Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

График температуры 95-70:

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.

При этом, на выходе они будут иметь 70°C.

Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка


Регулятор отопления

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство , выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.

Таблица с температурным графиком

Режим работы котлов зависит от погоды окружающей среды.

Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:

Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
+10 70 55
+9 70 54
+8 70 53
+7 70 52
+6 70 51
+5 70 50
+4 70 49
+3 70 48
+2 70 47
+1 70 46
0 70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

СНиП

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.

На объекте учета (анализируется система теплоснабжения).

В нормативном документе "РД 153-34.0-20.523-98 Методические указания по составлению режимных характеристик систем теплоснабжения и гидравлической характеристики тепловой сети (Часть 1). - М:, ОРГРЭС, 1999" приводится следующее объяснение понятий зоны "излома" и точки "излома" :

"Возникновение зоны "излома" и точки "излома" на графике температур сетевой воды обусловлено тем обстоятельством, что как правило, к тепловым сетям систем теплоснабжения присоединены потребители с разнохарактерной тепловой нагрузкой (например: отопление и горячее водоснабжение и т.д.). И графики температур сетевой воды, которые рассчитываются и строятся для преобладающего вида теплопотребления (чаще всего для отопления) должны учитывать требования к регулированию и других видов тепловых нагрузок. Применительно к тепловой нагрузке на горячее водоснабжение - это требование к поддержанию температуры горячей воды, поступающей к водоразборным приборам зданий, на заданном уровне (не ниже 50 и не выше 75 градусов Цельсия). Для того чтобы обеспечить заданный уровень нагрева горячей воды, температура сетевой воды в подающем трубопроводе тепловой сети должна быть: не ниже 70 градусов Цельсия - для закрытых систем теплоснабжения; не ниже 60 градусов Цельсия - для открытых систем теплоснабжения.

И поэтому, как только температура сетевой воды в подающем трубопроводе тепловой сети достигает значений 70 или 60 градусов Цельсия, резко изменяется конфигурация температурного графика (графика температур сетевой воды). Температура сетевой воды в подающем трубопроводе тепловой сети поддерживается постоянной и, тем самым, на температурном графике возникает зона "излома" (диапазон спрямления). Температура наружного воздуха, при которой температура сетевой воды в подающем трубопроводе тепловой сети становится постоянной называется точкой "излома" (точкой спрямления) температурного графика."

Расчет температур выполняется согласно справочника "Наладка и эксплуатация водяных тепловых сетей", В.И. Манюк, Москва, Стройиздат 1988 г. (страница 155).

Обозначения в расчетных формулах:

T1 - расчетная температура в подающей магистрали при качественном регулировании отпуска теплоты,

T2 - расчетная температура в отводящей магистрали при качественном регулировании отпуска теплоты,

T3 - температура перед системой отопления,

Uр - коэффициент смешения элеватора,

95 - температура теплоносителя на входе в систему теплоснабжения (после элеватора),

Tнв_минимальная - минимальная расчетная температура наружного воздуха согласно СНиП 23-01-99

Tв - температура внутри помещения берется в зависимости от Tнв_минимальная. Если Tнв_минимальная >= -30, то Tв = 18, в противном случае Tв = 20,

T1_макимальная - максимальная температура теплоносителя в подающей магистрали,

T2_минимальная - минимальная температура теплоносителя в отводящей магистрали.

Расчетные формулы:

q = (Tв - Tнв) / (Tв - Tнв_минимальная),

Uр = (T1_макимальная - 95) / (95 - T2_минимальная),

T3 = Tв + 0.5 * (95 - T2_минимальная) * q + 0.5 * (95 + T2_минимальная - 2 * Tв) * q^0.8,

T2 = T3 - (95 - T2_минимальная) * q,

T1 = (1 + Uр) * T3 - Uр * T2.

При расчете температурного графика с изломом,

если T1 < T1_в_нижней_точке_излома, то:

T2 = T1_в_нижней_точке_излома - (T1 - T2) * (T1_в_нижней_точке_излома - Tнв) / (T1 - Tнв),

T1 = T1_в_нижней_точке_излома,

если T1 > T1_в_верхней_точке_излома, то:

T2 = T1_в_верхней_точке_излома - (T1 - T2) * (T1_в_верхней_точке_излома - Tнв) / (T1 - Tнв),

T1 = T1_в_верхней_точке_излома.

