Рис. 3 приложения 16. Опоры неподвижные щитовые для трубопроводов D н 108-1420 мм тип III с защитой от электрокоррозии: а) обыкновенные;


б) усиленные

Рис. 4 приложения 16. Неподвижная отдельно стоящая опора для труб

D у 80-200 мм. (подвальная).

Подвижные опоры трубопроводов тепловых сетей.

Рис. 5. Опоры подвижные:

а - скользящая подвижная опора; б – катковая; в – роликовая;

1 – лапа; 2 – опорная плита; 3 – основание; 4 – ребро; 5 – ребро боковое;

6 – подушка; 7 – монтажное положение опоры; 8 – каток; 9 – ролик;

10 – кронштейн; 11 – отверстия.

Рис. 6. Подвесная опора:

12 – кронштейн; 13 – подвесной болт; 14 – тяга.

Приложение 17. Коэффициенты трения в подвижных опорах

Приложение 18. Прокладка трубопроводов тепловых сетей.


а)
б)
Рис. 2 приложения 18. Бесканальная прокладка тепловых сетей: а) в сухих грунтах; б) в мокрых грунтах с попутным дренажем.

Таблица 1 приложения 18. Конструктивные размеры бесканальной прокладки теплосетей в армопенобетонной изоляции в сухих грунтах (без дренажа).

D y , мм D н, (с покровным слоем)
D п D o A Б В l k Г h h 1 , не менее д а б Л, не менее ж
- - - - - -

Таблица 2 приложения 18. Конструктивные размеры бесканальной прокладки теплосетей в армопенобетонной изоляции в мокрых грунтах (с дренажем)

D y , мм D н, (с покровным слоем) Размеры по альбому серии 903-0-1
D п D o A Б В l k Г h h 1 , не менее д а б Л, не менее ж

Канальная прокладка.

в)
a)
б)

Рис. 2 приложения 18. Сборные каналы для тепловых сетей: а) тип КЛ; б) тип КЛп; в) тип КЛс.

Таблица 3 приложения 18. Основные типы сборных железобетонных каналов для тепловых сетей.

Условный диаметр трубопровода D y , мм Обозначение (марка) канала Размеры канала, мм
Внутренние номинальные Наружные
Ширина А Высота Н Ширина А Высота Н
25-50 70-80 КЛ(КЛп)60-30 КЛ(КЛп)60-45
100-150 КЛ(КЛп)90-45 КЛ(КЛп)60-60
175-200 250-300 КЛ(КЛп)90-60 КЛ(КЛп)120-60
350-400 КЛ(КЛп)150-60 КЛ(КЛп)210-60
450-500 КЛс90-90 КЛс120-90 КЛс150-90
600-700 КЛс120-120 КЛс150-120 КЛс210-120

Приложение 19. Насосы в системах теплоснабжения.

Рис. 1 приложения 19. Поле характеристик сетевых насосов.


Таблица 1 приложения 19. Основные технические характеристики сетевых насосов.

Тип насоса Подача, м 3 /с (м 3 /ч) Напор, м Допустимый кавитационный запас, м., не менее Давление на входе в насос, МПа(кгс/см 2) не более Частота вращения (синхронная), 1/с(1/мин) Мощность, кВт К. п. д., %, не менее Температура перекачиваемой воды, (°С), не более Масса насоса, кг
СЭ-160-50 СЭ-160-70 СЭ-160-100 СЭ-250-50 СЭ-320-110 СЭ-500-70-11 СЭ-500-70-16 СЭ-500-140 СЭ-800-55-11 СЭ-800-55-16 СЭ-800-100-11 СЭ-800-100-16 СЭ-800-160 СЭ-1250-45-11 СЭ-1250-45-25 СЭ-1250-70-11 СЭ-1250-70-16 СЭ-1250-100 СЭ-1250-140-11 СЭ-1250-140-16 СЭ-1600-50 СЭ-1600-80 СЭ-2000-100 СЭ-2000-140 СЭ-2500-60-11 СЭ-2500-60-25 СЭ-2500-180-16 СЭ-2500-180-10 СЭ-3200-70 СЭ-3200-100 СЭ-3200-160 СЭ-5000-70-6 СЭ-5000-70-10 СЭ-5000-100 СЭ-5000-160 0,044(160) 0,044(160) 0,044(160) 0,069(250) 0,089(320) 0,139(500) 0,139(500) 0,139(500) 0,221(800) 0,221(800) 0,221(800) 0,221(800) 0,221(800) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,445(1600) 0,445(1600) 0,555(2000) 0,555(2000) 0,695(2500) 0,695(2500) 0,695(2500) 0,695(2500) 0,890(3200) 0,890(3200) 0,890(3200) 1,390(5000) 1,390(5000) 1,390(5000) 1,390(5000) 5,5 5,5 5,5 7,0 8,0 10,0 10,0 10,0 5,5 5,5 5,5 5,5 14,0 7,5 7,5 7,5 7,5 7,5 7,5 7,5 8,5 8,5 22,0 22,0 12,0 12,0 28,0 28,0 15,0 15,0 32,0 15,0 15,0 15,0 40,0 0,39 (4) 0,39 (4) 0,39 (4) 0,39 (4) 0,39 (4) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 1,57(16) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 2,45(25) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 1,57(16) 2,45(25) 1,57(16) 1,57(16) 1,57(16) 1,08(11) 2,45(25) 1,57(16) 0,98(10) 0,98(10) 0,98(10) 0,98(10) 0,59(6) 0,98(10) 1,57(16) 0,98(10) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 25(1500) 25(1500) 25(1500) 25(1500) 50(3000) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 50(3000) 50(3000) 25(1500) 25(1500) 50(3000) 50(3000) 25(1500) 25(1500) 50(3000) 25(1500) 25(1500) 25(1500) 50(3000) (120) (180) (180) (120) (180) (120) - - - - - - - - - - - - - - - - - -

Таблица 2 приложения 19. Центробежные насосы типа К.

