводящие электрокабели должны иметь достаточно длинные гибкие петли. Тем не менее работа других элементов лифтовых установок (панели управ­ления, трансформаторы, башмаки кабины и противовеса и т.п.) может сопровождаться шумом выше нормативных значений.

Запрещается проектировать пол машинного отделения лифта как продолжение плиты перекрытия потолка жилой комнаты верхнего этажа.

ШУМ ОТ ТРАНСФОРМАТОРНЫХ ПОДСТАНЦИЙ НА ПЕРВЫХ ЭТАЖАХ

Для защиты от шума трансформаторных подстанций жилых и иных помещений с нормируемыми уровнями шума необходимо соблюдать следующие условия:

  • помещения встроенных трансформаторных подстанций;
  • не должны примыкать к защищаемым от шума помещениям;
  • встроенные трансформаторные подстанции следует
  • располагать в подвалах или на первых этажах зданий;
  • трансформаторы необходимо устанавливать на вибро­изоляторы, рассчитанные соответствующим способом;
  • электрические щиты, содержащие электромагнитные коммуникационные аппараты, и отдельно установленные масляные выключатели с электрическим приводом должны монтироваться на резиновых виброизоляторах (воздушные разъединители не требуют виброизоляции);
  • вентиляционные устройства помещений встроенных трансформаторных подстанций должны быть оборудованы глушителями шума.

Для дополнительного снижения шума от встроенной трансформаторной подстанции целесообразно обработать ее потолки и внутренние стены звукопоглощающей облицовкой.

Во встроенных трансформаторных подстанциях должна быть выполнена за­щита от электромагнитного излучения (сетка из специально­го материала с заземлением для снижения уровня излучения электрической составляющей и стальной лист для магнитной).

ШУМ ОТ ПРИСТРОЕННЫХ КОТЕЛЬНЫХ, ПОДВАЛЬНЫХ НАСОСОВ И ТРУБ

Оборудование котельных (на­сосы и трубопроводы, вентагрегаты, воздуховоды, газовые котлы и т.д.) должно быть виброизолировано с применением виброфундаментов и мягких вставок. Вентиляционные уста­новки оснащают глушителями.

Чтобы виброизолировать расположенные в подвалах на­сосы, элеваторные узлы в индивидуальных тепловых пунктах (ИТП), вентагрегаты, холодильные камеры, указанное обору­дование устанавливают на виброфундаменты. Трубопроводы и воздуховоды виброизолируются от конструкций дома, так как преобладающим шумом в квартирах, расположенных выше, может оказаться не базовый шум от оборудования в подвале, а тот, который передается ограждающим конструкциям через вибрацию трубопроводов и фундаменты оборудования. Устра­ивать встроенные котельные в жилых зданиях запрещается.

В системах трубопроводов, соединенных с насосом, необ­ходимо применять гибкие вставки - резинотканевые рукава или резинотканевые рукава, армированные металлическими спиралями, в зависимости от гидравлического давления в сети, длиной 700-900 мм. При наличии трубных участков меж­ду насосом и гибкой вставкой участки следует крепить к сте­нам и перекрытиям помещения на виброизолирующих опо­рах, подвесках или через амортизирующие прокладки. Гибкие вставки нужно располагать как можно ближе к насосной уста­новке как на нагнетательной линии, так и на всасывающей.

Для снижения уровней шума и вибрации в жилых домах от работы систем тепловодоснабжения необходимо изоли­ровать распределительные трубопроводы всех систем от строительных конструкций здания в местах их прохождения через несущие конструкции (ввода в жилые дома и вывода из них). Зазор между трубопроводом и фундаментом на вво­де и выводе должен быть не менее 30 мм.


Подготовлено по материалам журнала Санитарно-эпидемиологический собеседник (№1(149), 2015

УРОВЕНЬ ШУМА

Сила звука измеряется в децибелах (дБ) в диапазоне частот от 31,5 до 16000 Гц и в середине каждой частотной полосы, т.е. на частотах 31,5; 63; 125; 250 Гц и т.д. Человек воспринимает звук в диапазоне от 63 до 800 Гц.

Сила звука в дБ разделяется на уровни А, В, С и D . Допустимой нормой общего уровня шума считается уровень А, наиболее близкий к диапазону чувствительности человека. Для обозначения этой характеристики наиболее употребим термин «Уровень звукового давления».

ИСТОЧНИК ШУМА

Работающий двигатель – источник механического шума, зарождающегося в
газораспределительном механизме, топливном насосе и т.д., а также появляющегося в камерах сгорания, в результате вибрации, всасывания воздуха и работы вентилятора, если он установлен. Обычно шум всасываемого воздуха и радиатора меньше, чем механические шумы. Данные по уровню шума при необходимости можно найти в Справочнике продукции [ Product Information Manual ]. Уменьшить шум можно с помощью звукопоглощающего покрытия. Если механический шум ослаблен до 5 уровня, упомянутого в разделе Уровень шума, нужно обратить внимание на шум воздуха и вентилятора.

Эффективный и относительно дешевый способ - закрыть двигатель кожухом. На расстоянии 1 м от кожуха ослабление звука достигает 10 дБ(А). Эффективны только специально спроектированные кожухи, так что желательно проконсультироваться со специалистами относительно его параметров.

Если к шуму вне помещений, в которых расположены установки, предъявляются определенные требования, нужно соблюдать следующие условия:

1) Конструкция здания

Внешние стены - из двойного кирпича с

пустотами.

Окна - двойного остекления с расстоянием

между стеклами 200 мм.

Двери - двойные двери с тамбуром или

одинарные, со стеной-экраном напротив

дверного проема.

2) Вентиляция

Проемы для забора свежего воздуха и отвода нагретого воздуха должны быть оборудованы шумозащитными экранами. Эти проблемы Владелец должен обсудить с Изготовителем.

Экраны не должны уменьшать сечение воздуховодов, так как это повысит сопротивление на вентиляторе. Для более крупных двигателей, требующих больше воздуха, нужны соответственно увеличенные экраны, а здание должно допускать их правильную установку.

