April 26th, 2015

Помните мы с вами обсуждали статью о том, что , но там еще писалось, что «сланцевые землетрясения пока еще остаются малоизученным и труднопрогнозируемым феноменом «

А вот теперь геологическая служба США представила первый официальный отчет о влиянии нефтегазовых разработок на сейсмическую активность. Ученые выявили 17 опасных зон в восьми штатах, а также заявили, что такого рода техногенные землетрясения могут достигать магнитуды в 7 баллов по шкале Рихтера - этого достаточно для обрушения зданий. О докладе сообщает издание Science News.

Геологам давно известно, что введение жидкости в подземные скважины способно поднять давление в порах глубинных пород - это наносит последний, решающий удар по разломам. Однако резкий рост числа слабых землетрясений в центральных штатах США в последние годы привлек особое внимание к этому явлению. Усиление сейсмической активности совпало с началом применения новых методов извлечения нефти и газа.

Речь идет, главным образом, о фрекинге (гидравлическом разрыве пласта), когда в подземные скважины вводится смесь под высоким давлением, в результате чего газ или нефть поступают к поверхности. Однако причиной подземных толчков обычно становится не сам фрекинг (занимает эта операция несколько часов, максимум дней), а закачка отработанных вод в подземные горизонты, где расположены более широкие и опасные разломы.

«Красные» зоны на карте (например, центральная Оклахома) по уровню сейсмической опасности уже приближаются к таким штатам, как Калифорния - эпицентр естественных землетрясений на западе страны. Пока наиболее разрушительным искусственным землетрясением в США было 5,6-балльное, эпицентр которого пришелся на город Прагу в Оклахоме (тогда рухнуло несколько десятков домов).

Но геофизики заявляют, что нефтегазовая промышленность способна и на большее. «Есть разломы достаточно крупные, чтобы вызвать землетрясение в семь баллов. Мы не исключаем такой возможности», - отметил соавтор доклада Джастин Рубинштайн (Justin Rubinstein).

Обычно карты сейсмической опасности составляются Геологической службой США в расчете на 50 лет (это также является средней «продолжительностью жизни» зданий). Однако интенсивность техногенных землетрясений зависит от быстро меняющихся факторов: скважины для сточных вод бурят в новых районах, падение цен на нефть заставляет останавливать добычу, правительства штатов меняют законы, регулирующие нефтегазовую отрасль.

По этой причине в новой карте учитывается вероятность землетрясений в пределах одного года. Кроме того, уже к концу 2015 года ее пересмотрят - но даже сейчас она приносит практическую пользу: власти, например, могут решить, какие мосты штата ремонтировать в первую очередь.

В последнее время и ученые, и официальные лица начали более серьезно относиться к угрозе техногенных землетрясений. Так, 21 апреля 2015 года Геологическая служба Оклахомы впервые признала, что недавнее учащение подземных толчков связано не с естественными причинами, а с закачиванием в пласты отработанной воды.

То, что изменение напряжений в земной коре при крупных оьбъемах добычи полезных ископаемых или углеводородов автоматически влечет за собой угрозы движения пластов земной коры, тем самым вызывая опасность землетрясений знают давно.

Одно из первых техногенных землетрясений, связанных с добычей нефти, произошло в 1939 году на месторождении Уилмингтон в Калифорнии. Оно стало началом целого цикла стихийных бедствий, которые привели к разрушению зданий, дорог, мостов, нефтяных скважин и трубопроводов. Проблему решили закачав воду в нефтеносный пласт. Но этот метод — далеко не панацея. Вода, закаченная в глубинные пласты, может повлиять на температурный режим массива и стать одной из причин возникновения землетрясения.

Месторождение протягивается через юго-западные районы города Лос-Анджелеса и через залив Лонг-Бич доходит до прибрежных кварталов одноименного курортного города. Площадь нефтегазоносности 54 км 2 . Месторождение было открыто в 1936 году, а уже в 1938 году стало центром нефтедобычи Калифорнии. К 1968 году из недр было добыто почти 160 млн. тонн нефти и 24 млрд. м 3 газа, всего же надеются получить здесь более 400 млн. тонн нефти.