Марка насоса Производи-тельность, м 3 /ч Полный напор, м Частота вращения колеса, об/мин Рекомендуемая мощность электродвигателя, кВт Диаметр рабочего колеса, мм
1 К-6 6-11-14 20-17-14
1,5 К-6а 5-913 16-14-11 1,7
1,5 К-6б 4-9-13 12-11-9 1,0
2 К-6 10-20-30 34-31-24 4,5
2 К-6а 10-20-30 28-25-20 2,8
2 К-6б 10-20-25 22-18-16 2,8
2 К-9 11-20-22 21-18-17 2,8
2 К-9а 10-17-21 16-15-13 1,7
2 К-9б 10-15-20 13-12-10 1,7
3 К-6 30-45-70 62-57-44 14-20
3 К-6а 30-50-65 45-37-30 10-14
3 К-9 30-45-54 34-31-27 7,0
3 К-9а 25-85-45 24-22-19 4,5
4 К-6 65-95-135 98-91-72
4 К-6а 65-85-125 82-76-62
4 К-8 70-90-120 59-55-43
4 К-8а 70-90-109 48-43-37
4 К-12 65-90-120 37-34-28
4 К-12а 60-85-110 31-28-23 14,
4 К-18 60-80-100 25-22-19 7,0
4 К-18а 50-70-90 20-18-14 7,0
6 К-8 110-140-190 36-36-31
6 К-8а 110-140-180 30-28-25
6 К-8б 110-140-180 24-22-18
6 К-12 110-160-200 22-20-17
6 К-12а 95-150-180 17-15-12
8 К-12 220-280-340 32-29-25
8 К-12а 200-250-290 26-24-21
8 К-18 220-285-360 20-18-15
8 К-18а 200-260-320 17-15-12

Приложение 20. Запорная арматура в системах теплоснабжения.

Таблица 2 приложения 21.Стальные поворотные дисковые затворы с электроприводом D y 500-1400 мм на p y =2,5 МПа, t £200°C с канцами под приварку.


Обозначение задвижки Условный проход D y , мм Пределы применения Материал корпуса
По каталогу В тепловых сетях
p y , МПа t , °C p y , МПа t , °C
30ч47бр 50, 80, 100, 125, 150, 200 1,0 1,0 Фланцевое Серый чугун
31ч6нж (И13061) 50, 80, 100, 125, 150 1,0 1,0
31ч6бр 1,6 1,0
30с14нж1 1,0 1,0 Фланцевое Сталь
31ч6бр (ГЛ16003) 200, 250, 300 1,0 1,0 Серый чугун
350, 400 1,0 0,6
30ч915бр 500, 600, 800, 1200 1,0 0,6 0,25 Фланцевое Серый чугун
30ч930бр 1,0 0,25
30с64бр 2,5 2,5 Сталь
ИА12015 2,5 2,5 С концами под приварку
Л12014 (30с924нж) 1000, 1200, 1400 2,5 2,5
30с64нж (ПФ-11010-00) 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с76нж 50, 80, 100, 125, 150, 200, 250/200 6,4 6,4 Фланцевое Сталь
30с97нж (ЗЛ11025Сп1) 150, 200, 250 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с65нж (НА11053-00) 150, 200, 250 2,5 2,5
30с564нж (МА11022.04) 2,5 2,5
30с572нж 30с927нж 400/300, 500, 600, 800 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с964нж 1000/800 2,5 2,5

Таблица 4 приложения 20. Допускаемые задвижки

Обозначение задвижки Условный приход D y , мм Пределы применения (не более) Присоединение к трубопроводу Материал корпуса
По каталогу В тепловых сетях
p y , МПа t , °C p y , МПа t , °C
30ч6бр 50, 80, 100, 125, 150 1,0 1,0 Фланцевое Серый чугун
30ч930бр 600, 1200, 1400 0,25 0,25
31ч6бр 1,6 1,0
ЗКЛ2-16 50, 80, 100, 150, 200, 250, 300, 350, 400, 500, 600 1,6 1,6 Сталь
30с64нж 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с567нж (ИА11072-12) 2,5 2,5 Под приварку
300с964нж 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с967нж (ИАЦ072-09) 500, 600 2,5 2,5 Под приварку

Рис. 2 приложения 20. Шаровые краны в системах теплоснабжения.



Таблица 5 приложения 20. Технические данные шаровых кранов.

Условный диа метр Проходной условный диаметр Dh, мм d, мм t, мм L, мм H1 H2 A Масса в кг
17,2 1,8 0,8
21,3 2,0 0,8
26,9 2,3 0,9
33,7 2,6 1,1
42,4 2,6 1,4
48,3 2,6 2,1
60,3 2,9 2,7
76,1 76,1 2,9 4,7
88,9 88,9 3,2 6,1
114,3 114,3 3,6 9,5
139,7 3,6 17,3
168,3 4,0 26,9
219,1 4,5 - 43,5
355,6 273,0 5,0 - 115,0
323,3 5,6 - 195,0
355,6 5,6 - 235,0
406,4 6,3 - 390,0
508,0 166,5 - 610,0

Примечание: корпус крана – сталь Ст. 37. 0; шар – нержавеющая сталь; седло шара и сальник –тефлон +20 % углерода; уплотнительные кольца – тройной этилен-пропиленовый каучук и витон.
Приложение 21. Соотношение между некоторыми единицами физических величин, подлежащими замене, с единицами СИ.

Таблица 1 приложения 21.

Наименование величин Единица Соотноше- ние с единицами СИ
подлежащая замене СИ
Наимено- вание Обозначение Наименование Обозначение
количество теплоты килокалория ккал кило-джоуль КДж 4.19 кДж
удельное количество теплоты килокалория на килограмм ккал/кг килоджо- уль на килограмм КДж/кг 4.19кДж/кг
тепловой поток килокалория в час ккал/ч ватт Вт 1.163 Вт
(мощность) гигакало-рия в час Гкал/ч мегаватт МВт 1.163 МВт
поверхност- ная плотность теплового потока килокалория в час на квадрат- ный метр ккал/(ч м 2) ватт на квадрат- ный метр Вт/м 2 1.163 Вт/м 2
объемная плотность теплового потока килокалория в час на кубичес- кий метр ккал/(ч м 3) ватт на кубичес- кий метр Вт/м 3 1.163 Вт/м 3
теплоемкость килокалория на градус Цельсия ккал/°С килоджо- уль на градус Цельсия КДж/°С 4.19 кДж
удельная теплоемкость килокалория на килограмм градус Цельсия ккал/(кг°С) килоджо- уль на килограмм градус Цельсия КДж/(кг°С) 4.19кДж/(кг°С)
теплопровод- ность килокалория на метр час градус Цельсия ккал/(м ч°С) ватт на метр градус Цельсия Вт/(м °С) 1.163Вт/(м °С)

Таблица 2 Соотношения между единицами измерения системы МКГСС и международной системы единиц СИ.