3) Виброизолирующие опоры

Монтаж агрегатов на виброизолирующих опорах предотвращает передачу вибрации на стены, другие узлы установки и т.д. Часто вибрация является одной из причин шума. (См. виброизолирующие опоры).

4) Глушение выхлопа

Оно позволяет ослабить шум на 30...35 дБ(А) на расстоянии 1 м от внешней стены помещения, при условии применения высококачественных поглотителей звука и выхлопных глушителей на входе и выходе.

Мероприятия по снижению уровня шума

1. Архитектурно-планировочные

Функциональное зонирование территории населенного пункта;

Рациональная планировка территории селитебной зоны - использование экранирующего эффекта жилых и общественных зданий, расположенных в непосредственной близости к источнику шума. При этом внутренняя планировка здания должна обеспечить ориентацию спальных и других помещений жилой зоны квартиры на бесшумную сторону, а в сторону магистрали должны быть ориентированы помещения, в которых человек находится непродолжительное время - кухни, санузлы, лестничные клетки;

Создание условий для непрерывного движения автотранспорта путем организации бессветофорного движения (транспортные развязки на разных уровнях, подземные пешеходные переходы, выделение улиц с односторонним движением);

Создание объездных дорог для транзитного транспорта;

Озеленение селитебной зоны.

2. Технологические

Модернизация транспортных средств (уменьшение шумности двигателя, ходовой части и т.д.);

Использование инженерных экранов – прокладка автомагистрали или железной дороги в выемке, создание стенок-экранов из различных стеновых конструкций;

Уменьшение проникновения шума через оконные проемы жилых и общественных зданий (использование звукоизолирующих материалов – уплотняющие прокладки из губчатой резины в притворах окон, установка окон с тройными переплетами).

3. Административно-организационные

Государственный надзор за техническим состоянием транспортных средств (контроль соблюдения сроков технического обслуживания, обязательность регулярных техосмотров);

Контроль состояния дорожного полотна.

ТЕСТОВЫЕ ЗАДАНИЯ

ВЫБЕРИТЕ ВСЕ ПРАВИЛЬНЫЕ ОТВЕТЫ

1. ПРИ ВЫБОРЕ ЗЕМЕЛЬНОГО УЧАСТКА ДЛЯ ЗАСТРОЙКИ НАСЕЛЕННОГО ПУНКТА СЛЕДУЕТ УЧИТЫВАТЬ

1) рельеф местности

3) наличие воды и зеленых массивов

4) характер почвы

5) численность населения

2. ОСНОВНЫЕ ТРЕБОВАНИЯ К ПЛАНИРОВКЕ НАСЕЛЕННОГО ПУНКТА

1) размещение функциональных зон на местности с учетом розы ветров

2) наличие функционального зонирования территории

3) обеспечение достаточного уровня инсоляции территории

4) обеспечение удобных путей сообщения между отдельными частями города

5) наличие достаточного количества высотных зданий

3. НА ТЕРРИТОРИИ ГОРОДА ВЫДЕЛЯЮТСЯ СЛЕДУЮЩИЕ ЗОНЫ

1) селитебная

2) промышленная

3) коммунально-складская

4) центральная

5) пригородная

4. ВИДЫ ПЛАНИРОВКИ НАСЕЛЕННЫХ МЕСТ

1) периметральная

2) строчная

3) смешанная

4) паутинная

5) свободная

5. К РАЗМЕЩЕНИЮ ПРОМЫШЛЕННОЙ ЗОНЫ ПРЕДЪЯВЛЯЮТСЯ СЛЕДУЮЩИЕ ТРЕБОВАНИЯ

1) учитывают розу ветров

2) организуют санитарно-защитную зону

3) учитывают рельеф местности

4) учитывают численность населения

5) располагают ниже города по течению реки

6. В СЕЛИТЕБНОЙ ЗОНЕ РАЗМЕЩАЮТ

1) жилые районы

2) торговые склады

3) административный центр

4) автопарки

5) лесопарковую зону

7. НАИБОЛЕЕ ВАЖНЫМИ ГИГИЕНИЧЕСКИМИ ОСНОВАМИ ГРАДОСТРОИТЕЛЬСТВА В НАШЕЙ СТРАНЕ ЯВЛЯЮТСЯ

1) состояние территории для размещения населенного пункта

2) ограничение роста крупных и сверхкрупных городов

3) возможность благоустройства территории

4) функциональное зонирование города

5) использование природно-климатических факторов

8. ПРИГОРОДНАЯ ЗОНА НЕОБХОДИМА ДЛЯ

1) размещения промышленных предприятий

2) отдыха населения

3) размещения объектов коммунального хозяйства

4) организации лесопарковой зоны

5) размещения транспортных узлов

9. Тип застройки населенного пункта определяется

1) рельефом местности

2) ветровым режимом территории

3) численностью населения

4) наличием зеленых насаждений

5) расположением автомобильных дорог

10. НЕДОСТАТКОМ ПЕРИМЕТРАЛЬНОЙ ЗАСТРОЙКИ ЯВЛЯЕТСЯ

1) трудность обеспечения хороших условий инсоляции жилищ

2) сложность организации проветривания территории

3) неудобство для населения

4) трудность с организацией внутренней территории микрорайона

5) невозможность использования в крупных городах

ЭТАЛОНЫ ОТВЕТОВ

1. 1), 2), 3), 4)

3. 1), 2), 3), 5)

7. 1), 3), 4), 5)

9. 1), 2), 4), 5)

ГИГИЕНА ЖИЛИЩА

По оценкам экспертов ВОЗ, в помещениях непроизводственного характера человек проводит более 80% своего времени. Это позволяет считать, что качество внутренней среды помещений, в том числе среды жилища, может влиять на здоровье человека. Гигиенические требования к жилищу регламентируются СанПиН 2.1.2.2645-10 Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях; СанПиН 2.2.1./2.1.1.2585-10, изм. и доп. №1 к СанПиН 2.2.1/2.1.1.1278-03 Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий.

14. Защита от вибраций

Допустимый уровень звука А (шум) от оборудования, установленного в теплопунктах или насосных

Согласно PN-87/8-02151/02 п. 3, уровень звука А (шум) от насосов или запорной арматуры, измеренный на расстоянии 1 м от оборудования, не должен превышать 65 дБ.