Расположение месторождения в центре высокоиндустриальной и густонаселенной области южной Калифорнии, а также близость его к крупным нефтеперерабатывающим заводам Лос-Анджелеса имело важное значение в развитии экономики всего штата Калифорния. В связи с этим с начала эксплуатации месторождения до 1966 года на нем постоянно поддерживался наивысший уровень добычи по сравнению с другими нефтяными месторождениями Северной Америки.

В 1939 году жители городов Лос-Анджелес и Лонг-Бич почувствовали довольно ощутимые сотрясения поверхности земли — началось проседание грунта над месторождением. В сороковых годах интенсивность этого процесса усилилась. Наметился район оседания в виде эллиптической чаши, дно которой приходилось как раз на свод антиклинальной складки, где уровень отбора не единицу площади был максимален. В 60-х годах амплитуда оседания достигла уже 8,7 метров. Площади, приуроченные к краям чаши оседания, испытывали растяжение. На поверхности появились горизонтальные смещения с амплитудой до 23 см, направленные к центру района. Перемещение грунта сопровождалось землетрясениями.

В период с 1949 по 1961 годы было зафиксировано пять довольно сильных землетрясений. Земля в буквальном смысле слова уходила из-под ног. Разрушались пристани, трубопроводы, городские строения, шоссейные дороги, мосты и нефтяные скважины. На восстановительные работы потрачено 150 млн. долларов США. В 1951 году скорость проседания достигла максимума — 81 см/год. Возникла угроза затопления суши. Напуганные этими событиями, городские власти Лонг-Бича прекратили разработку месторождения до разрешения возникшей проблемы.

К 1954 году было доказано, что наиболее эффективным средством борьбы с проседанием является закачка в пласт воды. Это сулило также увеличение коэффициента нефтеотдачи. Первый этап работы по заводнению был начат в 1958 году, когда на южном крыле структуры стали закачивать в продуктивный пласт без малого 60 тыс.м 3 воды в сутки. Через десять лет интенсивность закачки уже возросла до 122 тыс.м 3 /сут. Проседание практически прекратилось.

В настоящее время в центре чаши оно не превышает 5 см/год, а по некоторым районам зафиксирован даже подъем поверхности на 15 см. Месторождение вновь вступило в эксплуатацию, при этом на каждую тонну отобранной нефти нагнетают около 1600 л воды. Поддержание пластового давления дает в настоящее время на старых участках Уилмингтона до 70% суточной добычи нефти. Всего на месторождении добывают 13700 т/сут нефти.

В последнее время появились сообщения о проседании дна Северного моря в пределах месторождения Экофиск после извлечения из его недр 172 млн.т нефти и 112 млрд. м 3 газа. Оно сопровождается деформациями стволов скважин и самих морских нефтяных платформ. Последствия трудно предсказать, но их катастрофический характер очевиден.

Проседание грунта и землетрясения происходят и в старых нефтедобывающих районах России. Особенно это сильно чувствуется на Старогрозненском месторождении. Слабые землетрясения, как результат интенсивного отбора нефти из недр, ощущались здесь в 1971 году, когда произошло землетрясение интенсивностью 7 баллов в эпицентре, который был расположен в 16 км от г. Грозного. В результате пострадали жилые и административные здания не только поселка нефтяников на месторождении, но и самого города. На старых месторождениях Азербайджана — Балаханы, Сабунчи, Романы (в пригородах г. Баку) происходит оседание поверхности, что ведет к горизонтальным подвижкам. В свою очередь, это является причиной смятия и поломки обсадных труб эксплуатационных нефтяных скважин.

Совсем недавние отголоски интенсивных нефтяных разработок произошли в Татарии, где в апреле 1989 году было зарегистрировано землетрясение силой до 6 баллов (г. Менделеевск). По мнению местных специалистов, существует прямая зависимость между увеличением добычи нефти из недр и активизацией мелких землетрясений. Зафиксированы случаи обрыва стволов скважин, смятие колонн. Подземные толчки в этом районе особенно настораживают, ведь здесь сооружается Татарская АЭС. Во всех этих случаях одной из действенных мер также является нагнетание в продуктивный пласт воды, компенсирующей отбор нефти.