Таблица 3. Соотношение между единицами измерений

Единицы измерений Па бар мм. рт. ст мм. вод. ст кгс/см 2 Lbf/in 2
Па 10 -6 7,5024∙10 -3 0,102 1,02∙10 -6 1,45∙10 -4
бар 10 5 7,524∙10 2 1,02∙10 4 1,02 14,5
мм рт ст 133,322 1,33322∙10 -3 13,6 1,36∙10 -3 1,934∙10 -2
мм вод ст 9,8067 9,8067∙10 -5 7,35∙10 -2 ∙10 -4 1,422∙10 -3
кгс/см 2 9,8067∙10 4 0,98067 7,35∙10 2 10 4 14,223
Lbf/in 2 6,8948∙10 3 6,8948∙10 -2 52,2 7,0307∙10 2 7,0307∙10 -2

Литература

1. СНиП 23-01-99 Строительная климатология/Госстрой России.- М.:

2. СНиП 41-02-2003. ТЕПЛОВЫЕ СЕТИ. ГОССТРОЙ РОССИИ.

Москва. 2003

3. СНиП 2.04.01.85*. Внутренний водопровод и канализация зданий/Госстрой России. –

М.: ГУП ЦПП, 1999.-60 с.

4. СНиП 41-03-2003. Тепловая изоляция оборудования и

трубопроводов.ГОССТРОЙ РОССИИ. МОСКВА 2003

5. СП 41-103-2000. ПРОЕКТИРОВАНИЕ ТЕПЛОВОЙ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И

ТРУБОПРОВОДОВ. ГОССТРОЙ РОССИИ. МОСКВА 2001

6. Проектирование тепловых пунктов. СП 41-101-95. Минстрой

России – М.: ГУП ЦПП, 1997 – 79 с.

7. ГОСТ 21.605-82. Сети тепловые. Рабочие чертежи. М.: 1982-10 с.

8. Водяные тепловые сети: Справочное пособие по проектированию

/И. В. Беляйкина, В. П. Витальев, Н. К. Громов и др.: Под ред.

Н. К. Громова, Е. П. Шубина. - М.: Энергоатомиздат, 1988.- 376 с.

9. Наладка и эксплуатация водяных тепловых сетей.:

Справочник / В. И. Манюк, Я. И. Каплинский, Э. Б. Хиж и др. - изд., 3-е

переработ. и доп.- М.: Стройиздат, 1988. - 432 с.

10. Справочник проектировщика под ред. А.А.Николаева. – Проектирование

тепловых сетей.-М.: 1965-360с.

11. Малышенко В.В., Михайлов А.К..Энергетические насосы. Справочное

пособие. М.: Энергоатомиздат, 1981.-200с.

12. Лямин А.А., Скворцов А.А.. Проектирование и расчет конструкций

тепловых сетей -Изд. 2-е.- М.: Стройиздат, 1965. - 295 с

13. Зингер Н.М. Гидравлические и тепловые режимы теплофикационных

систем. -Изд. 2-е.- М.: Энергоатомиздат, 1986.-320с.

14. Справочник строителя тепловых сетей. / Под ред. С.Е. Захаренко.- Изд.

2-е.- М.: Энергоатомиздат, 1984.-184с.

Здравствуйте, друзья! Магистральные распределительные тепловые сети служат для передачи потребителям тепловой энергии теплоносителя для нужд отопления, ГВС и вентиляции. Магистральные теплосети прокладываются от ЦТП (центральных тепловых пунктов), либо от теплоисточника (котельной, ТЭЦ).

Распределительные теплосети состоят из таких элементов, как:

1) Непроходные каналы

2) Подвижные и неподвижные опоры

3) Компенсаторы

4) Трубопроводы и запорная арматура (задвижки)

5) Тепловые камеры

Про тепловые камеры тепловых сетей я написал отдельную . Поэтому в данной статье рассматривать их я не буду.

Непроходные каналы.

Стенки непроходных каналов состоят из сборных блоков. Сверху на сборные блоки накладываются железобетонные плиты перекрытия. Основание дна непроходного канала делают обычно в сторону , либо в сторону подвалов жилых домов. Но бывает так, что при неблагоприятном рельефе местности какая то часть каналов монтируется с уклоном к тепловым камерам. Швы бетонных блоков и плит заделывают, изолируют для того, чтобы в канал не попадали грунтовые и верховые воды. Во время засыпки каналов грунт необходимо тщательно утрамбовывать. Замерзшей землей засыпать канал нельзя

Неподвижные и подвижные опоры.

Опоры трубопроводов тепловой сети подразделяются на неподвижные (или как еще говорят, мертвые) и подвижные. В непроходных каналах применяют скользящие опоры. Эти опоры необходимы для передачи веса трубопроводов и обеспечения перемещения трубопроводов при их удлинении под воздействием высокой температуры теплоносителя.

Для этого скользящие опоры, или как их еще называют, «скользячки» приваривают к трубопроводам. А скользят они по специальным пластинам, которые вделаны в ж/б плиты.

Неподвижные или мертвые опоры необходимы для того, чтобы разделить трубопровод большой протяженности на отдельные участки. Участки эти не зависят напрямую друг от друга, и соответственно, при высоких температурах теплоносителя компенсаторы могут нормально, без видимых проблем, воспринять температурные удлинения.

К неподвижным опорам предъявляются повышенные требования по надежности, ведь нагрузки на них большие. В то же время нарушение прочности и целостности мертвой (неподвижной) опоры может привести к аварийной ситуации.

Компенсаторы.

Компенсаторы в тепловых сетях служат для восприятия температурного удлинения трубопроводов при их нагреве (1,2 мм на каждый метр при повышении температуры на 100 °С). Основная и главная задача компенсатора в теплосети - защитить трубопроводы и арматуру от «убийственных» напряжений. Как правило, для труб диаметр которых не более 200 мм применяют П-образные компенсаторы. Мне в основном приходилось сталкиваться в работе именно с такими компенсаторами. Они наиболее распространенные. Приходилось работать также и с сальниковыми компенсаторами на трубопроводах больших диаметров. Но это уже диаметры труб dy 300, 400 мм.

Когда П-образные компенсаторы монтируют, их предварительно растягивают на половину температурного удлинения от той цифры, которая указана в проекте или расчете. Иначе компенсирующая способность компенсатора уменьшается в два раза. Растяжку следует производить одновременно с двух сторон в стыках, ближайших к мертвым (неподвижным) опорам.

Трубопроводы и задвижки.