В книге “Технические условия строительства и приемки газовой или жидкотопливной котельной”, выпущенной Польской корпорацией санитарной, отопительной, газовой техники и кондиционирования (издание ІІ), приводятся допустимые значения уровней звука:

для котлов мощностью 30-120 кВт с атмосферными горелками – ниже 65 дБ (А);

для котлов мощностью 30-120 кВт с вентиляторными горелками – ниже 85 дБ (А);

для котлов мощностью более 120 кВт – не выше 85 дБ (А).

При установке котла мощностью менее 30 кВт в помещении отдельной кухни, уровень звука не должен превышать 51 дБ (А), а в кухне, совмещенной с другим помещением – 45 дБ (А). Источники, на основании которых приводятся указанные величины, авторам не известны. Предположительно их цитируют из инструкций, изданных

в западных странах.

В связи с тем, что польские нормы не содержат указаний относительно значений уровня звука, источником которого является котельная, запаздывая с изменениями на теплотехническом рынке, авторы ссылаются на немецкие указания VDI 2715 относительно понижения шума отопительного оборудования. Эти указания комплексно охватывают проблемы шума, создаваемого котельной.

Несмотря на очень строгие ограничения (даже ниже 25 дБ (А)) к шуму, производимому котельной (как к уровню звука, излучаемого в окружающую среду, так и к уровню звука, проникающего в прилегающие помещения), допустимый уровень звука в самом помещении котельной зависит от номинальной мощности котла и установленной горелки. Для котлов с вентиляторными горелками его значение можно определить по формуле:

Минимальные значения индекса изоляции воздушного шума перекрытием между котельной

и жилыми помещениями

Значение индекса изоляции воздушного шума перекрытием (с учетом всех путей косвенной звукопередачи) между помещением котельной и помещениями квартиры, в соответствии с нормами PN-B-02151-3 от 1999 г., не может быть меньше R’A1 = 55 дБ. Значение индекса приведенного уровня ударного шума, проникающего от пола котельной в квартиры, не должно превышать L’n.w = 58 дБ.

14.4. Шум, создаваемый группой “котел – горелка”

14.4.1. Влияние мощности котла на уровень излучаемого шума

На рис. 14.4 показаны корректированные уровни звука в дБ (А) для котлов различной мощности с вентиляторными горелками. На графике показаны кривые изменения уровня звука по октавным полосам в зависимости от мощности котла. Представленные характеристики получены опытным путем, в результате многочисленных экспериментов с котельными установками. Конечно, могут случаться отклонения, и их нужно учитывать при проектировании защиты от шума. Приведены данные фирмы RAICHLE.

14. Защита от вибраций

давлениязвуковогоУровень

Мощность

звукового

давления, дБ (A)

Рис. 14.4. Распределение уровня звукового давления по октавным полосам для группы “котел – вентиляторная горелка”

различной мощности

14.4.2. Уровень звука котлов различного типа

В настоящее время все чаще применяются котлы с вентиляторными горелками. В пользу такого решения говорит много факторов, но, как правило, решающим оказывается более высокий КПД. Кроме ряда преимуществ, группа “котел – вентиляторная горелка” имеет и недостаток – повышенный уровень шума. Основным источником шума вентиляторной горелки являются завихрения, возникающие в перекачиваемом газе. Интенсивность этого звука прямо пропорциональна средней скорости лопастей в степени, величина которой находится в пределах <5, 6>. Интенсивность звука примерно одинаковая как на всасывании, так и на нагнетании вентилятора.

Согласно , уровень звуковой мощности для вентиляторов, определенный в полупространстве, можно ориентировочно рассчитать по формуле:

14. Защита от вибраций

При известной мощности W двигателя вентилятора (кВт), можно использовать следующие формулы:

L N = 85 + 10logW + 10log∆p

L N = 125 + 20logW – 10log

Для определения точных значений уровня звуковой мощности в зависимости от типа вентилятора и условий его работы можно использовать указания VDI 2081.

Уровни звуковой мощности, производимой вентилятором в зависимости от расходаи разности давлений

∆p , рассчитанные по формуле , представлены на рис. 14.5.

Рис. 14.5. Зависимость звуковой мощностиL N вентилятора от объемного расходаи разности давлений∆p

Как видно из графика, звуковая мощность L N прямо пропорциональна объемному расходупри определенной разности давлений∆p . Для сравнения на рис. 14.6 показан уровень звука А только для вентиляторных горелок различной мощности. Максимальные значения уровня звука для данной мощности котла колебаются в диапазоне частот от 500 до 2000 Гц. Сравнение графиков на рис. 14.4 и 14.6 позволяет сделать вывод о том, что уровень звука группы “котел – горелка” ненамного выше уровня звука одной вентиляторной горелки. Максимальные значения уровня звука группы “котел – горелка” отмечаются в диапазоне более низких частот 63-500 Гц. В этом случае имеем дело с низкочастотным шумом.

Упрощенно можно утверждать, что котел влияет на структуру и уровень звука, производимого вентиляторной горелкой, только качественно, но не количественно.

14. Защита от вибраций

Проведенные авторами исследования показали, что значения звука для котлов малой мощности, как с вентиляторными, так и с атмосферными горелками, практически одинаковые. Разница в излучении шума отмечалась для котлов мощностью выше 100 кВт. Повышение уровня звукового давления связано с ростом производительности вентилятора.

На рис. 14.6 показан уровень звуковой мощности А для вентиляторных горелок в зависимости от мощности котла.

Рис. 14.6. Уровень звуковой мощности А для вентиляторных горелок в зависимости от мощности котла

14.5. Акустическая модель отопительной установки

Изучение путей распространения упругих волн необходимо начать с анализа главного акустического механизма, связанного с отдельными элементами отопительной установки. Сначала нужно локализовать источники, которые генерируют колебания и шум. В отопительных установках – это группа “котел – горелка”, насосы и запорная арматура. Первоначально нужно оценить уровень генерируемого шума. Несмотря на то, что каждое из этих устройств может соответствовать требованиям действующих в этой области норм, суммарное воздействие шума от всего оборудования часто превышает допустимые значения для смежных помещений или окружающей среды.