Пользователь может выбирать способ анализа соблюдения температурного графика из трех вариантов:

Анализ по температуре наружного воздуха измеряемой прибором,

Анализ по температуре наружного воздуха из ,

Анализ по фактической измеренной температуре в подающей магистрали.

Различие этих методов заключается в определении температур T1 и Т2.

В первом и втором случаях обе эти температуры рассчитываются по приведенным выше формулам, в которых температура наружного воздуха берется из измеренных данных по точке учета или из справочника среднесуточных температур . Сравнивая фактические (T_in и T_out) и рассчитанные (T1 и T2) температуры, определяется недогрев в подающей магистрали и перегрев в отводящей.

Во третьем случае температура T1 не рассчитывается, а берется равной фактической измеренной температуре (T_in) в подающей магистрали. По температуре T1 в таблице предварительно рассчитанного температурного графика ищется температура T2. Сравнивая фактическую температуру (T_out) в подающей магистрали с найденной температурой T2, определяется перегрев в отводящей магистрали. Недогрев в подающей не рассчитывается, т.к. T1 берется равной T_in.

Недогрев в подающей магистрали фиксируется, если 100 * (T_in / T1 - 1) < -3.

Перегрев в отводящей магистрали фиксируется, если 100 * (T_out / T1 - 1) > 5.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Воронежский государственный архитектурно-строительный университет (Воронежский ГАСУ)

Кафедра теплогазоснабжения и нефтегазового дела

Расчет температуры наружного воздуха в точке излома температурного графика

К.т.н. Д.Н. Китаев, доцент

Температура наружного воздуха, соответствующая точке излома t. и., является характерной температурой, т.к. определяет время изменения центрального качественного регулирования на местное количественное. Это значение важно знать на стадии проектирования, реконструкции тепловой сети, что позволит проследить изменения в сети, принять решение о переходе на другой температурный график или вид регулирования, а также оценить возможный перерасход тепловой энергии.

При качественном режиме регулирования тепловой сети и отопительном графике температуру теплоносителя в подающем трубопроводе тепловой сети ф 1 , О С при произвольной температуре наружного воздуха определяют по формуле

где t в - расчетная температура воздуха в помещениях, О С; t н - произвольная температура наружного воздуха, О С; t н. о - расчетная температура для проектирования отопления, О С; т 1 о - температура воды в подающей магистрали сети при t н. о, О С; ф р о - средняя температура воды в отопительном приборе, О С, определяемая по формуле:

ф р о =1/2 (ф см. о + ф 2о):

ф см. о, ф 2о - температура воды в абонентской установке и в обратной магистрали системы теплоснабжения при расчетных параметрах системы отопления, О С; n - эмпирический показатель, зависящий от типа отопительного прибора и схемы его подключения.

Для получения значения t н. и. поступают следующим образом. Задаваясь температурами наружного воздуха t н в интервале предполагаемой работы сети (от 8 (10) О С до t н. о) получают по формуле (1) искомые значения и строят график температур в подающей магистрали.

В случае двухтрубной сети (преобладающий тип для России) необходимо построить точку излома температурного графика, находящуюся на пересечении кривой T 1 =f(t н), и температуры, необходимой для обеспечения нагрузки горячего водоснабжения t и с учетом требования нормативов . Обычно такая температура составляет 70 О С . Определять значение t н.и. . рекомендуется графически , что предполагает проведение однотипных расчетов по формуле (1), наложение результатов на координатную сетку и определение t н.и. ... Такой подход требует времени и полученное значение может иметь значительную погрешность.