Для распределительных тепловых сетей применяют стальные трубы. На стыках трубопроводы соединяют при помощи электросварки. Из задвижек на тепловых сетях применяют стальные и чугунные задвижки. Мне в работе на теплосетях попадаются больше чугунные задвижки, они более распространенны.

Изоляция труб.

Работать мне приходится в основном с магистральными распределительными тепловыми сетями, смонтированными еще в советское время. Конечно,кое-где трубопроводы теплосетей, а соответственно и изоляцию на них, меняют в ходе капитального ремонта. Когда я несколько лет назад работал в теплоснабжающей организации, помню, что каждый год, в межотопительный период заменяли «древние» участки трубопроводов теплосети. Но все же процентов 75-80 распределительных тепловых сетей еще советских времен. Трубопроводы таких сетей покрыты антикоррозионным составом, теплоизоляцией и защитным слоем (рис.4.).

Рулонный материал, как правило, изол. Реже - бризол. Этот материал приклеен мастикой к трубопроводу. Теплоизоляция сделана из матов минеральной ваты. Защитный слой - асбестоцементная штукатурка из смеси асбеста и цемента в пропорции 1:2, которая распределена по проволочной сетке.

Опоры служат для восприятия усилия от трубопроводов и передачи их на несущие конструкции или грунт, а также для обеспечения организованного совместного перемеще­ния труб и изоляции при температурных деформациях. При сооруже­нии теплопроводов применяют опоры двух типов: подвиж­ные и неподвижные.

Подвижные опоры воспринимают вес теплопровода и обеспечивают его свободное перемещение на строительных конструкциях при температурных деформациях. При пере­мещении трубопровода подвижные опоры перемещаются вместе с ним. Подвижные опоры используют при всех спо­собах прокладки, кроме бесканальной. При бесканальной прокладке теплопровод укладывается на нетронутый грунт или тщательно утрамбованный слой песка. При этом под­вижные опоры предусматривают только в местах поворота трассы и установки П-образных компенсаторов, т. е. на участках, где трубопроводы прокладывают в каналах. Подвижные опоры испытывают главным образом верти­кальные нагрузки от массы трубопроводов

По принципу свобод­ного перемещения различают опоры скольжения, качения и подвесные. Скользящие опоры, применяют независимо от направления горизонтальных перемещений трубопроводов при всех способах прокладки и для всех диаметров труб. Эти опоры просты по конструкции и надежны в эксплу­атации.

Катковые опоры применяют для труб диаметром 175 мм и более при осевом перемещении труб, при прокладке в тоннелях, коллекторах, на кронштейнах и на отдельно стоящих опорах. Применение катковых опор в непроходных каналах нецелесообразно, так как без над­зора и смазки они быстро корродируют, перестают вращаться и начинают работать фактически как скользящие опоры. Катковые опоры обладают меньшим трением, чем скользящие, однако при плохом уходе катки перекашива­ются и могут заклиниваться. Поэтому им необходимо дать правильное направление. Для этого в катках предусматри­вают кольцевые выточки, а на опорной плите - направля­ющие планки.

Роликовые опоры (применяют редко, так как трудно обеспечить вращение роликов. Катковые и роликовые опоры надежно работают на прямолинейных участках сети. На поворотах трассы трубопроводы перемещаются не только в продольном, но и в поперечном направлении. Поэтому установка катковых и роликовых опор на кри­волинейных участках не рекоменду­ется В этом случае используют шари­ковые опоры. В этих опорах шарики свободно перемещаются вместе с башмаками по подкладному листу, удерживаются от вы­катывания за пределы опоры выступами опорного листа и башмака.

Если по местным условиям прокладки теплопроводов относительно несущих конструкций скользящие и катковые опоры не могут быть установлены, применяются подвесные опоры. Нежесткая конструкция подвески поз­воляет опоре легко поворачиваться и перемещаться вместе с трубопроводом. В результате по мере удаления от непод­вижной опоры углы поворота подвесок увеличиваются, со­ответственно возрастает перекос трубопровода и напряже­ние в тягах под действием вертикальной нагрузки трубо­провода.

Подвесные опоры по сравнению со скользящими созда­ют на горизонтальных участках значительно меньшие уси­лия вдоль оси трубы.

Неподвижными опорами трубопроводы как бы делятся на самостоятельные участки. С помощью неподвижных опор трубы жестко закрепляют в определенных точках трас­сы между компенсаторами или участками с естественной компенсацией температурных деформаций, которые вос­принимают, кроме вертикальных нагрузок значительные го­ризонтальные усилия, направленные по оси трубопровода и складывающиеся из неуравновешенных сил внутреннего давления, сил сопротивления свободных опор и реакции компенсаторов. Наибольшее значение имеют силы внутрен­него давления. Поэтому для облегчения конструкции опо­ры стараются расположить ее на трассе таким образом, чтобы внутренние давления в трубопроводе были уравно­вешены и не передавались на опору. Те опоры, на которые реакции внутреннего давления не передаются, называются разгруженными неподвижными опорами; те же опоры, кото­рые должны воспринимать неуравновешенные силы внутрен­него давления, называются неразгруженными опорами.

Существуют промежуточные и концевые опоры. На про­межуточную опору действуют усилия с обеих сторон, на концевую-с одной. Неподвижные опо­ры труб рассчитывают на наибольшую горизонтальную нагрузку при различных режимах работы теплопроводов, в том числе при открытых и закрытых задвижках

Неподвижные опоры предусматривают на трубопрово­дах при всех способах прокладки тепловых сетей. От пра­вильного размещения неподвижных опор по длине трас­сы тепловых сетей во многом зависит величина температур­ных деформаций и напряжений в трубах. Неподвижные опоры устанавливают на ответвлениях трубопроводов, в местах размещения запорной арматуры, сальниковых компенсаторов. На трубопроводах с П-образными компен­саторами неподвижные опоры размещают между компенса­торами. При бесканальных прокладках тепловых сетей, когда не используется самокомпенсация трубопроводов, неподвижные опоры рекомендуется устанавливать на пово­ротах трассы.

Расстояние между неподвижными опорами определяют исходя из заданной конфигурации трубопроводов, темпера­турных удлинений участков и компенсирующей способности устанавливаемых компенсаторов. Неподвижные закреп­ления трубопроводов выполняют различными конструкция­ми, которые должны быть достаточно прочными и жестко удерживать трубы, не допуская их перемещения относи­тельно поддерживающих конструкций.