Не менее 20% землетрясений, происходящих в последние годы в американском штате Оклахома, вероятнее всего, связаны с добычей газа, которая производится методом гидравлических разрывов пласта, сообщается в опубликованном в научном журнале Science исследовании. С начала года в Оклахоме на юге центральной части США было зарегистрировано уже 240 землетрясений магнитудой 3,0 или выше, что вдвое больше подземных толчков такой силы, чем в Калифорнии, которая считается «сейсмическим центром» страны. При этом до 2008 года, когда в Оклахоме началась массовая добыча газа и нефти путем закачивания в скважины воды, в штате отмечалось не более одного землетрясения такой силы в год.

Ученые из Корнелльского университета и других организаций в своем исследовании пришли к выводу, что пятая часть всех землетрясений в штате связана с четырьмя крупнейшими скважинами по добыче газа юго-восточнее города Оклахома-сити. По мнению исследователей, деятельность на этих объектах может вызывать подземные толчки в радиусе до 35 километров от их расположения.

Один из авторов доклада, преподаватель Колумбийского университета Джеффри Эйберс (Geoffrey Abers) исключил природное происхождение всплеска сейсмической активности в Оклахоме. «Такое большое число повторяющихся землетрясений не может быть частью природной системы», - цитирует ученого британская газета Guardian. Местные власти в США и ранее связывали серии землетрясений с новыми методами добычи полезных ископаемых, активно внедряющимися в стране последние годы. Обнародованный в четверг доклад впервые придает этим догадкам научное обоснование.

Начав эксплуатацию месторождений нефти и газа, человек, сам того не подозревая, выпустил джина из бутылки. Поначалу казалось, что нефть приносит людям только выгоду, но постепенно выяснилось, что использование ее имеет и оборотную сторону. Чего же больше приносит нефть, пользы или вреда? Каковы последствия ее применения? Не окажутся ли они роковыми для человечества?

источники

http://lenta.ru/news/2015/04/24/oilgasearthquakes/

http://www.nefteblog.ru/blog/zemletrjasenie_v_kalifornii_iz_za_dobychi_nefti/2014-06-25-71

http://www.krugosvet.ru/enc/Earth_sciences/geologiya/ZEMLETRYASENIYA.html

http://www.earth-shaking.ru/texnogennye_zemletryaseniya.html

Но это еще не все, о чем стоит беспокоиться в США, вот например многие ждут . Вот еще знаменитый , а вот еще как в США происходил Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.

Землетрясения искусственного характера

Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при подземном ядерном взрыве (тектоническое оружие). Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в 2006 году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

Симптомы: Землетрясение, как правило, происходит глубокой ночью

или на рассвете и начинается с легкого дрожания земли, сопровождающегося

сильным подземным гулом.

Вслед за этим, порой стремительно, возникает серия сильных толчков, способных

вызвать извержение вулкана, камнепад и даже разрывы земной поверхности.

Участки земли могут подниматься и опускаться, провоцируя, в свою очередь,

оползни и цунами - гигантские приливные волны, внезапно обрушивающиеся на прибрежные зоны (они ещё называются сейсмическими волнами).

И наконец, в завершающей стадии землетрясения наблюдается уменьшение силы вибрации (из-за которой у многих начинается сильное недомогание и «морская болезнь на суше».

Опасные и вредные факторы землетрясений:

В результате воздействия поражающих факторов образуются зоны, опасные для безопасности жизнедеятельности людей и оказывающие влияние на устойчивость функционирования объектов жизнедеятельности. На территории зоны могут возникать очаги поражения. Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Причиной землетрясения является быстрое смещение участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряженных пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли. Само смещение происходит под действием упругих сил в ходе процесса разрядки - уменьшения упругих деформаций в объёме всего участка плиты и смещения к положению равновесия. Землетрясение представляет собой быстрый (в геологических масштабах) переход потенциальной энергии, накопленной в упругодеформированных (сжимаемых, сдвигаемых или растягиваемых) горных породах земных недр, в энергию колебаний этих пород (сейсмические волны), в энергию изменения структуры пород в очаге землетрясения. Этот переход происходит в момент превышения предела прочности пород в очаге землетрясения.