Подставим в уравнение (1) следующие данные (г. Воронеж): t в.=18 0 С, t н. о =-26 0 С , ф см. о =90 О С , ф 1о =95 О С, ф 2о =10 О С, задавшись значением температуры воды в точке излома t и. =70 О С, показатель n примем 0,3. После преобразования получим выражение:

Выражение (2) представляет собой алгебраическое иррациональное уравнение. Искомое значение лежит на интервале -26?. t н.и.?8. Корень уравнения находился численно с точностью до 0,001 методом хорд с предварительным аналитическим отделением корня. Искомое значение составляет t н. и.=-9,136 О С.

Согласно данным климатологии для территории России расчетная температура для проектирования отопления лежит в интервале от -3 до -60 О С.

Для указанного интервала проектных температур были найдены решения уравнения (1), определяющие значения t н. и. при различных t н.о. . Вычисления были проведены для температурных графиков 95/70, в диапазонах температур -3?. t н.о. ?.30 и -31?. t н.о. ?.60, т.к. проектная температура t в в первом интервале составляет 18 О С, а во втором 20 О С. На рис. 1 представлены полученные графики зависимости t н.и от t н.о. .

Из рис. 1 видно, что характер зависимости t н.и =f(t н.о.) линейный. Аппроксимация приводит к следующим уравнениям:

Полученные уравнения позволяют для любого города России при использовании температурного графика 95/70 найти наружную температуру воздуха, соответствующую температуре точки излома при известной t н.о.

Следуя вышеописанному алгоритму, были найдены линейные уравнения зависимости для всех используемых в системах теплоснабжения температурных графиков. Следует отметить, что абсолютная погрешность полученных уравнений не превышает 0,1%. Результаты расчетов представлены в таблице 1 в виде коэффициентов уравнения прямой линии вида

t н.и = a* t н.о. +b.

Представленные в табл. 1 зависимости позволяют найти температуры наружного воздуха в точке излома в зависимости от расчетной для проектирования отопления.

За последние несколько лет во многих городах России наблюдается тенденция перехода на пониженные температурные графики. Например в Городском округе Воронеж с 2012 г практически все источники теплоснабжения (включая ТЭЦ) перешли на утвержденный температурный график 95/70 или 95/65. Интерес представляет влияние изменения температурного графика тепловой сети на продолжительность возможного перетопа потребителя. Известно, что общей тенденцией является увеличение температуры излома при увеличении температурного графика.

Ввиду наличия температурного излома графика качественного регулирования, при наружных температурах больших, чем t н. и, и отсутствии местного регулирования (часто встречается в регионах России) будет наблюдаться перетоп зданий . Чем ниже значение t н. и, тем больше продолжительность возможного перетопа. Из графика, представленного на рис. 2, построенного для г. Воронежа, видно, что значения уменьшаются с уменьшением температурного графика, следовательно, продолжительность перетопа увеличивается.

Например для Воронежа, используя уравнения табл., получим следующие данные: при графике 150/70 t ни =2,7 О С, при графике 130/70 t ни =-0,2 О С, при 110/70 t ни.=-4,3 0 С, при 95/70 t н. и =-9,1 О С. Для рассматриваемой территории средние температуры наружного воздуха для декабря, января и февраля составляют -6,2, -9,8, -9,6 О С соответственно, что означает при использовании графика 95/70 и существующих неавтоматизированных ИТП перетопы в течение большей части отопительного периода. Рассмотренный пример позволяет еще раз убедиться в необходимости реконструкции ИТП многоквартирных домов, особенно в условиях перехода источниками теплоснабжения на пониженные температурные графики.

Выводы

температура воздух отопительный нагрузка

Получены уравнения зависимости температуры наружного воздуха в точке излома отопительного температурного графика от расчетной температуры проектирования отопления для существующих температурных графиков регулирования тепловой нагрузки тепловых сетей. Уравнения носят удобный для использования линейный характер с точностью, не превышающей 0,1%, позволяющие определить температуру начала местного регулирования систем отопления. Они полезны при вариантном проектировании систем теплоснабжения, а также при реконструкции, т.к. помогают отследить изменения в параметрах регулирования местных систем. Полученные уравнения помогут оценить потенциал избыточного тепла, отпускаемого в сеть, и возможный перетоп потребителя.

Литература

1. Строй А.Ф., В.Л. Скальский. Расчет и проектирование тепловых сетей. - Киев: "Будивельник", 1981. - 144 с. СНиП 41-02-2003. Тепловые сети.

