Горение – это реакция, при которой происходит преобразование химической энергии топлива в тепло.

Горение бывает полным и неполным. Полное горение происходит при достаточном количестве кислорода. Нехватка его вызывает неполное сгорание, при котором выделяется меньшее количество тепла, чем при полном, и окись углерода (СО), отравляюще действующая на обслуживающий персонал, образовывается сажа, оседающая на поверхности нагрева котла и увеличивающая потери тепла, что приводит к перерасходу топлива и снижению к.п.д. котла, загрязнению атмосферы.

Для сгорания 1 м 3 метана нужно 10 м 3 воздуха, в котором находится 2 м 3 кислорода. Для полного сжигания природного газа воздух подают в топку с небольшим избытком. Отношение действительно израсходованного объёма воздуха V д к теоретически необходимому V т называется коэффициентом избытка воздуха a = V д /V т. Этот показатель зависит от конструкции газовой горелки и топки: чем они совершеннее тем меньше a. Необходимо следить, чтобы коэффициент излишка воздуха не был меньше 1, так как это приводит к неполному сгоранию газа. Увеличение коэффициента избытка воздуха снижает к.п.д. котлоагрегата.

Полноту сгорания топлива можно определить с помощью газоанализатора и визуально – по цвету и характеру пламени: прозрачно-голубоватое – сгорание полное;

красный или жёлтый – сгорание неполное.

Скорость продвижения зоны горения в направлении, перпендикулярном самой зоне, называется скоростью распространения пламени. Скорость распространения пламени характеризует быстроту нагрева газовоздушной смеси до температуры воспламенения. Наибольшую скорость распространения имеет пламя водорода, водяного газа (3 м /сек), наименьшую - пламя природного газа и Пропано-бутановой смеси. Большая скорость распространения пламени благоприятно влияет на полноту горения газа, а малая, наоборот, служит одной из причин неполного сгорания газа. Скорость распространения пламени увеличивается при применении газокислородной смеси вместо газовоздушной.

Горение регулируется увеличением подачи воздуха в топку котла или уменьшением подачи газа. В этом процессе используется первичный (смешивается с газом в горелке – до горения) и вторичный (соединяется с газом или газовоздушной смесью в топке котла в процессе горения) воздух.

В котлах, оборудованных диффузионными горелками (без принудительной подачи воздуха), вторичный воздух под действием разряжения поступает в топку через поддувочные дверцы.

В котлах, оборудованных инжекционными горелками: первичный воздух поступает в горелку за счёт инжекции и регулируется регулировочной шайбой, а вторичный – через поддувочные дверцы.

В котлах со смесительными горелками первичный и вторичный воздух подаётся в горелку вентилятором и регулируется воздушными задвижками.

Нарушение соотношения между скоростью газовоздушной смеси на выходе из горелки и скоростью распространения пламени приводит к отрыву или проскакиванию пламени на горелках.

Если скорость газовоздушной смеси на выходе из горелки больше скорости распространения пламени – отрыв, а если меньше – проскок.

При отрыве и проскоке пламени обслуживающий персонал должен погасить котёл, провентилировать топку и газоходы и снова разжечь котёл.


Горение природного газа представляет собой сложный физико-химический процесс взаимодействия горючих его составляющих с окислителем, при этом происходит преобразование химической энергии топлива в тепло. Горение бывает полным и неполным. При перемешивании газа с воздухом, достаточно высокой для горения температуры в топке, непрерывной подаче топлива и воздуха осуществляется полное сгорание топлива. Неполное сгорание топлива происходит при несоблюдении этих правил, что приводит к меньшему выделению тепла, (СО), водорода (Н2), метана (СН4), и как следствие, к оседанию сажи на поверхностях нагрева, ухудшая теплообмен и увеличивая потери количества тепла, что в свою очередь приводит к перерасходу топлива и снижению КПД котла и соответственно к загрязнению атмосферы.