2 Изучение землетрясений

Научная геология (ее становление относится к XVIII веку) сделала правильные выводы о том, что сотрясаются главным образом молодые участки земной коры. Во второй половине XIX века уже была выработана общая теория, согласно которой земная кора была подразделена на древние стабильные щиты и молодые, подвижные горные массивы. Выяснилось, что молодые горные системы - Альпы, Пиренеи, Карпаты, Гималаи, Анды - подвержены сильным землетрясениям, в то время как древние щиты являются областями, где сильные землетрясения отсутствуют.Информация, полученная при регистрации землетрясений, очень важна для науки, она дает сведения как об очаге землетрясения, так и о строении земной коры в отдельных областях и Земли в целом. Примерно через 20 мин после сильного землетрясения о нем узнают сейсмологи всего земного шара. Для этого не нужно ни радио, ни телеграфа.

Как это происходит? При землетрясении перемещаются, колеблются частицы горных пород. Они толкают, колеблют соседние частицы, которые передают колебания еще дальше в виде упругой волны.

Таким образом, сотрясение как бы передается по цепочке и расходится в виде упругих волн во все стороны. Постепенно, по мере удаления от очага землетрясения, волна ослабевает.

Известно, например, что упругие волны передаются по рельсам далеко вперед от мчащегося поезда, наполняя их ровным, чуть слышным гулом. Упругие волны, которые возникают при землетрясении, называются сейсмическими. Они регистрируются сейсмографами на сейсмических станциях всего земного шара. Сейсмические волны, идущие от очага землетрясения к сейсмическим станциям, проходят через толщи Земли, которые недоступны для прямого наблюдения. Характеристики зарегистрированных сейсмических волн - время их появления, амплитуда, период колебаний и другие параметры - позволяют определять положение эпицентра землетрясения, его магнитуду, возможную силу в баллах. Сейсмические волны несут и информацию о строении Земли. Расшифровать сейсмограмму - все равно что прочитать рассказ сейсмических волн о том, что они встретили в глубине Земли. Это сложная, но увлекательная задача. При землетрясении вдоль поверхности Земли, как и вдоль океанов, распространяются очень длинные поверхностные сейсмические волны с периодами от нескольких секунд до нескольких минут. Эти волны по нескольку раз обегают вокруг Земли. Распространяясь от эпицентра навстречу друг другу, они заставляют колебаться весь земной шар в целом. Земной шар начинает «звучать», как гигантский колокол, когда по нему ударят, и таким ударом для Земли служит сильное землетрясение. В последние годы установлено, что основной тон такого «звучания (колебания) имеет период около одного часа и регистрируется особо чувствительной аппаратурой. Эти данные путем сложных расчетов на электронно-вычислительной машине позволяют делать выводы о физических свойствах нашей планеты, определять строение оболочки или мантии Земли на глубине в сотни километров.

В особом приборе - сейсмографе, отмечающем землетрясения, используется свойство инерции. Главная часть сейсмографа - маятник - представляет собой груз, подвешенный на пружине к штативу. Когда почва колеблется, маятник сейсмографа отстает от ее движения. Если к маятнику прикрепить иглу и к ней прижать закопченное стекло так, чтобы игла лишь соприкасалась с его поверхностью, получится наиболее простой сейсмограф, которым пользовались раньше. Почва, а вместе с ней штатив и стеклянная пластинка колеблются, маятник и игла вследствие инерции остаются неподвижными. На закопченной поверхности игла прочертит кривую колебания поверхности Земли в данной точке.

Если вместо иглы к маятнику прикрепить зеркало и направить на него луч света, то отраженный луч - «зайчик» - будет воспроизводить колебания почвы в увеличенном виде. Такой «зайчик» направляют на равномерно движущуюся ленту фотобумаги; после проявления на этой ленте можно видеть записанные колебания - кривую колебаний Земли во времени - сейсмограмму.

Интенсивность или сила землетрясений характеризуется как в баллах (мера разрушений), так и понятием магнитуда (высвобожденная энергия). В России используется 12-балльная шкала интенсивности землетрясений MSK – 64, составленная С.В.Медведевым, В. Шпонхойером и В. Карником.