Конструкции неподвижных опор состоят из двух основ­ных элементов: несущих конструкций (балок, железобетонных плит), на которые передаются усилия от трубопрово­дов, и собственно опор, при помощи которых осуществля­ется неподвижное закрепление труб (приварные косынки, хомуты). В зависимости от способа прокладки и места установки применяют неподвижные опоры: упорные, щито­вые и хомутовые. Опоры с вертикальными двусторонними упорами и лобовые применяют при установ­ке их на каркасах в камерах и тоннелях и при проклад­ке трубопроводов в проходных, полупроходных и в непро­ходных каналах. Щитовые опоры применяют как при бесканальной прокладке, так и при прокладке теплопроводов в непроходных каналах при размещении опор вне камер.

Щитовые неподвижные опоры представляют собой вер­тикальные железобетонные щиты с отверстиями для про­хода труб. Осевые усилия передаются на железобетонный щит приваренными к трубопроводу с обеих сторон кольца­ми, усиленными ребрами жесткости. До недавнего времени между трубой и бетоном прокладывали асбест. В настоя­щее время применение асбестовых набивок не допускается. Нагрузка от трубопроводов тепловых сетей через щитовые опоры передается на днище и стенки канала, а при беска­нальной прокладке - на вертикальную плоскость грунта. Щитовые опоры выполняют с двойным симметричным армированием, так как действующие усилия от труб могут быть направлены в противоположные стороны. В нижней части щита делают отверстия для прохода воды (в случае попадания ее в канал).

Расчет неподвижных опор.

Неподвижные опоры фик­сируют положение трубопровода в определенных точках и восприни­мают усилия, возникающие в ме­стах фиксации под действием темпе­ратурных деформаций и внутренне­го давления.

Опоры оказывают весьма важное влияние на работу теплопровода. Нередки случаи серьезных аварий из-за неправильного размещения опор, неудачного выбора конструк­ций или небрежного монтажа. Весь­ма важно, чтобы все опоры были нагружены, для чего необходимо при монтаже выверять расстановку их по трассе и положение по вы­соте. При бесканальной прокладке обычно отказываются от установки свободных опор под трубопроводами во избежание неравномерных проса­док, а также дополнительных изги­бающих напряжений. В этих про­кладках трубы укладываются на не­тронутый грунт или тщательно ут­рамбованный слой песка.

От пролета (расстояния) между опорами зависит изгибающее напря­жение, возникающее в трубопрово­де, и стрела прогиба.

При расчете изгибающих напря­жений и деформаций трубопровод, лежащий на свободных опорах, рас­сматривается как многопролетная балка. На рис. Т.с.19 приведена эпю­ра изгибающих моментов многопро­летного трубопровода.

Рассмотрим усилия и напряже­ния, действующие в трубопроводах.

Примем следующие обозначения:

М - силовой момент, Н*м; Q B , Q г - усилие вертикальное и гори­зонтальное, Н; q в , q г - удельная на­грузка на единицу длины, верти­кальная и горизонтальная, H/m;..N- горизонтальная реакция на опоре, Н.

Максимальный изгибающий мо­мент в многопролетном трубопрово­де возникает на опоре. Величина этого момента (9.11)

где q - удельная нагрузка на еди­ницу длины трубопровода, Н/м; - длина пролета между опорами, м. Удельная нагрузка q определяет­ся по формуле
(9-12)

где q B - вертикальная удельная на­грузка, учитывающая вес трубопро­вода с теплоносителем и тепловой изоляцией; q г - горизонтальная удельная нагрузка, учитывающая ветровое усилие,

(9-13)

где w - скорость ветра, м/с; - плотность воздуха, кг/м 3 ; d и - наружный диаметр изоляции трубо­провода, м; k - аэродинамический коэффициент, равный в среднем 1,4-1,6.

Ветровое усилие должно учиты­ваться только в надземных тепло­проводах открытой прокладки.

Изгибающий момент, возникаю­щий в середине пролета,

(9.14)

На расстоянии 0,2 от опоры из­гибающий момент равен нулю.

Максимальный прогиб имеет ме­сто в середине пролета.

Стрела прогиба трубопровода
, (9.15)

На основании выражения (9-11) определяется пролет между свобод­ными опорами

(9-16) откуда
(9-17)

При выборе пролета между опо­рами для реальных схем трубопро­водов исходят из того, чтобы при наиболее неблагоприятных режимах работы, например при наиболее вы­соких температурах и давлениях теп­лоносителя, суммарное напряжение от всех действующих усилий в са­мом слабом сечении (обычно свар­ном шве) не превосходило допусти­мой величины [].

Предварительную оценку рас­стояния между опорами можно про­извести на основе уравнения (9-17), принимая напряжение от изгиба 4 равным 0,4-0,5 допускаемого напряжения:


Неподвижные опоры воспринимают реакцию внутреннего давления, свободных опор и

компенсатора.

Результирующее усилие, действующее на неподвижную опору, может быть представлено в виде

а - коэффициент, зависящий от направления действия осевых усилий внутреннего давления с обоих сторон опоры. Если опора разгружена от усилия внутреннего давления, то а =0, иначе а =1; р - внутреннее давление в трубопроводе; - площадь внутреннего сечения трубопровода; - коэффициент трения на свободных опорах;
- разность длин участков трубопровода с обеих сторон неподвижной опоры;
- разность сил трения осевых сколь­зящих компенсаторов или сил упругости гибких компенсаторов с обоих сторон неподвиж­ной опоры.

26. Компенсация тепловых удлиннений трубопроводов систем теплоснабжения. Основы расчета гибких компенсаторов.

В тепловых сетях в настоящее время наиболее широко применяются сальниковые, П- образные, а в последнее время и сильфонные (волнистые) компенсаторы. Кроме специальных компенсаторов используют для компенсации и естественные углы поворотов теплотрассы - самокомпенсацию. Компенсаторы должны иметь достаточную компенсирующую способность
для восприятия температурного удлинения участка трубопровода между неподвижными опорами, при этом максимальные напряжения в радиальных компенсаторах не должны превышать допускаемых (обычно 110 МПа). Необходимо также определить реакцию компенсатора, используемую при расчетах нагрузок на неподвижные опоры. Тепловое удлинение расчетного участка трубопровода
, мм, определяют по формуле

, (2.81)

где

=1,2· 10ˉ² мм/(м · о С),

- расчетный перепад температур, определяемый по формуле
, (2.82)

где

L

Гибкие компенсаторы в отличие от сальниковых характеризуются мень­шими затратами на обслуживание. Их применяют при всех способах прокладки и при любых параметрах теплоносителя. Использование сальниковых компенса­торов ограничивается давлением не более 2,5 МПа и температурой теплоно­сителя не выше 300°С. Их устанавли­вают при подземной прокладке трубопро­водов диаметром более. 100 мм, при над­земной прокладке на низких опорах труб диаметром более 300 мм, а также в стес­ненных местах, где невозможно разме­стить гибкие компенсаторы.