Коэффициент избытка воздуха зависит от конструкции газовой горелки и топки. Коэффициент излишка воздуха должен быть не менее 1, иначе это может привести к неполному сгоранию газа. А также увеличение коэффициента избытка воздуха снижает КПД теплоиспользующей установки за счет больших потерь теплоты с уходящими газами.

Определяется полнота сгорания с помощью газоанализатора и по цвету и запаху.

Полное сгорание газа. метан + кислород = углекислый газ + вода СН4 + 2О2 = СО2 + 2Н2ОКроме этих газов в атмесферу с горючими газами выходит азот и оставшийся кислород. N2 + O2 Если сгорание газа происходит не полностью, то в атмосферу выбрасываются горючие вещества – угарный газ, водород, сажа.CO + H + C

Неполное сгорание газа происходит вследствие недостаточного количества воздуха. При этом визуально в пламени появляются языки копоти.Опасность неполного сгорания газа состоит в том, что угарный газ может стать причиной отравления персонала котельной. Содержание СО в воздухе 0,01-0,02% может вызвать легкое отравление. Более высокая концентрация может привести к тяжелому отравлению и смерти.Образующаяся сажа оседает на стенках котлов ухудшая тем самым передачу тепла теплоносителю снижает эффективность работы котельной. Сажа проводит тепло хуже метана в 200 раз.Теоретически для сжигания 1м3 газа необходимо 9м3 воздуха. В реальных условиях воздуха требуется больше. То есть необходимо избыточное количество воздуха. Эта величина обозначаемая альфа показывает во сколько раз воздуха расходуется больше, чем необходимо теоретически.Коэффициент альфа зависит от типа конкретной горелки и обычно прописывается в паспорте горелки или в соответствие с рекомендациями организации производимой пусконаладочные работы. С увеличением количества избыточного воздуха выше рекомендуемого, растут потери тепла. При значительном увеличение количества воздуха может произойти отрыв пламени, создав аварийную ситуацию. Если количество воздуха меньше рекомендуемого то горение будет неполным, создавая тем самым угрозу отравления персонала котельной.Неполное горение определяется: ,

К атегория: Газоснабжение

Процесс горения газа

Основным условием для горения газа является наличие кислорода (а следовательно, воздуха). Без присутствия воздуха горение газа невозможно. В процессе горения газа происходит химическая реакция соединения кислорода воздуха с углеродом и водородом топлива. Реакция происходит с выделением тепла, света, а также углекислого газа и водяных паров.

В зависимости от количества воздуха, участвующего в процессе горения газа, происходит полное или неполное его сгорание.

При достаточном поступлении воздуха происходит полное сгорание газа, в результате которого продукты его горения содержат негорючие газы: углекислый газ С02, азот N2, водяные пары Н20. Больше всего (по объему) в продуктах горения азота - 69,3-74%.

Для полного сгорания газа также необходимо, чтобы он смешивался с воздухом в определенных (для каждого газа) количествах. Чем выше калорийность газа, тем требуется большее количество воздуха. Так, для сжигания 1 м3 природного газа требуется около 10 м3 воздуха, искусственного - около 5 м3, смешанного - около 8,5 м3.

При недостаточном поступлении воздуха происходит неполное сгорание газа или химический недожог горючих составных частей; в продуктах сгорания появляются горючие газы-окись углерода СО, метан СН4 и водород Н2

При неполном сгорании газа наблюдается длинный, коптящий, светящийся, непрозрачный, желтого цвета факел.

Таким образом, недостаток воздуха приводит к неполному сгоранию газа, а избыток - к чрезмерному охлаждению температуры пламени. Температура воспламенения природного газа 530 °С, коксового - 640 °С, смешанного - 600 °С. Кроме того, при значительном избытке воздуха также происходит неполное сгорание газа. При этом наблюдается конец факела желтоватого цвета, не вполне прозрачный, с расплывчатым голубовато-зеленым ядром; пламя неустойчиво и отрывается от горелки.