Следующий этап – определение путей передачи звука. В отопительных установках существует несколько основных путей распространения звука. К ним относятся трубопроводы вместе с теплоносителем (преимущественно водой), дымоходы, вентиляционные каналы и отдельные устройства, которые через точки соприкосновения или крепления участвуют в распространении шума.

Последним этапом является локализация зон, излучающих звук. В результате такого анализа разработана причинно-следственная цепь генерации и распространения шума, представленная на рис. 14.7.

14. Защита от вибраций

Рис. 14. 7. Причинно-следственная цепь генерации и распространения шума

Шум, который возникает в одном из источников, распространяется дальше в виде колебаний частиц среды, с которой данный источник контактирует. В отопительной установке источники, генерирующие упругие волны, контактируют, в большинстве случаев, с веществом во всех физических состояниях – воздухом, жидкостью и твердым телом. Поэтому распространение возникающих колебаний необходимо рассматривать для всех этих трех категорий.

Общая модель отопительной установки представлена на рис. 14.8. Она разделена на динамические факторы, которые активно участвуют в процессе генерации упругих колебаний, и статические факторы, которые распространяют вибрацию и шумы. Динамические факторы – это главные источники шума, перечисленные выше: группа “котел – горелка”, насосы и запорная арматура.

К статическим факторам относятся трубопроводы систем отопления, вентиляционные каналы, дымоходы, корпуса и кожухи оборудования, перегородки и, конечно, конструкция дома в целом.

В зависимости от того, в какой среде происходит генерация или распространение шума, он и носит соответствующее название: воздушные шумы, шумы, распространяющиеся в воде, ударные шумы. Как показано на рис.14.8, не все источники создают упругие волны во всех трех категориях, как и не каждая среда играет ключевую роль в распространении шума от данного источника. Целью выделения факторов шума является идентификация доминирующих источников, путей передачи и излучающих поверхностей.

Конечным эффектом вибрации оборудования являются звуки (шумы), которые распространяются в воздушном пространстве и могут также побуждать вибрацию (колебания) перегородок и других строительных конструкций, находящиеся в окружающей среде.

14. Защита от вибраций

Вентиляци-

оборудования

Конструкции

Дымоходы

Трубопроводы

Перегородки

отопления

Запорная

арматура

Статические

Динамические

Статические

факторы шума

факторы шума

факторы шума

звук, распространяющийся в воздухе

звук, распространяющийся в жидкостизвук ударный

Рис. 14.8. Акустическая модель котельной и системы отопления

Источники шума

Шум при перемещении газов (продуктов сгорания, воздуха) возникает вследствие турбулентных явлений, ударов или пульсаций. Турбулентность является механизмом генерации шума, который может принимать различные формы. Например, может состоять из простых фоновых составляющих, связанных в основном с истечением газов из отверстий, или иметь широкополосный спектр при протекании их по каналам с острыми кромками, с запорными элементами или другими местными сопротивлениями.

Поток с большой скоростью, например на концах лопастей вентилятора или сопла, создает завихрения, способствующие возникновению шума в широком звуковом диапазоне. Его уровень и спектр зависят от скорости потока, вязкости среды и геометрии сопла.

Жидкость, как и воздух, генерирует шум вследствие турбулентности, пульсаций и ударов. Перечисленные выше принципы относятся и к жидкости. Кроме того, в ней может возникать явление кавитации, когда статическое давление опускается ниже давления насыщения пара. Возникновение кавитации – явление, характерное для запорной арматуры и насосов. В зоне падения давления ниже давления насыщения пара появляются кавитационные пузырьки пара. Во время повторного сжатия пузырьки лопаются, создавая зоны значительного повышения давления. В связи с тем, что повторное сжатие (компрессия) часто происходит в пристенном слое потока, кавитация является причиной эрозии. Кавитация генерирует шум обширного диапазона.

Удар является причиной структурного (ударного) шума в трубопроводах системы отопления. Наиболее важными параметрами, влияющими на возникновение ударного шума, являются масса и скорость частиц, которые сталкиваются, и продолжительность удара. Частотный анализ удара показывает, что высокие частоты преобладают над широкополосным шумом в связи с короткой продолжительностью самого удара.

14. Защита от вибраций

Каждый источник звука имеет определенную характеристику, специфический путь распространения и опреде-

ленное возбуждение излучающей поверхности. В современных котельных основным источником шума является

группа “котел – горелка” (особенно вентиляторная горелка). На рис. 14.9 показана котельная, в которой главным

источником шума является группа “котел – горелка”, пути распространения и методы снижения шума.

звук, распространяющийся

в воздухе

Шумоглушитель на

звук, распространяющийся

вытяжной вентрешетке

в жидкости

звук ударный

крепление

Группа "котел – горелка"

как источник

колебаний и шума

Шумоглушитель

на приточной

Шумоглушитель

вентрешетке

на дымоходе

компенсатор

Виброоснование

Рис. 14.9. Пути распространения и методы снижения шума от группы “котел-горелка”

Группа “котел – горелка” генерирует звук всех ранее перечисленных категорий. Пути распространения звука тоже разные: движущаяся жидкость, точки крепления, дымоходы, облицовка и кожухи оборудования. Общая звуковая мощность, излучаемая группой “котел – горелка”, – это сумма всех вышеперечисленных составляющих.

14.6. Снижение уровня шума в воздушном пространстве

В воздушное пространство шум проникает через приточные и вытяжные отверстия. По своей природе шум имеет направление, а наибольшая его интенсивность наблюдается вдоль оси канала. Отсюда следует вывод, что

в отверстии направление шума следует изменить, например с помощью экрана, или в отверстии или канале установить шумоглушитель.

Излучение шума с поверхностей оборудования зависит от размера, формы, упругости, массы и звукопоглощающих свойств поверхности. Поэтому желательно, чтобы оборудование имело компактную конструкцию, так как незначительные размеры, большая жесткость и масса уменьшают излучение шума.