Гибкие компенсаторы изготовляют из отводов и прямых участков труб с по­мощью электродуговой сварки. Диа­метр, толщина стенки и марка стали ком­пенсаторов такие же, как и трубопрово­дов основных участков. При монтаже гибкие компенсаторы располагают го­ризонтально; при вертикальном или на­клонном размещении требуются воз­душные или дренажные устройства, ко­торые затрудняют обслуживание.

Для создания максимальной компен­сационной способности гибкие компен­саторы перед монтажом растягивают в холодном состоянии и в таком положе­нии закрепляют распорками. Величину

растяжки компенсатора записывают в специальный акт. Растянутые компенса­торы присоединяют к теплопроводу с по­мощью сварки, после чего распорки уда­ляют. Благодаря предварительной рас­тяжке компенсационная способность уве­личивается почти вдвое. Для установки гибких компенсаторов устраивают ком­пенсаторные ниши. Ниша представляет собой непроходной канал такой же кон­струкции, по конфигурации соответст­вующий форме компенсатора.

Сальниковые (осевые) компенсаторы изготовляют из труб и из листовой стали двух типов: односторонние и двусторон­ние. Размещение двусторонних компен­саторов хорошо сочетается с установ­кой неподвижных опор. Сальниковые компенсаторы устанавливают строго по оси трубопровода, без перекосов. На­бивка, сальникового компенсатора представляет собой кольца, выполненные из асбестового прографиченного шнура и термостойкой резины. Осевые компенса­торы целесообразно применять при бесканальной прокладке трубопроводов.

Компенсационная способность саль­никовых компенсаторов с увеличением диаметра повышается.

Расчет гибкого компенсатора .

Тепловое удлинение расчетного участка трубопровода
, мм, определяют по формуле

, (2.81)

где
- средний коэффициент линейного расширения стали, мм/(м · о С), (для типовых расчетов можно принять
=1,2· 10ˉ² мм/(м · о С),

- расчетный перепад температур, определяемый по формуле

, (2.82)

где - расчетная температура теплоносителя, о С;

- расчетная температура наружного воздуха для проектирования отопления, о С;

L - расстояние между неподвижными опорами, м.

Компенсирующую способность сальниковых компенсаторов, уменьшают на величину запаса - 50 мм.

Реакция сальникового компенсатора - сила трения в сальниковой набивке определяется по формуле, (2.83)

где - рабочее давление теплоносителя, МПа;

- длина слоя набивки по оси сальникового компенсатора, мм;

- наружный диаметр патрубка сальникового компенсатора, м;

- коэффициент трения набивки о металл, принимается равным 0,15.

Технические характеристики сильфонных компенсаторов приведены в табл. 4.14 - 4.15 . Осевая реакция сильфонных компенсаторов складывается из двух слагаемых

(2.84)

где - осевая реакция, вызываемая деформацией волн, определяемая по формуле

, (2.85)

где l - температурное удлинение участка трубопровода, м;- жесткость волны, Н/м, принимаемая по паспорту компенсатора;n - количество волн (линз).- осевая реакция от внутреннего давления, определяемая по формуле

, (2.86)

где - коэффициент, зависящий от геометрических размеров и толщины стенки волны, равный в среднем 0.5 - 0.6;

D иd – соответственно наружный и внутренний диаметры волн, м;

- избыточное давление теплоносителя, Па.

При расчете самокомпенсации основной задачей является определение максимального напряжения у основания короткого плеча угла поворота трассы, которое определяют для углов поворотов 90 о поформуле
; (2.87)

для углов более 90 о, т.е. 90+, по формуле
(2.88)

где l - удлинение короткого плеча, м;l - длина короткого плеча, м;Е - модуль продольной упругости, равный в среднем для стали 2· 10 5 МПа;d - наружный диаметр трубы, м;

- отношение длины длинного плеча к длине короткого.

Фридман Я.Х. - старший научный сотрудник,

издательство «Новости теплоснабжения».

Одними из важнейших конструкционных элементов тепловых сетей, которые обеспечивают эксплуатационную надежность, являются неподвижные опоры. Они служат для разделения теплопроводов на участки, независимые друг от друга в восприятии различного вида усилий. Обычно неподвижные опоры размещаются между компенсаторами или участками трубопроводов с естественной компенсацией температурных удлинений. Они фиксируют положение теплопровода в определенных точках и воспринимают усилия, возникающие в местах фиксации под действием силовых факторов от температурных деформаций и внутреннего давления. Благодаря этой своей функции они еще называются «мертвыми».

В данной работе высказывается ряд соображений касательно усилий и вызванных ими напряжений, возникающих в неподвижных опорах.

Усилия, воспринимаемые неподвижными опорами, складываются из:

1) неуравновешенных сил внутреннего давления;

2) реакции подвижных (свободных) опор;

3) реакции компенсаторов от силовых факторов, вызванных температурными деформациями;

4) гравитационных нагрузок.

Неподвижные опоры бывают следующих конструкционных исполнений: лобовые, щитовые и хомутовые.

Согласно статистике отказов в камерах на дефекты от наружной коррозии труб приходится 80-85%. Это количество дефектов примерно распределено согласно прилагаемой таблице из . Это согласуется и с нашими наблюдениями, где на повреждения, относящиеся к неподвижным опорам, приходится около 50% от числа повреждений в камерах, имеющих неподвижные опоры.

Причины коррозии неподвижных опор.

Неподвижные опоры подвергаются различным видам коррозии, которые вызваны следующими причинами:

1) влияние блуждающих токов в щитовых опорах из-за отсутствия надежных электроизоляционных вставок

2) возникновение капели с перекрытий из-за конденсации влаги приводит к усиленной коррозии наружной поверхности труб

3) приварка косынок создает предпосылки для интенсификации процессов внутренней коррозии в местах расположения сварных швов и околошовной зоны.

4) одновременное воздействие переменных циклических напряжений и коррозионной среды вызывают понижение коррозионной стойкости и предела выносливости металла.

Методика прочностного расчета неподвижных опор.