Рис. 1. Пламя газа я - без предварительного смешения газа с воздухом; б -с частичным пред. верительным смешением газа с воздухом; в - с предварительным полным смешением газа с воздухом; 1 - внутренняя темная зона; 2 - коптящий светящийся конус; 3 - горящий слой; 4 - продукты сгорания

В первом случае (рис. 1,а) факел имеет большую длину и состоит из трех зон. В атмосферном воздухе горит чистый газ. В первой внутренней темной зоне газ не горит: он не смешан с кислородом воздуха и не нагрет до температуры воспламенения. Во вторую зону воздух поступает в недостаточном количестве: его задерживает горящий слой, и поэтому он не может хорошо смешаться с газом. Об этом свидетельствует ярко светящийся, светло-желтый коптящий цвет пламени. В третью зону воздух поступает в достаточном количестве, кислород которого хорошо смешивается с газом, газ горит голубоватым цветом.

При этом способе газ и воздух подаются в топку раздельно. В топке происходит не только сжигание газовоздушной смеси, но и процесс приготовления смеси. Такой метод сжигания газа широко применяют в промышленных установках.

Во втором случае (рис. 1,6) сжигание газа происходит значительно лучше. В результате частичного предварительного смешивания газа с воздухом в зону горения поступает приготовленная газовоздушная смесь. Пламя становится короче, несветящимся, имеет две зоны - внутреннюю и наружную.

Газовоздушная смесь во внутренней зоне не горит, так как она не нагревалась до температуры воспламенения. В наружной зоне сгорает газовоздушная смесь, при этом в верхней части зоны резко повышается температура.

При частичном смешении газа с воздухом в этом случае полное сгорание газа происходит только при дополнительном подводе воздуха к факелу. В процессе горения газа воздух подводят дважды: первый раз - до поступления в топку (первичный воздух), второй раз - непосредственно в топку (вторичный воздух). Этот метод сжигания газа положен в основу устройства газовых горелок для бытовых приборов и отопительных котельных.

В третьем случае факел значительно укорачивается и газ сгорает полнее, так как газовоздушная смесь была предварительно приготовлена. О полноте сгорания газа свидетельствует короткий прозрачный факел голубого цвета (беспламенное горение), которое применяют в приборах инфракрасного излучения при газовом отоплении.