2. Правила технической эксплуатации тепловых энергоустановок. 2003.

3. В.И. Манюк, Я.И. Каплинский, Э.Б. Хиж. Наладка и эксплуатация водяных тепловых сетей. М.: Стройиздат, 1988 г. - 432 с.

4. СНиП 23-01-99*. Строительная климатология.

5. СаНПиН 2.1.2.1002 - 00. Санитарно-эпидемиологические требования к жилым зданиям и помещениям. Санитарно-эпидемиологические правила и нормативы.

Н.К. Громов, Е.П. Шубин. Водяные тепловые сети: Справочное пособие по проектированию. М.: Энергоатомиз- дат. 1988. - 376 с.

Размещено на Allbest.ru

...

Подобные документы

    Расчет отопительной нагрузки, тепловой нагрузки на горячее водоснабжение поселка. Определение расхода и температуры теплоносителя по видам теплопотребления в зависимости от температуры наружного воздуха. Гидравлический расчет двухтрубных тепловых сетей.

    курсовая работа , добавлен 26.08.2013

    Построение графика изменения сезонной нагрузки ТЭЦ от температуры наружного воздуха и по продолжительности. Тепловые и материальные балансы элементов схемы. Проверка предварительного расхода пара на турбину. Электрическая мощность турбогенератора.

    курсовая работа , добавлен 27.11.2012

    Расчет тепловой схемы котельной для максимально-зимнего режима. Определение числа и единичной мощности устанавливаемых котлоагрегатов. Поиск точки излома отопительного графика, характеризующего работу котельной при минимальной отопительной нагрузке.

    курсовая работа , добавлен 06.06.2014

    Проведение расчета теплопотерь через стенки шкафов. Рассмотрение схемы автоматического регулирования тепловыделения нагревательного устройства в зависимости от температуры наружного воздуха. Изучение условий обеспечения влажностного режима подогревателя.

    курсовая работа , добавлен 01.05.2010

    Выбор температуры уходящих газов и коэффициента избытка воздуха. Расчет объемов воздуха и продуктов сгорания, а также энтальпии воздуха. Тепловой баланс теплового котла. Расчет теплообменов в топке, в газоходе парового котла. Тепловой расчет экономайзера.

    курсовая работа , добавлен 21.10.2014

    Характеристика тепловой нагрузки. Определение расчётной температуры воздуха, расходов теплоты. Гидравлический расчёт тепловой сети. Расчет тепловой изоляции. Расчет и выбор оборудования теплового пункта для одного из зданий. Экономия тепловой энергии.

    курсовая работа , добавлен 01.02.2016

    Понятие абсолютной, относительной влажности воздуха и влагоемкости. Давление водяного пара атмосферы при различных температурах. Краткая характеристика основных методов оценки влажности и температуры воздуха. Аспирационный и простой психрометры.

    лабораторная работа , добавлен 19.11.2011

    Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.

    контрольная работа , добавлен 18.03.2013

    Расчет тепловых нагрузок отопления, вентиляции и горячего водоснабжения. Расчет температурного графика. Расчет расходов сетевой воды. Гидравлический и тепловой расчет паропровода. Расчет тепловой схемы котельной. Выбор теплообменного оборудования.

    дипломная работа , добавлен 04.10.2008

    Законы распределения плотности тепловыделения. Расчет температурного поля и количества импульсов, излучаемых дуговым плазматроном, необходимого для достижения температуры плавления на поверхности неограниченного тела с учетом охлаждения материала.

К.т.н. Д.Н. Китаев, доцент кафедры теплогазоснабжения и нефтегазового дела.
Воронежский государственный архитектурно-строительный университет (Воронежский ГАСУ)

Температура наружного воздуха, соответствующая точке излома t. и., является характерной температурой, т.к. определяет время изменения центрального качественного регулирования на местное количественное. Это значение важно знать на стадии проектирования, реконструкции тепловой сети, что позволит проследить изменения в сети, принять решение о переходе на другой температурный график или вид регулирования, а также оценить возможный перерасход тепловой энергии.