Согласно СНиП 2.04.07-86 «Тепловые сети» c.39 п.7: «Неподвижные опоры труб должны рассчитываться на наибольшую горизонтальную нагрузку при различных режимах работы трубопроводов, в том числе при открытых и закрытых задвижках».

В настоящее время неподвижные опоры подбираются по альбомам «Нормали тепловых сетей. НТС-62-91-35. НТС-62-91-36. НТС-62-91-37», выпущенным институтом «Мосинжпроект». По этим нормалям для каждой величины Ду приводится максимальная осевая сила, величину которой не должна превосходить результирующая сила от действующих осевых сил как слева так и справа. На самом деле на опору кроме осевой действуют еще две перерезывающие силы, а также крутящий и два изгибающих момента. В наиболее общем случае на опору действуют все виды нормальных и касательных напряжений т.е. имеет место сложнонапряженное состояние.

При прочностном расчете оказывается, что запасы прочности в сечениях теплопровода, проходящих через неподвижные и подвижные опоры, принимают наименьшие значения по длине теплопровода, т.е. это наиболее нагруженные сечения. В нормативной документации не существует никаких рекомендаций по запасам прочности расчетных точек сечений теплопроводов относительно допускаемого временного сопротивления и допускаемого напряжения текучести.

Предлагается следующий порядок прочностного расчета неподвижных опор:

1) Прочностной расчет участков теплопровода, находящихся от рассматриваемой опоры как с левой таки с правой стороны. В результате определяются 3 силовые и 3 моментные нагрузки, действующие на неподвижную опору со стороны правого теплопровода (P1x, P1y, P1z, M1x,M1y, M1z.) и левого теплопровода(P2x, P2y, P2z, M2x, M2y, M2z.) (рис. 2 и 3).

2) Решение системы уравнений относительно 6 результирующих неизвестных: Px, Py, Pz, Mx, My, Mz,где:

Px, Py - поперечные силы, паралельные
соответственно осям OX и OY

Pz - продольная сила, направленная сила вдоль оси OZ

Мх и My - изгибающие моменты, вектора моментов которых направлены соответственно по осям OX и OY

Mz - крутящий момент, вектор момента которого направлен вдоль оси OZ.

3) В каждой расчетной точке вычисляются 6 напряжений (по 6-тисиловым факторам из п.3), характеризующих напряженное состояние:

3 нормальных напряжения: ах, ау, az и 3 касательных напряжения: тху, xxz, xyz.

4) Выбор коэффициента прочности сварного шва.

Наиболее слабым местом стальных трубопроводов, по которому следует вести проверку напряжений, являются сварные швы. ф - коэффициент прочности сварного шва (ф = 0,7 ... 0,9)

4.1 По маркам сталей из которых изготовлены неподвижная опора и теплопровод выбирается та сталь напряжения текучести (at) и временного сопротивления (ав), которой являются меньшими. Расчетные at и ав берутся при t = 150 ОC.

4.2 Определение допустимых расчетных напряжений относительно напряжений текучести и временного сопротивления: = ф xat; [ав] = ф х ав

5) По 6 напряжениям (ax, ay, az,тху, xxz, xyz) особым образом выбираются новые оси координат OX 1 ,OY1 и OZ1 так, чтобы 3 касательныхнапряжения приняли нулевые значения (существует только один возможный вариант направления осей).

В итоге получаем только 3 нормальных напряжения: al, a2 и a3, причем al > а2 > аЗ.

На основании 3-ей и 4-ой теорий прочности (в машиностроении и статической прочности металлоизделий применяют 3-ью и 4-ую теории прочности) получаем коэффициенты запаса относительно допускаемых напряжений текучести и коэффициентов запаса по допускаемому временному сопротивлению сварных швов.

по текучести [m]= 2 ... 2.2; по временному сопротивлению [n] = 4... 4.5.

Такой высокий запас по текучести обеспечит уменьшение вероятности появления отказов, связанных с усталостью металла, из-за термических напряжений возникающих при регулировании температуры воды в отопительный период.

Разработана компьютерная программа TENZOR 11.ЕКА, опирающаяся на ряд положений из и позволяющая выполнить п.п. 1...6.

В подавляющем большинстве случаев неподвижные опоры являются узлами, на которые приходятся самые большие нагрузки. Это происходит из-за плохой работы подвижных опор, вызванной увеличенным коэффициентом трения скольжения (до 0,4) и их увеличенной просадочности. При наружной и внутренней
коррозии в неподвижных опорах происходит перераспределение напряжений, что приводит к их повышенной повреждаемости.

При ремонтах лучше не разрушать всю неподвижную опору и не вырезать старую трубу, а использовать своеобразную вставку. На рис. 1 показан один из применяемых вариантов подхода при производстве ремонта щитовой неподвижной опоры. После выполнения обрезки трубопровода, внутрь тела трубы опоры 1 вставляется и приваривается предварительно разрезанная вдоль образующей труба усиления 2. Для этой вставки берется заготовка из той же самой трубы. Это позволит, как довести запасы прочности соответственно рекомендациям п. 6, так и уменьшить объемы ремонтных работ.

При наличии неподвижной опоры промышленного изготовления, для повышения ее долговечности и надежности во время эксплуатации возможно проведение усиления такой опоры, которое проводится точно таким же образом.

Для защиты трубы и неподвижной опоры от коррозии и как один из наиболее простых методов по обеспечению надежности работы опор можно предложить увеличение толщины стенки трубы в опоре. При этом, толщина стенки трубы s подбирается так, чтобы ее величина при прочностном расчете соответствовала рекомендуемым величинам запаса прочности п.6.

В хомутовых неподвижных опорах кроме расчета теплопровода рассчитывается также и толщина стержня хомута на напряжения растяжения, с учетом рекомендаций п.6.

Практический пример.

Рассмотрим практический пример расчета неподвижной опоры.

Данные для расчета:

Ду = 200 (0 219X6), длина участка 209 м.

1 = 8 м - расстояние между подвижными опорами

р = 10 ати = 10,2 МПа - давление воды (избыточное)

t1 = 10 ОC - монтажная температура

t 2 = 130 ОC - максимальная температура воды

а = 12x10 6 град " - коэффициент линейного расширения стали.

По марке стали (сталь 20 при t=150ОC)

at = 165 МПа - напряжение текучести ав = 340 МПа - временное сопротивление

Е = 2.1ХЮ 6 кг/см 2 = 2.14ХЮ 5 мПа - модуль упругости 2-го рода

ц = 0,3 - коэффициент Пуассона

ф = 0,8 - коэффициент ослабления металла сварного шва.