- Процесс горения газа
Общие сведения. Другой важный источник внутреннего загрязнения, сильный сенсибилизирующий фактор для человека - природный газ и продукты его сгорания. Газ - много-компонентная система, состоящая из десятков различных со-единений, в том числе и специально добавляемых (табл. 12.3).
Имеется прямое доказательство того, что использование приборов, в которых происходит сжигание природного газа (газовые плиты и котлы), оказывает неблагоприятный эффект на человеческое здоровье. Кроме того, индивидуумы с повышенной чувствительностью к факторам окружающей среды реагируют неадекватно на компоненты природного газа и продукты его сгорания.
Природный газ в доме - источник множества различных загрязнителей. Сюда относятся соединения, которые непосредственно присутствуют в газе (одоранты, газообразные углеводороды, ядовитые металлоорганические комплексы и радиоактивный газ радон), продукты неполного сгорания (оксид углерода, диоксид азота, аэрозольные органические частицы, полициклические ароматические углеводороды и небольшое количество летучих органических соединений). Все перечисленные компоненты могут воздействовать на организм человека как сами по себе, так и в комбинации друг с другом (эффект синергизма).
Таблица 12.3
Состав газообразного топлива Компоненты Содержание, % Метан 75-99 Этан 0,2-6,0 Пропан 0,1-4,0 Бутан 0,1-2,0 Пентан До 0,5 Этилен Содержатся в отдельных месторождениях Пропилен Бутилен Бензол Сернистый газ Сероводород Диоксид углерода 0,1-0,7 Оксид углерода 0,001 Водород До 0,001
Одоранты. Одоранты - серосодержащие органические ароматические соединения (меркаптаны, тиоэфиры и тио- ароматические соединения). Добавляются к природному газу с целью его обнаружения при утечках. Хотя эти соединения присутствуют в весьма небольших, подпороговых кон-центрациях, которые не рассматриваются как ядовитые для большинства индивидуумов, их запах может вызывать тошноту и головные боли у здоровых людей.
Клинический опыт и эпидемиологические данные указывают, что химически чувствительные люди реагируют неадекватно на химические соединения, присутствующие даже в подпороговых концентрациях. Индивидуумы, страдающие астмой, часто идентифицируют запах как промотор (триггер) астматических приступов.
К одорантам относится, к примеру, метантиол. Метанти- ол, известный также как метилмеркаптан (меркаптометан, тиометилалкоголь), - газообразное соединение, которое обычно используется как ароматическая добавка к природному газу. Неприятный запах ощущает большинство людей в концентрации 1 часть на 140 млн, однако это соединение может быть обнаружено при значительно меньших концентрациях высокочувствительными индивидуумами. Токсико-логические исследования на животных показали, что 0,16% метантиола, 3,3% этантиола или 9,6% диметилсульфида способны стимулировать коматозное состояние у 50% крыс, подвергнутых воздействию этих соединений в течение 15 мин.
Другой меркаптан, используемый тоже как ароматическая добавка к природному газу, - меркаптоэтанол C2H6OS) известен также как 2-тиоэтанол, этилмеркаптан. Сильный раздражитель для глаз и кожи, способен оказывать токсический эффект через кожу. Огнеопасен и при нагревании разлагается с образованием высокоядовитых паров SOx.
Меркаптаны, являясь загрязнителями воздуха помещений, содержат серу и способны захватывать элементарную ртуть. В высоких концентрациях меркаптаны могут вызывать нарушение периферического кровообращения и учащение пульса, способны стимулировать потерю сознания, развитие цианоза или даже смерть.
Аэрозоли. Сгорание природного газа приводит к образованию мелких органических частиц (аэрозолей), включая канцерогенные ароматические углеводороды, а также некоторые летучие органические соединения. ДОС - предположительно сенсибилизирующие агенты, которые способны индуцировать совместно с другими компонентами синдром «больного здания», а также множественную химическую чувствительность (МХЧ).
К JIOC относится и формальдегид, образующийся в небольших количествах при сгорании газа. Использование газовых приборов в доме, где проживают чувствительные индивидуумы, увеличивает воздействие к этим раздражителям, впоследствии усиливая признаки болезни и также способствуя дальнейшей сенсибилизации.
Аэрозоли, образованные в процессе сгорания природного газа, могут стать центрами адсорбции для разнообразных химических соединений, присутствующих в воздухе. Таким образом, воздушные загрязнители могут концентрироваться в микрообъемах, реагировать друг с другом, особенно когда металлы выступают в роли катализаторов реакций. Чем меньше по размеру частица, тем выше концентрационная активность такого процесса.
Более того, водяные пары, образующиеся при сгорании природного газа, - транспортное звено для аэрозольных частиц и загрязнителей при их переносе к легочным аль-веолам.
При сгорании природного газа образуются и аэрозоли, содержащие полициклические ароматические углеводороды. Они оказывают неблагоприятное воздействие на дыхательную систему и являются известными канцерогенными веществами. Помимо этого, углеводороды способны приводить к хронической интоксикации у восприимчивых людей.
Образование бензола, толуола, этилбензола и ксилола при сжигании природного газа также неблагоприятно для здоровья человека. Бензол, как известно, канцерогенен в дозах, значительно ниже пороговых. Воздействие к бензолу коррелирует с увеличенным риском возникновения рака, особенно лейкемии. Сенсибилизирующие эффекты бензола не известны.