При качественном режиме регулирования тепловой сети и отопительном графике температуру теплоносителя в подающем трубопроводе тепловой сети τ 1 , О С при произвольной температуре наружного воздуха определяют по формуле

где t в - расчетная температура воздуха в помещениях, О С; t н - произвольная температура наружного воздуха, О С; t н. о - расчетная температура для проектирования отопления, О С; т 1о - температура воды в подающей магистрали сети при t н. о, 0 С; τ р о - средняя температура воды в отопительном приборе, О С, определяемая по формуле:

τ р о =1/2 (τ см. о + τ 2о):

τ см. о, τ 2о - температура воды в абонентской установке и в обратной магистрали системы теплоснабжения при расчетных параметрах системы отопления, О С; n - эмпирический показатель, зависящий от типа отопительного прибора и схемы его подключения.

Для получения значения t н. и. поступают следующим образом. Задаваясь температурами наружного воздуха t н в интервале предполагаемой работы сети (от 8 (10) О С до t н. о) получают по формуле (1) искомые значения и строят график температур в подающей магистрали.

В случае двухтрубной сети (преобладающий тип для России) необходимо построить точку излома температурного графика, находящуюся на пересечении кривой T 1 =f(t н), и температуры, необходимой для обеспечения нагрузки горячего водоснабжения t и с учетом требования нормативов . Обычно такая температура составляет 70 О С . Определять значение t н.и. . рекомендуется графически , что предполагает проведение однотипных расчетов по формуле (1), наложение результатов на координатную сетку и определение t н.и. ... Такой подход требует времени и полученное значение может иметь значительную погрешность.

Подставим в уравнение (1) следующие данные (г. ): t в.=18 0 С, t н. о =-26 0 С , τ см. о =90 О С , τ 1о =95 О С, τ 2о =10 О С, задавшись значением температуры воды в точке излома t и. =70 О С, показатель n примем 0,3. После преобразования получим выражение:

Выражение (2) представляет собой алгебраическое иррациональное уравнение. Искомое значение лежит на интервале -26≤. t н.и.≤8. Корень уравнения находился численно с точностью до 0,001 методом хорд с предварительным аналитическим отделением корня. Искомое значение составляет t н. и.=-9,136 О С.

Согласно данным климатологии для территории России расчетная температура для проектирования отопления лежит в интервале от -3 до -60 О С.

Для указанного интервала проектных температур были найдены решения уравнения (1), определяющие значения t н. и. при различных t н.о. . Вычисления были проведены для температурных графиков 95/70, в диапазонах температур -3≤. t н.о. ≤.30 и -31≤. t н.о. ≤.60, т.к. проектная температура t в в первом интервале составляет 18 О С, а во втором 20 О С. На рис. 1 представлены полученные графики зависимости t н.и от t н.о. .

Из рис. 1 видно, что характер зависимости t н.и =f(t н.о.) линейный. Аппроксимация приводит к следующим уравнениям:

Полученные уравнения позволяют для любого города России при использовании температурного графика 95/70 найти наружную температуру воздуха, соответствующую температуре точки излома при известной t н.о.

Следуя вышеописанному алгоритму, были найдены линейные уравнения зависимости для всех используемых в системах теплоснабжения температурных графиков. Следует отметить, что абсолютная погрешность полученных уравнений не превышает 0,1%. Результаты расчетов представлены в таблице 1 в виде коэффициентов уравнения прямой линии вида t н.и = a* t н.о. +b.

Представленные в табл. 1 зависимости позволяют найти температуры наружного воздуха в точке излома в зависимости от расчетной для проектирования отопления.

За последние несколько лет во многих городах России наблюдается тенденция перехода на пониженные температурные графики. Например в Городском округе Воронеж с 2012 г практически все источники теплоснабжения (включая ТЭЦ) перешли на утвержденный температурный график 95/70 или 95/65. Интерес представляет влияние изменения температурного графика тепловой сети на продолжительность возможного перетопа потребителя. Известно, что общей тенденцией является увеличение температуры излома при увеличении температурного графика.