14. Защита от вибраций

Шум, распространяющийся в воздушном пространстве, можно ограничить с помощью:

звукоизолирующих кожухов;

акустических экранов;

шумоглушителей;

звукопоглощающих покрытий.

Звукоизолирующий кожух

Под понятием кожух подразумевается оболочка, внутри которой находится источник шума (рис.14.10). Звукоизолирующий кожух представляет собой пассивное средство, ограничивающее распространение шума. Часто это единственная возможность снижения уровня шума от активных акустических источников – движущихся механизмов или их частей. Особенность кожуха состоит в том, что уровень шума снижается уже в непосредственной близости от источника. Это позволяет защитить также рабочие места, расположенные вблизи источника шума.

Кожух изготавливают преимущественно из тонколистовой стали. Для улучшения звукоизолирующих свойств его покрывают изнутри слоем пористого звукопоглощающего материала. Толщина слоя такого материала зависит от наиболее низкой частоты звука.

Уменьшение передачи ударного шума от источника к кожуху происходит за счет применения материалов, амортизирующих колебания в узлах крепления.

источник

Звукоизоляционный материал

Звукопоглощающий материал

Шумоглушитель на

вентиляционном отверстии

Виброоснование

Рис. 14.10. Разрез звукоизолирующего кожуха и пример звукоизолирующего кожуха горелки котла Vitoplex

Принципы проектирования оболочек вокруг источников звука:

плотная изоляция источника звука; даже небольшие щели или отверстия необходимо закрыть;

использование металла в качестве звукоизоляционного материала с внешней стороны кожуха;

применение звукопоглощающего материала внутри кожуха;

использование шумоглушителей в вентиляционных отверстиях, отверстиях для прохода кабелей, труб и т. п.;

отсутствие жестких соединений между оборудованием и кожухом, уменьшение количества точек крепления.

14. Защита от вибраций

Мерой эффективности звукоизолирующего кожуха является величина звукоизолирующей способности кожуха D кож – разность между средним уровнем звукового давления во всех точках измерения при работающем механизме или оборудовании без кожухаL m1 (дБ) и средним значением уровня звукового давления в тех же точках при работающем механизме, но уже со звукоизолирующим кожухомL m2 (дБ) на среднегеометрических частотах октавных полос от 63 до 8000 Гц. Значение звукоизолирующей способности кожухаD кож в дБ определяется по формуле:

D кож= L m1– L m2[дБ]

Изучая акустическую эффективность кожуха, не нужно смешивать понятия звукоизолирующей способности кожуха и удельной звукоизолирующей способности перегородки R w , определяемой акустическими свойствами элементов, из которых она изготовлена.

Экраны можно устанавливать возле небольших елементов оборудования с высоким уровнем излучения шума. Эффективность их значительно ниже эффективности звукоизолирующих кожухов и зависит от направления и расстояния от источника шума. Вместе с тем экраны могут быть полезны для снижения шума в ограниченных зонах, например на рабочем месте оператора.

Эффективность экранов ограничена частотами, при которых высота и длина экрана такие же, как и длина звуковой волны, передаваемой в воздухе, или больше.

Принципы проектирования экранов:

экраны применяются для защиты от шума рабочих мест операторов;

для изготовления экранов используются плотные звукоизоляционные материалы;

экраны со стороны источника шума покрываются звукопоглощающим слоем.

Шумоглушители

Шумоглушители – это элементы, которые препятствуют прохождению звука, передаваемого воздуховодами. Абсорбционные шумоглушители выполняются в виде “пористого канала”. Они часто встроены в кожухи вентиляторов для обеспечения охлаждения двигателей без снижения эффективности звукоизолирующих свойств.

Принципы проектирования шумоглушителей:

использование абсорбционных шумоглушителей для снижения широкополосного шума;

недопущение скорости движущейся среды выше 12 м/сек в абсорбционных глушителях;

применение реактивных шумоглушителей, действующих по принципу отражения для снижения шума на низких частотах;

использование шумоглушителей-расширителей на выходе сжатого воздуха.

В.Б. Тупов
Московский энергетический институт (технический университет)

АННОТАЦИЯ

Рассмотрены оригинальные разработки МЭИ по снижению шума от энергетического оборудования ТЭС и котельных. Приводятся примеры снижения шума от наиболее интенсивных источников шума, а именно от паровых выбросов, парогазовых установок, тягодутьевых машин, водогрейных котлов, трансформаторов и градирен с учетом требований и специфики их эксплуатации на объектах энергетики. Даны результаты испытаний глушителей. Приведенные данные позволяют рекомендовать глушители МЭИ для широкого использования на объектах энергетики страны.

1. ВВЕДЕНИЕ

Решения экологических вопросов при эксплуатации энергетического оборудования являются приоритетными. Шум является одним из важных факторов, загрязняющих окружающую среду, снижение негативного воздействия которого на окружающую среду обязывают законы «Об охране атмосферного воздуха» и «Об охране окружающей природной среды», а санитарные нормы СН 2.2.4/2.1.8.562-96 устанавливают допустимые уровни шума на рабочих местах и территории жилой застройки.

Работа энергетического оборудования в штатном режиме связана с шумоизлучением, которое превышает санитарные нормы не только на территории энергетических объектов, но и на территории окружающего района. Особенно это важно для энергетических объектов, находящихся в крупных городах рядом с жилыми районами. Использование парогазовых установок (ПГУ) и газотурбинных установок (ГТУ), а также оборудования более высоких технических параметров связано с увеличением уровней звукового давления в окружающем районе.

Некоторое энергетическое оборудование имеет тональные составляющие в своем спектре излучения. Круглосуточный цикл работы энергетического оборудования обуславливает особую опасность шумового воздействия для населения в ночное время.

В соответствии с санитарными нормами санитарно-защитные зоны (СЗЗ) ТЭС эквивалентной электрической мощностью 600 МВт и выше, использующие в качестве топлива уголь и мазут, должны иметь СЗЗ не менее 1000 м, работающие на газовом и газомазутном топливе - не менее 500 м. Для ТЭЦ и районных котельных тепловой мощностью 200 Гкал и выше, работающих на угольном и мазутном топливе СЗЗ составляет не менее 500 м, а для работающих на газовом и резервном мазутном топливе - не менее 300 м.