Металлоорганические соединения. Некоторые компоненты природного газа могут содержать высокие концентрации ядовитых тяжелых металлов, включая свинец, медь, ртуть, серебро и мышьяк. По всей вероятности, эти металлы при-сутствуют в природном газе в форме металлоорганических комплексов типа триметиларсенита (CH3)3As. Связь с органической матрицей этих токсичных металлов делает их раст-воримыми в липидах. Это ведет к высокому уровню поглощения и тенденции к биоаккумуляции в жировой ткани человека. Высокая токсичность тетраметилплюмбита (СН3)4РЬ и диметилртути (CH3)2Hg предполагает влияние на здоровье человека, так как метилированные составы этих металлов более ядовиты, чем сами металлы. Особую опасность представляют эти соединения во время лактации у женщин, так как в этом случае происходит миграция липидов из жировых депо организма.
Диметилртуть (CH3)2Hg - особенно опасное металлоор- ганическое соединение из-за его высокой липофильности. Метилртуть может быть инкорпорирована в организм путем ингаляционного поступления, а также через кожу. Всасывание этого соединения в желудочно-кишечном трактате составляет почти 100%. Ртуть обладает выраженным нейро- токсическим эффектом и свойством влиять на репродуктивную функцию человека. Токсикология не располагает данными о безопасных уровнях ртути для живых организмов.
Органические соединения мышьяка также весьма ядовиты, особенно при их метаболическом разрушении (метабо- лическая активация), заканчивающимся образованием вы-сокоядовитых неорганических форм.
Продукты сгорания природного газа. Диоксид азота способен действовать на легочную систему, что облегчает разви-тие аллергических реакций к другим веществам, уменьшает функцию легких, восприимчивость к инфекционным заболеваниям легких, потенцирует бронхиальную астму и другие респираторные заболевания. Это особенно выражено у детей.
Имеются доказательства того, что N02, полученный при сжигании природного газа, может индуцировать:
воспаление легочной системы и уменьшение жизненной функции легких;
увеличение риска астмоподобных признаков, включая появление хрипов, одышку и приступы заболевания. Это особенно часто проявляется у женщин, приготавливающих еду на газовых плитах, а также у детей;
уменьшение резистентности к бактериальным заболеваниям легких из-за снижения иммунологических механизмов защиты легких;
оказание неблагоприятных эффектов в целом на им-мунную систему человека и животных;
воздействие как адъюванта на развитие аллергических реакций к другим компонентам;
увеличение чувствительности и усиление аллергиче-ской ответной реакции на побочные аллергены.
В продуктах сгорания природного газа присутствует до-вольно высокая концентрация сероводорода (H2S), который загрязняет окружающую среду. Он ядовит в концентрациях ниже, чем 50.ррш, а в концентрации 0,1-0,2% смертелен даже при непродолжительной экспозиции. Так как организм имеет механизм для детоксикации этого соединения, токсичность сероводорода связана больше с его воздействующей концентрацией, чем с продолжительностью экс-позиции.
Хотя сероводород имеет сильный запах, его непрерывное низкоконцентрационное воздействие ведет к утрате чувства запаха. Это делает возможным токсический эффект для людей, которые несознательно могут подвергаться действию опасных уровней этого газа. Незначительные кон- центрации его в воздухе жилых помещений приводят к раздражению глаз, носоглотки. Умеренные уровни вызывают головную боль, головокружение, а также кашель и затруднение дыхания. Высокие уровни ведут к шоку, конвульсиям, коматозному состоянию, которые заканчиваются смертью. Оставшиеся в живых после острого токсического воздействия сероводорода испытывают неврологические дисфункции типа амнезии, тремора, нарушение равновесия, а иногда и более серьезного повреждения головного мозга.
Острая токсичность относительно высоких концентраций сероводорода хорошо известна, однако, к сожалению, имеется немного информации по хроническому низкодозо- вому воздействию этого компонента.
Радон. Радон (222Rn) также присутствует в природном газе и может быть доставлен по трубопроводам к газовым плитам, которые становятся источниками загрязнения. Так как радон распадается до свинца (период полураспада 210РЬ равен 3,8 дня), это приводит к созданию тонкого слоя радиоактивного свинца (в среднем толщиной 0,01 см), который покрывает внутренние поверхности труб и оборудования. Образование слоя радиоактивного свинца повышает фоновое значение радиоактивности на несколько тысяч распадов в минуту (на площади 100 см2). Удаление его очень сложно и требует замены труб.
Следует учитывать, что простого отключения газового оборудования недостаточно, чтобы снять токсическое воздействие и принести облегчение химически чувствительным пациентам. Газовое оборудование должно быть полностью удалено из помещения, так как даже не работающая газовая плита продолжает выделять ароматические соединения, которые она поглотила за годы использования.
Совокупные эффекты природного газа, влияние ароматических соединений, продуктов сгорания на здоровье человека точно не известны. Предполагается, что воздействие от нескольких соединений может умножаться, при этом реакция от воздействия нескольких загрязнителей может быть больше, чем сумма отдельных эффектов.
Таким образом, характеристиками природного газа, вызывающими беспокойство в отношении здоровья человека и животных, являются: огнеопасность и взрывоопасный характер;
асфиксические свойства;
загрязнение продуктами сгорания воздушной среды помещений;
присутствие радиоактивных элементов (радон);
содержание в продуктах сгорания высокотоксичных соединений;
присутствие следовых количеств ядовитых металлов;
содержание токсичных ароматических соединений, добавляемых к природному газу (особенно для людей с мно-жественной химической чувствительностью);
способность компонентов газа к сенсибилизации.