Ввиду наличия температурного излома графика качественного регулирования, при наружных температурах больших, чем t н. и, и отсутствии местного регулирования (часто встречается в регионах России) будет наблюдаться перетоп зданий . Чем ниже значение t н. и, тем больше продолжительность возможного перетопа. Из графика, представленного на рис. 2, построенного для г. Воронежа, видно, что значения уменьшаются с уменьшением температурного графика, следовательно, продолжительность перетопа увеличивается.

Например для Воронежа, используя уравнения табл., получим следующие данные: при графике 150/70 t ни =2,7 О С, при графике 130/70 t ни =-0,2 О С, при 110/70 t ни.=-4,3 0 С, при 95/70 t н. и =-9,1 О С. Для рассматриваемой территории средние температуры наружного воздуха для декабря, января и февраля составляют -6,2, -9,8, -9,6 О С соответственно, что означает при использовании графика 95/70 и существующих неавтоматизированных ИТП перетопы в течение большей части отопительного периода. Рассмотренный пример позволяет еще раз убедиться в необходимости реконструкции ИТП многоквартирных домов, особенно в условиях перехода источниками теплоснабжения на пониженные температурные графики.

Выводы

Получены уравнения зависимости температуры наружного воздуха в точке излома отопительного температурного графика от расчетной температуры проектирования отопления для существующих температурных графиков регулирования тепловой нагрузки тепловых сетей. Уравнения носят удобный для использования линейный характер с точностью, не превышающей 0,1%, позволяющие определить температуру начала местного регулирования систем отопления. Они полезны при вариантном проектировании систем теплоснабжения, а также при реконструкции, т.к. помогают отследить изменения в параметрах регулирования местных систем. Полученные уравнения помогут оценить потенциал избыточного тепла, отпускаемого в сеть, и возможный перетоп потребителя.

Литература

  1. Строй А.Ф., В.Л. Скальский. Расчет и проектирование тепловых сетей. - Киев: «Будивельник», 1981. - 144 с. СНиП 41-02-2003. Тепловые сети.
  2. Правила технической эксплуатации тепловых энергоустановок. 2003.

3. В.И. Манюк, Я.И. Каплинский, Э.Б. Хиж. Наладка и эксплуатация водяных тепловых сетей. М.: Стройиздат, 1988 г. - 432 с.

  1. СаНПиН 2.1.2.1002 - 00. Санитарно-эпидемиологические требования к жилым зданиям и помещениям. Санитарно-эпидемиологические правила и нормативы.

Н.К. Громов, Е.П. Шубин. Водяные тепловые сети: Справочное пособие по проектированию. М.: Энергоатомиз- дат. 1988. - 376 с.

Температура наружного воздуха, соответствующая точке излома t. и., является характерной температурой, т.к. определяет время изменения центрального качественного регулирования на местное количественное. Это значение важно знать на стадии проектирования, реконструкции тепловой сети, что позволит проследить изменения в сети, принять решение о переходе на другой температурный график или вид регулирования, а также оценить возможный перерасход тепловой энергии.

При качественном режиме регулирования тепловой сети и отопительном графике температуру теплоносителя в подающем трубопроводе тепловой сети ф 1 , О С при произвольной температуре наружного воздуха определяют по формуле

где t в - расчетная температура воздуха в помещениях, О С; t н - произвольная температура наружного воздуха, О С; t н. о - расчетная температура для проектирования отопления, О С; т 1о - температура воды в подающей магистрали сети при t н. о, О С; ф р о - средняя температура воды в отопительном приборе, О С, определяемая по формуле:

ф р о =1/2 (ф см. о + ф 2о):

ф см. о, ф 2о - температура воды в абонентской установке и в обратной магистрали системы теплоснабжения при расчетных параметрах системы отопления, О С; n - эмпирический показатель, зависящий от типа отопительного прибора и схемы его подключения.

Для получения значения t н. и. поступают следующим образом. Задаваясь температурами наружного воздуха t н в интервале предполагаемой работы сети (от 8 (10) О С до t н. о) получают по формуле (1) искомые значения и строят график температур в подающей магистрали.