Определение расчетных напряжений относительно допускаемых напряжений текучести и временного сопротивления

Q>xat = 132 МПа = 1346 кг/см 2 - допускаемое напряжение текучести

[ав] = фХав = 272 МПа =2775 кг/см 2 - допускаемое напряжение для временного сопротивления.

Выполняя п. 1...3 для схемы (рис. 2) и рассмотрев систему уравнений равновесия п.2 получаем на рис. 3 следующие результирующие усилия действующие на опору A:

Рх = 4.5 кН; Py = 11.2 кН; Pz = 9.5 кН;

Мх = 5.2 кНХм; My = 4.1 кНХм; Mz = 0. кНХм.

Выполняя п.п. 4... 6 получаем следующие запасы прочности относительно допускаемых напряжений текучести и временного сопротивления соответственно по 3-ей и 4-ой теориям прочности:

пЗ = 4.3; n4 = 3.1

тЗ = 2.43; m4 = 1.67.

Данные системы не удовлетворяют п.6, поэтому требуется взять из сортимента трубопроводов трубу с тем же внутренним диаметром, но большей толщиной стенки (s = 7).

В случае невозможности реализации такого варианта, можно изменить конструкции щитовых и лобовых опор, введя трубу усиления поз.2 так, как это показано на рис.1.

Выводы. В заключении отметим, что прочностной расчет неподвижных опор и анализ статистических данных повреждений позволяет сделать следующие выводы:

1. При проектировании Тепловых сетей для повышения надежности неподвижной опоры необходимо выполнять прочностные расчеты участков теплотрассы, располагающихся с обеих сторон от этой опоры, что позволит определить результирующие усилия, действующие на опору.

2. Прочностные расчеты участков теплопровода требуется проводить как для режима эксплуатации, так и для режима опрессовки. Необходимо проводить прочностной расчет по допускаемым напряжениям для всех участков теплопровода с учетом ослабления металла сварного шва.

3. Для малых диаметров для упрощения процедуры проектирования необходимо применять трубу как минимум в 2 раза большей толщины стенки, чем на основном трубопроводе.

4. В связи с высокой частой отказов неподвижных опор требуется усилить конструкции узлов этих опор так, чтобы величина запаса прочности относительно допускаемого напряжения текучести была не менее [m]= 2 ... 2.2 , а значения запасов прочности по допускаемому временному сопротивлению должны быть не меньше [n] = 4... 4.5.

5. Все металлические конструкции должны быть надежно защищены.

6. При проектировании следует обязательно предусматривать двусторонний доступ к неподвижной опоре для возможности ее осмотра, полного восстановления антикоррозионного покрытия и герметизации кольцевого зазора.

Литература

1. Л.В.Родичев. Статистический анализ процесса коррозионного старения те-

плопроводов.

СТРОИТЕЛЬСТВО ТРУБОПРОВОДОВ. № 9, 1994 г.

2. А.П.Сафонов. Сборник задач по теплофикации и тепловым сетям. М.: Энерго-издат, 1980.

В данном разделе нашего сайта вы найдете информацию о классификации опор тепловых сетей , а так же об основных параметрах (размере и весе), предъявляемых требованиях, комплектности, сроках изготовления продукции.

Виды опор для тепловых сетей ТС.

В двух выпусках 7-95 и 8-95 данной серии представлены как скользящие, так и неподвижные опоры для труб тепловых сетей. Все опоры тепловых сетей имеют конструкционные отличия в зависимости от толщины изоляции трубопровода. На участках бесканальной прокладки трубопроводов подвижные опоры не устанавливают, кроме тех которые применяются для труб менее D y = 175 включительно. Скользящие опоры применяют при прокладке труб в непроходных или полупроходных каналах и для нижнего ряда труб в тоннелях. Расстояние между опорами рассчитывается проектировщиком, согласно действующим нормативным документам.

При строительстве теплосети возводят следующие сооружения: колодцы, камеры и павильоны над камерами для установки запорно - измерительной арматуры, компенсирующих устройств и прочего линейного оборудования. Осуществляют постройку фильтрующих дренажных сооружений, насосных станций, устанавливают ограждающие теплопровод конструкции, неподвижные и подвижные опоры (иногда еще и направляющие), опорные камни.

Применение с строительстве.

Основание каналов для прокладки трубопроводов и размещения в них опор делают двух видов - бетонное или железобетонное, которые в свою очередь могут быть либо сборными либо монолитными. Бетонные и железобетонные каналы создают очень надежные основания для размещения строительных конструкций и предохраняют канал от проникновения в него грунтовых вод. Бетонное или железобетонное основание выполняют важнейшую роль - воспринимают вес строительных конструкций и грунта над каналом, нагрузки от транспорта, вес трубопровода с изоляцией и теплоносителем, рассредоточивает давление и тем самым снижается возможность осадки строительных конструкций в местах сосредоточенных нагрузок: под опорными камнями и под стенами канала.

Паровые системы теплоснабжения бывают однотрубными и двухтрубными, а образующийся при работе конденсат возвращается по специальной трубе - конденсатопроводу. При начальном давлении, которое составляет от 0,6 до 0,7 МПа, а иногда и от 1,3 до 1,6 МПа, скорость распространения пара - 30…40 м/с. При выборе способа прокладки теплопроводов главной задачей является обеспечение долговечности, надежности и экономичности решения.

Сами тепловые сети монтируют из стальных электросварных труб, расположенных на специальных опорах. На трубах устраивают запорную и регулирующую арматуры (задвижки, вентили). Опоры трубопроводов создают горизонтальное незыблемое основание. Интервал между опорами определяют при проектировании.

Опоры тепловых сетей подразделяют на неподвижные и подвижные. Неподвижные опоры фиксируют расположение конкретных мест сетей в определенной позиции, не допускают никаких смещений. Подвижные опоры допускают перемещение трубопровода по горизонтали вследствие температурных деформаций.

Опоры поставляются комплектно согласно рабочим чертежам, разработанным в установленном порядке. Мы гарантируем соответствие опор и подвесок требованию соответствующего стандарта при соблюдении потребителем правил монтажа и хранения (в соответствии с настоящим стандартом). Гарантийный срок эксплуатации - 12 месяцев со дня поставки изделия заказчику. На все опоры предоставляется паспорт качества и сертификаты на используемые для изготовления материалы (по запросу).



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png