Горение газообразного топлива представляет собой сочетание следующих физических и химических процессов: смешение горючего газа с воздухом, подогрев смеси, термическое разложение горючих компонентов, воспламенение и химическое соединение горючих элементов с кислородом воздуха.

Устойчивое горение газовоздушной смеси возможно при непрерывном подводе к фронту горения необходимых количеств горючего газа и воздуха, их тщательном перемешивании и нагреве до температуры воспламенения или самовоспламенения (табл. 5).

Воспламенение газовоздушной смеси может быть осуществлено:

  • нагревом всего объема газовоздушной смеси до температуры самовоспламенения. Такой способ применяют в двигателях внутреннего сгорания, где газовоздушную смесь нагревают быстрым сжатием до определенного давления;
  • применением посторонних источников зажигания (запальников и т. д.). В этом случае до температуры воспламенения нагревается не вся газовоздушная смесь, а ее часть. Данный способ применяется при сжигании газов в горелках газовых приборов;
  • существующим факелом непрерывно в процессе горения.

Для начала реакции горения газообразного топлива следует затратить определенное количество энергии, необходимой для разрыва молекулярных связей и создания новых.

Химическая формула сгорания газового топлива с указанием всего механизма реакции, связанного с возникновением и исчезновением большого количества свободных атомов, радикалов и других активных частиц, сложна. Поэтому для упрощения пользуются уравнениями, выражающими начальное и конечное состояния реакций горения газа.

Если углеводородные газы обозначить С m Н n , то уравнение химической реакции горения этих газов в кислороде примет вид

C m H n + (m + n/4)O 2 = mCO 2 + (n/2)H 2 O ,

где m - количество атомов углерода в углеводородном газе; n - количество атомов водорода в газе; (m + n/4) - количество кислорода, необходимое для полного сгорания газа.

В соответствии с формулой выводятся уравнения горения газов:

  • метана СН 4 + 2O 2 = СO 2 + 2Н 2 O
  • этана С 2 Н 6 + 3,5O 2 = 2СO 2 + ЗН 2 O
  • бутана С 4 Н 10 + 6,5O 2 = 4СO 2 + 5Н 2 0
  • пропана C 3 H 8 + 5O 3 = ЗСO 2 + 4Н 2 O.