В случае двухтрубной сети (преобладающий тип для России) необходимо построить точку излома температурного графика, находящуюся на пересечении кривой T 1 =f(t н), и температуры, необходимой для обеспечения нагрузки горячего водоснабжения t и с учетом требования нормативов . Обычно такая температура составляет 70 О С . Определять значение t н.и. . рекомендуется графически , что предполагает проведение однотипных расчетов по формуле (1), наложение результатов на координатную сетку и определение t н.и. ... Такой подход требует времени и полученное значение может иметь значительную погрешность.

Подставим в уравнение (1) следующие данные (г. Воронеж): t в.=18 0 С, t н. о =-26 0 С , ф см. о =90 О С , ф 1о =95 О С, ф 2о =10 О С, задавшись значением температуры воды в точке излома t и. =70 О С, показатель n примем 0,3. После преобразования получим выражение:

Выражение (2) представляет собой алгебраическое иррациональное уравнение. Искомое значение лежит на интервале -26?. t н.и.?8. Корень уравнения находился численно с точностью до 0,001 методом хорд с предварительным аналитическим отделением корня. Искомое значение составляет t н. и.=-9,136 О С.

Согласно данным климатологии для территории России расчетная температура для проектирования отопления лежит в интервале от -3 до -60 О С.

Для указанного интервала проектных температур были найдены решения уравнения (1), определяющие значения t н. и. при различных t н.о. . Вычисления были проведены для температурных графиков 95/70, в диапазонах температур -3?. t н.о. ?.30 и -31?. t н.о. ?.60, т.к. проектная температура t в в первом интервале составляет 18 О С, а во втором 20 О С. На рис. 1 представлены полученные графики зависимости t н.и от t н.о. .

Из рис. 1 видно, что характер зависимости t н.и =f(t н.о.) линейный. Аппроксимация приводит к следующим уравнениям:

Полученные уравнения позволяют для любого города России при использовании температурного графика 95/70 найти наружную температуру воздуха, соответствующую температуре точки излома при известной t н.о.

Следуя вышеописанному алгоритму, были найдены линейные уравнения зависимости для всех используемых в системах теплоснабжения температурных графиков. Следует отметить, что абсолютная погрешность полученных уравнений не превышает 0,1%. Результаты расчетов представлены в таблице 1 в виде коэффициентов уравнения прямой линии вида

t н.и = a* t н.о. +b.

Представленные в табл. 1 зависимости позволяют найти температуры наружного воздуха в точке излома в зависимости от расчетной для проектирования отопления.

За последние несколько лет во многих городах России наблюдается тенденция перехода на пониженные температурные графики. Например в Городском округе Воронеж с 2012 г практически все источники теплоснабжения (включая ТЭЦ) перешли на утвержденный температурный график 95/70 или 95/65. Интерес представляет влияние изменения температурного графика тепловой сети на продолжительность возможного перетопа потребителя. Известно, что общей тенденцией является увеличение температуры излома при увеличении температурного графика.

Ввиду наличия температурного излома графика качественного регулирования, при наружных температурах больших, чем t н. и, и отсутствии местного регулирования (часто встречается в регионах России) будет наблюдаться перетоп зданий . Чем ниже значение t н. и, тем больше продолжительность возможного перетопа. Из графика, представленного на рис. 2, построенного для г. Воронежа, видно, что значения уменьшаются с уменьшением температурного графика, следовательно, продолжительность перетопа увеличивается.


Например для Воронежа, используя уравнения табл., получим следующие данные: при графике 150/70 t ни =2,7 О С, при графике 130/70 t ни =-0,2 О С, при 110/70 t ни.=-4,3 0 С, при 95/70 t н. и =-9,1 О С. Для рассматриваемой территории средние температуры наружного воздуха для декабря, января и февраля составляют -6,2, -9,8, -9,6 О С соответственно, что означает при использовании графика 95/70 и существующих неавтоматизированных ИТП перетопы в течение большей части отопительного периода. Рассмотренный пример позволяет еще раз убедиться в необходимости реконструкции ИТП многоквартирных домов, особенно в условиях перехода источниками теплоснабжения на пониженные температурные графики.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png