Санитарные нормы и правила устанавливают минимальные размеры санитарной зоны, а действительные размеры могут быть больше. Превышение допустимых норм от постоянно работающего оборудования тепловых электрических станций (ТЭС) может достигать для рабочих зон - 25-32 дБ; для территорий жилых зон - 20-25 дБ на расстоянии 500 м от мощной тепловой электрической станции (ТЭС) и 15-20 дБ на расстоянии 100 м от крупной районной тепловой станции (РТС) или квартальной тепловой станции (КТС). Поэтому проблема снижения шумового воздействия от энергетических объектов является актуальной, и в ближайшее время её значение будет возрастать.

2. ОПЫТ СНИЖЕНИЯ ШУМА ОТ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

2.1. Основные направления работы

Превышение санитарных норм в окружающем районе формируется, как правило, группой источников, разработкой мер по снижению шума, которым уделяется большое внимание как за рубежом, так и в нашей стране. За рубежом известны работы по шумоглушению энергетического оборудования таких компаний, как Industrial acoustic company (IAC), BB-Acustic, Gerb и других, а в нашей стране- разработки ЮжВТИ, НПО ЦКТИ, ОРГРЭС, ВЗПИ (Открытый университет), НИИСФ, ВНИАМ др. .

Московский энергетический институт (технический университет) с 1982 г. также проводит комплекс работ для решения этой проблемы . Здесь за последние годы разработаны и внедрены на объектах большой и малой энергетики новые эффективные глушители для наиболее интенсивных источников шума от:

паровых выбросов;

парогазовых установок;

тягодутьевых машин (дымососов и дутьевых вентиляторов);

водогрейных котлов;

трансформаторов;

градирен и других источников.

Ниже рассмотрены примеры снижения шума от энергетического оборудования разработками МЭИ. Работа по их внедрению имеет высокую социальную значимость, которая заключается в уменьшении шумового воздействия до санитарных норм для большого числа населения и персонала энергетических объектов.

2.2. Примеры снижения шума от энергетического оборудования

Сбросы пара энергетических котлов в атмосферу является наиболее интенсивным, хотя и кратковременным, источником шума как для территории предприятия, так и для окружающего района.

Акустические измерения показывают, что на расстоянии 1 - 15 м от парового выброса энергетического котла уровни звука превышают не только допустимый, но и максимально допустимый уровень звука (110 дБА) на 6 - 28 дБА.

Поэтому разработка новых эффективных паровых глушителей является актуальной задачей. Был разработан глушитель шума выброса пара (глушитель МЭИ) .

Паровой глушитель имеет различные модификации в зависимости от требуемого снижения уровня шума выброса и характеристик пара.

В настоящее время паровые глушители МЭИ внедрены на ряде энергетических объектов: Саранской теплоэлектроцентрали №2 (ТЭЦ-2) ОАО «Территориальная генерирующая компания-6», котле ОКГ-180 ОАО «Новолипецкий металлургический комбинат», ТЭЦ-9, ТЭЦ-11 ОАО «Мосэнерго». Расходы пара через глушители составляли от 154 т/ч на Саранской ТЭЦ-2 до 16 т/ч на ТЭЦ-7 ОАО «Мосэнерго».

Глушители МЭИ были установлены на выхлопных трубопроводах после ГПК котлов ст. №1, 2 ТЭЦ-7 филиала ТЭЦ-12 ОАО «Мосэнерго». Эффективность этого глушителя шума, полученная по результатам измерений, составила 1,3 - 32,8 дБ во всём спектре нормируемых октавных полос со среднегеометрическими частотами от 31,5 до 8000 Гц.

На котлах ст. № 4, 5 ТЭЦ-9 ОАО «Мосэнерго» было внедрено несколько глушителей МЭИ на сбросе пара после главных предохранительных клапанов (ГПК). Проведенные здесь испытания показали, что акустическая эффективность составила 16,6 - 40,6 дБ во всём спектре нормируемых октавных полос со среднегеометрическими частотами 31,5 - 8000 Гц, а по уровню звука - 38,3 дБА.

Глушители МЭИ по сравнению с зарубежными и другими отечественными аналогами имеют высокие удельные характеристики, позволяющие достигать максимального акустического эффекта при минимальном весе глушителе и максимальном расходе пара через глушитель .

Паровые глушители МЭИ могут быть использованы для снижения шума сбросов в атмосферу перегретого и влажного пара, природного газа и др. Конструкция глушителя может эксплуатироваться в широком диапазоне параметров сбрасываемого пара и применяться как на блоках с докритическими параметрами, так и на блоках со сверхкритическими параметрами. Опыт применения паровых глушителей МЭИ показал необходимую акустическую эффективность и надёжность работы глушителей на различных объектах.

При разработке мер по шумоглушению ГТУ основное внимание было уделено разработке глушителей для газовых трактов .

По рекомендациям МЭИ выполнены конструкции глушителей шума газовых трактов котлов-утилизаторов следующих марок: КУВ-69,8-150 производства ОАО «Дорогобужкотломаш» для ГТЭС «Поселок Северный», П-132 производства АО «Подольский машиностроительный завод» (АО «ПМЗ») для Киришской ГРЭС, П-111 производства АО «ПМЗ» для ТЭЦ-9 ОАО «Мосэнерго», котла-утилизатора по лицензии компании «Nooter/Eriksen» для энергоблока ПГУ-220 Уфимской ТЭЦ-5, КГТ-45/4,0-430-13/0,53-240 для Новоуренгойского газохимического комплекса (ГХК).

Для ГТУ-ТЭЦ «Посёлок Северный» проведен комплекс работ по снижению шума газовых трактов.

ГТУ-ТЭЦ «Посёлок Северный» содержит двухкорпусной КУ конструкции ОАО «Дорогобужкотломаш», который устанавливается после двух газовых турбин FT-8.3 компании «Pratt & Whitney Power Systems». Эвакуация дымовых газов от КУ осуществляется через одну дымовую трубу.