В практических условиях сжигания газа кислород берется не в чистом виде, а входит в состав воздуха. Так как воздух состоит по объему на 79 % из азота и на 21 % из кислорода, то на каждый объем кислорода требуется 100: 21 = 4,76 объема воздуха или 79: 21 = = 3,76 объема азота. Тогда реакцию горения метана в воздухе можно записать следующим образом:

СН 4 + 2O 2 + 2*3,76N 2 = CO 2 + 2H 2 O + 7,52N 2 .

Из уравнения видно, что для сжигания 1 м 3 метана требуется 1 м 3 кислорода и 7,52 м 3 азота или 2 + 7,52 = 9,52 м 3 воздуха.

В результате сгорания 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 водяных паров и 7,52 м 3 азота. В таблице ниже приведены эти данные для наиболее распространенных горючих газов.

Для процесса горения газовоздушной смеси необходимо, чтобы количество газа и воздуха в газовоздушной смеси было в определенных пределах. Эти пределы называются пределами воспламеняемости или пределами взрываемости. Различают нижний и верхний пределы воспламеняемости. Минимальное содержание газа в газовоздушной смеси, выраженное в объемных процентах, при котором происходит воспламенение, называется нижним пределом воспламеняемости. Максимальное содержание газа в газовоздушной смеси, выше которого смесь не воспламеняется без подвода дополнительной теплоты, называется верхним пределом воспламеняемости.

Количество кислорода и воздуха при сжигании некоторых газов

Для сжигания 1 м 3 газа требуется, м 3

При сжигании 1 м 3 газа выделяется, м 3

Теплота сгорания Он,кДж/м 3

кислорода

диоксида

углерода

Оксид углерода

Если в газовоздушной смеси содержится газа меньше нижнего предела воспламеняемости, то она не будет гореть. Если в газовоздушной смеси недостаточно воздуха, то горение протекает не полностью.

Большое влияние на величины пределов взрываемости оказывают инертные примеси в газах. Увеличение содержания в газе балласта (N 2 и СO 2) сужает пределы воспламеняемости, а при повышении содержания балласта выше определенных пределов газовоздушная смесь не воспламеняется при любых соотношениях газа и воздуха (таблица ниже).

Количество объемов инертного газа на 1 объем горючего газа, при котором газовоздушная смесь перестает быть взрывоопасной

Наименьшее количество воздуха, необходимое для полного сжигания газа, называется теоретическим расходом воздуха и обозначается Lt, то есть если низшая теплота сгорания газового топлива 33520 кДж/м 3 , то теоретически необходимое количество воздуха для сжигания 1 м 3 газа

L T = (33 520/4190)/1,1 = 8,8 м 3 .

Однако действительный расход воздуха всегда превышает теоретический. Объясняется это тем, что очень трудно достигнуть полного сгорания газа при теоретических расходах воздуха. Поэтому любая газовая установка для сжигания газа работает с некоторым избытком воздуха.

Итак, практический расход воздуха

L n = αL T ,

где L n - практический расход воздуха; α - коэффициент избытка воздуха; L T - теоретический расход воздуха.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет α = 1,05 - 1,2. Коэффициент α показывает, во сколько раз действительный расход воздуха превышает теоретический, принимаемый за единицу. Если α = 1, то газовоздушная смесь называется стехиометрической .

При α = 1,2 сжигание газа производится с избытком воздуха на 20 %. Как правило, сжигание газов должно проходить с минимальным значением а, так как с уменьшением избытка воздуха снижаются потери теплоты с уходящими газами. Воздух, принимающий участие в горении, бывает первичным и вторичным. Первичным называется воздух, поступающий в горелку для смешения в ней с газом; вторичным — воздух, поступающий в зону горения не в смеси с газом, а отдельно.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png