Проведенные акустические расчёты показали, что для выполнения санитарных норм в жилом районе на расстоянии 300 м от среза устья дымовой трубы необходимо снизить шум в пределах от 7,8 дБ до 27,3 дБ на среднегеометрических частотах 63-8000 Гц.

Разработанный МЭИ диссипативный пластинчатый глушитель шума для снижения шума выхлопа ГТУ с КУ располагается в двух в металлических коробах шумоглушения КУ с размерами 6000x6054x5638 мм над конвективными пакетами перед конфузорами.

На Киришской ГРЭС в настоящее время внедряется парогазовый блок ПГУ-800 с КУ П-132 горизонтальной компоновки и ГТУ SGT5-400F (Siemens).

Проведенные расчёты показали, что требуемое снижение уровня шума от выхлопного тракта ГТУ составляет 12,6 дБА для обеспечения уровня звука 95 дБА в 1 м от устья дымовой трубы.

Для снижения шума в газовых трактах КУ П-132 Киришской ГРЭС разработан цилиндрический глушитель, который размещается в дымовой трубе внутренним диаметром 8000 мм.

Глушитель шума состоит из четырёх цилиндрических элементов, размещенных равномерно в дымовой трубе, при этом относительное проходное сечение глушителя составляет 60 %.

Расчётная эффективность глушителя составляет 4,0-25,5 дБ в диапазоне октавных полос со среднегеометрическими частотами 31,5 - 4000 Гц, что соответствует акустической эффективности по уровню звука 20 дБА.

Использование глушителей для снижения шума от дымососов на примере ТЭЦ-26 ОАО «Мосэнерго» на горизонтальных участках дано в .

В 2009 г. для снижения шума газового тракта за центробежными дымососами Д-21,5x2 котла ТГМ-84 ст. № 4 ТЭЦ-9 был установлен пластинчатый глушитель шума на прямом вертикальном участке газохода котла за дымососами перед входом в дымовую трубу на отметке 23,63 м.

Пластинчатый глушитель шума для газохода котла ТГМ ТЭЦ-9 представляет собой двухступенчатую конструкцию.

Каждая ступень глушителя состоит из пяти пластин толщиной 200 мм и длиной 2500 мм, размещенных равномерно в газоходе размерами 3750x2150 мм. Расстояние между пластинами составляет 550 мм, расстояние между крайними пластинами и стенкой газохода - 275 мм. При таком размещении пластин относительное проходное сечение составляет 73,3 %. Длина одной ступени глушителя без обтекателей составляет 2500 мм, расстояние между ступенями глушителя составляет 2000 мм, внутри пластин находится негорючий, негигроскопичный звукопоглощающий материал, который защищается от выдувания стеклотканью и перфорированным металлическим листом. Глушитель имеет аэродинамическое сопротивление около 130 Па. Вес конструкции глушителя составляет около 2,7 т. Акустическая эффективность глушителя по результатам испытаний составляет 22-24 дБ на среднегеометрических частотах 1000-8000 Гц.

Примером комплексной проработки мер по шумоглушению является разработка МЭИ для снижения шума от дымососов на ГЭС-1 ОАО «Мосэнерго». Здесь предъявлялись высокие требования к аэродинамическому сопротивлению глушителей, которые было необходимо разместить в существующие газоходы станции.

Для снижения шума газовых трактов котлов ст. № 6, 7 ГЭС-1 филиала ОАО «Мосэнерго» МЭИ разработал целую систему шумоглушения. Система шумоглушения состоит из следующих элементов: пластинчатого глушителя, облицованных звукопоглощающим материалом поворотов газовых трактов, разделительной звукопоглощающей перегородки и пандуса. Наличие разделительной звукопоглощающей перегородки, пандуса и звукопоглощающей облицовки поворотов газоходов котлов, помимо снижения уровней шума, способствует снижению аэродинамического сопротивления газовых трактов энергетических котлов ст. № 6, 7 в результате исключения сталкивания потоков дымовых газов в месте их соединения, организации более плавных поворотов дымовых газов в газовых трактах. Аэродинамические измерения показали, что суммарное аэродинамическое сопротивление газовых трактов котлов за дымососами за счет установки системы шумоглушения практически не увеличилось. Общий вес системы шумоглушения составил около 2,23 т.

Опыт снижения уровня шума от воздухозаборов дутьевых вентиляторов котлов дан в . В статье рассмотрены примеры снижения шума воздухозаборов котлов глушителями конструкции МЭИ. Здесь приведены глушители для воздухозабора дутьевого вентилятора ВДН-25х2К котла БКЗ-420-140 НГМ ст. № 10 ТЭЦ-12 ОАО «Мосэнерго» и водогрейных котлов через подземные шахты (на примере котлов

ПТВМ-120 РТС «Южное Бутово») и через каналы, расположенные в стене здания котельной (на примере котлов ПТВМ-30 РТС «Солнцево»). Первые два случая компоновки воздуховодов являются довольно типичными для энергетических и водогрейных котлов, а особенностью третьего случая является отсутствие участков, на которых может быть установлен глушитель и высокие скорости потока воздуха в каналах.

Разработаны и внедрены в 2009 г. меры по снижению шума с помощью звукопоглощающих экранов от четырех трасформаторов связи марки ТЦ ТН-63000/110 ТЭЦ-16 ОАО «Мосэнерго». Звукопоглощающие экраны устанавливаются на расстоянии 3 м от трансформаторов. Высота каждого звукопоглощающего экрана - 4,5 м, а длина изменяется от 8 до 11 м. Звукопоглощающий экран состоит из отдельных панелей, установленных в специальные стойки. В качестве панелей экранов применяются стальные панели со звукопоглощающей облицовкой. Панель с лицевой стороны закрывается гофрированным металлическим листом, а со стороны трансформаторов - перфорированным металлическим листом с коэффициентом перфорации 25 %. Внутри панелей экранов находится негорючий, негигроскопичный звукопоглощающий материал.

Результаты испытаний показали, что уровни звукового давления после установки экрана снизились в контрольных точках до 10-12 дБ.

В настоящее время разработаны проекты по снижению шума от градирен и трансформаторов ТЭЦ-23 и от градирен ТЭЦ-16 ОАО «Мосэнерго» с помощью экранов.

Продолжалось активное внедрение глушителей шума МЭИ для водогрейных котлов . Только за последние три года установлены глушители на котлах ПТВМ-50, ПТВМ-60, ПТВМ-100 и ПТВМ-120 на РТС «Рублёво», «Строгино», «Кожухово», «Волхонка-ЗИЛ», «Бирюлёво», «Химки-Ховрино», «Красный Строитель», «Чертаново», «Тушино-1», «Тушино-2», «Тушино-5», «Новомосковская», «Бабушкинская-1», «Бабушкинская-2», «Красная Пресня», КТС-11, КТС-18, КТС-24 г. Москвы и др.

Испытания всех установленных глушителей показали высокую акустическую эффективность и надёжность, что подтверждается актами о внедрении. В настоящее время эксплуатируются более 200 глушителей.

Внедрение глушителей МЭИ продолжается.

В 2009 г. заключено соглашение в области поставки комплексных решений для снижения шумового воздействия от энергетического оборудования между МЭИ и Центральным ремонтным заводом (ЦРМЗ г. Москва). Это позволит более широко внедрять разработки МЭИ на объектах энергетики страны. ЗАКЛЮЧЕНИЕ

Разработанный комплекс глушителей МЭИ для снижения шума от различного энергетического оборудования показал необходимую акустическую эффективность и учитывает специфику работы на объектах энергетики. Глушители прошли длительное эксплуатационное апробирование.

Рассмотренный опыт их применения позволяет рекомендовать глушители МЭИ для широкого использования на объектах энергетики страны.

СПИСОК ЛИТЕРАТУРЫ

1. Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. СанПиН 2.2.1/2.1.1.567-01. М.: Минздрав России, 2001.

2. Григорьян Ф.Е., Перцовский Е.А. Расчет и проектирование глушителей шума энергоустановок. Л.: Энергия, 1980. - 120 с.

3. Борьба с шумом на производстве / под ред. Е.Я. Юдина. М.: Машиностроение. 1985. - 400 с.

4. Тупов В.Б. Снижение шума от энергетического оборудования. М.: Издательство МЭИ. 2005. - 232 с.

5. Тупов В.Б. Шумовое воздействие энергетических объектов на окружающую среду и методы его снижения. В справочнике: «Промышленная теплоэнергетика и теплотехника» / под общ.ред. А.В. Клименко, В.М. Зорина, Издательство МЭИ, 2004. Т. 4. С. 594-598.

6. Тупов В.Б. Шум от энергетического оборудования и способы его снижения. В учебном пособии: «Экология энергетики». М.: Издательство МЭИ, 2003. С. 365-369.

7. Тупов В.Б. Снижение уровня шума от энергетического оборудования. Современные природоохранные технологии в электроэнергетике: Информационный сборник / под общ ред. В.Я. Путилова. М.: Издательский дом МЭИ, 2007, С.251-265.

8. Марченко М.Е., Пермяков А.Б. Современные системы шумоглушения при сбросах больших потоков пара в атмосферу // Теплоэнергетика. 2007. №6. С. 34-37.

9. Лукащук В.Н. Шум при продувках пароперегревателей и разработка мероприятий по снижению его влияния на окружающую среду: дисс... канд. тех. наук: 05.14.14. М., 1988. 145 с.

10. Яблоник Л.Р. Шумозащитные конструкции турбинного и котельного оборудования: теория и расчет: дисс. ... док. тех. наук. СПб., 2004. 398 с.

11. Глушитель шума выброса пара (варианты): Патент

на полезную модель 51673 РФ. Заявка №2005132019. Заявл. 18.10.2005 / В.Б. Тупов, Д.В. Чугунков. - 4 с: ил.

12. Тупов В.Б., Чугунков Д.В. Глушитель шума выброса пара // Электрические станции. 2006. №8. С. 41-45.

13. Тупов В.Б., Чугунков Д.В. Использование глушителей шума при сбросах пара в атмосферу/УЛовое в российской электроэнергетике. 2007. №12. С.41-49

14. Тупов В.Б., Чугунков Д.В. Глушители шума на сбросах пара энергетических котлов// Теплоэнергетика. 2009. №8. С.34-37.

15. Тупов В.Б., Чугунков Д.В., Семин С.А. Снижение шума от выхлопных трактов газотурбинных установок с котлами-утилизаторами // Теплоэнергетика. 2009. № 1. С. 24-27.

16. Тупов В.Б., Краснов В.И. Опыт снижение уровня шума от воздухозаборов дутьевых вентиляторов котлов// Теплоэнергетика. 2005. №5. С. 24-27

17. Tupov V.B. Noise problem from power stations in Moscow// 9th International Congress on Sound and Vibration Orlando, Florida, USA, 8-11, July 2002.P. 488-496.

18. Tupov V.B. Noise reduction from blow fans of hot-water boilers//ll th International Congress on Sound and Vibration, St.Petersburg, 5-8 July 2004. P. 2405-2410.

19. Тупов В.Б. Способы снижения шума от водогрейных котлов РТС// Теплоэнергетика. № 1. 1993. С. 45-48.

20. Tupov V.B. Noise problem from power stations in Moscow// 9th International Congress on Sound and Vibration, Orlando, Florida, USA, 8-11, July 2002. P. 488^96.

21. Ломакин Б.В., Тупов В.Б. Опыт снижения шума на прилегающей к ТЭЦ-26 территории // Электрические станции. 2004. №3. С. 30-32.

22. Тупов В.Б., Краснов В.И. Проблемы снижения шума от энергетических объектов при расширении и модернизации// I специализированная тематическая выставка «Экология в энергетике-2004»: Сб. докл. Москва, ВВЦ, 26-29 октября 2004 г. М., 2004. С. 152-154.

23. Тупов В.Б. Опыт снижения шума энергетических установок/Я1 Всероссийская научно-практическая конференция с международным участием «Защита населения от повышенного шумового воздействия», 17-19 марта 2009 г. Санкт-Петербург., С. 190-199.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png