Согласно этой шкале, принята следующая градация интенсивности или силы землетрясений:

1 –3 балла – слабые;

4 – 5 баллов – ощутимые;

6 – 7 баллов – сильные (разрушаются ветхие постройки);

8 – разрушительное (частично разрушаются прочные здания, заводские трубы);

9 – опустошительное (разрушаются большинство зданий);

10 – уничтожающее (разрушаются почти все здания, мосты, возникают обвалы и оползни)

11 – катастрофические (разрушаются все постройки, происходит изменение ландшафта);

12 – губительные катастрофы (полное разрушение, изменение рельефа местности на обширной площади).

Сейсмологи во всем мире пользуются одинаковыми определениями в сейсмологии:

а) сейсмическая опасность – возможность (вероятность) сейсмических воздействий определённой силы на поверхности земли (в баллах шкалы сейсмической интенсивности, амплитудах колебаний или ускорениях) на заданной площади в течение рассматриваемого интервала времени;

б) сейсмический риск – рассчитанная вероятность социального и экономического ущерба от землетрясений на заданной территории в заданный интервал времени.

Новый шаг в мировой сейсмологии сделал еще в 1902 г. академик Б. Б. Голицын, который предложил способ преобразования механических колебаний сейсмографа в электрические и регистрацию их с помощью зеркальных гальванометров.

Модель землетрясения.Типы сейсмических волн.

Сейсмические волны делятся на волны сжатия и волны сдвига.

· Волны сжатия, или продольные сейсмические волны, вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Волны сжатия также называют первичными (P-волны). Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.

· Волны сдвига, или поперечные сейсмические волны, заставляют частицы пород колебаться перпендикулярно направлению распространения волны. Волны сдвига также называют вторичными (S-волны).

Существует ещё третий тип упругих волн -- длинные или поверхностные волны (L-волны). Именно они вызывают самые сильные разрушения.

3 Статистика по землетрясениям.

Землетрясение - это природное явление, не всегда поддающееся предсказаниям, может нанести огромный ущерб. За последние 500 лет на Земле от землетрясений погибло около 4,5 млн. человек. Международная статистика землетрясений свидетельствует о том, что в период с 1947 по 1970 гг. погибли 151 тыс. человек, с 1970 по 1976 гг. - 700 тыс. человек, а с 1979 по 1989 гг. погибли 1,5 млн. человек.

Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.

Землетрясения искусственного характера

Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при подземном ядерном взрыве(тектоническое оружие). Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в 2006 году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

Катастрофические землетрясения

Из огромного числа происходящих ежегодно землетрясений, только одно имеет магнитуду равную или более 8, десять -- 7-7,9, сто -- 6-6,9. Всякое землетрясение с магнитудой св. 7 может стать крупной катастрофой. Однако оно может остаться и незамеченным, если произойдет в пустынном районе. Так, грандиозная природная катастрофа -- Гоби-Алтайское землетрясение (1957; магнитуда 8,5, интенсивность 11-12 баллов) -- остается почти не изученной, хотя из-за огромной силы, малой глубины очага и отсутствия растительного покрова это землетрясение оставило на поверхности полную и многообразную картину (возникли 2 озера, мгновенно образовался огромный надвиг в виде каменной волны высотой до 10 м, максимальное смещение по сбросу достигло 300 м и т. п.). Территория шириной 50-100 км и длиной 500 км (как Дания или Голландия) была полностью разрушена. Если бы это землетрясение произошло в густонаселенном районе, число жертв могло измеряться миллионами. Последствия одного из самых сильных землетрясений (магнитуда могла составлять 9), произошедшего в старейшем районе Европы -- Лиссабоне -- в 1755 и захватившего территорию свыше 2,5 млн. км 2 , были столь грандиозны (погибло 50 тыс. из 230 тыс. горожан, в гавани выросла скала, прибрежное дно стало сушей, изменилось очертание побережья Португалии) и так поразили европейцев, что Вольтер откликнулся на него «Поэмой о гибели Лиссабона» (1756, русский перевод 1763). По-видимому, впечатление от этой катастрофы было столь сильным, что Вольтер в поэме оспаривал учение о предустановленной мировой гармонии. Сильные землетрясения, как бы они ни были редки, никогда не оставляют современников равнодушными. Так, в трагедии У. Шекспира «Ромео и Джульетта» (1595) кормилица вспоминает землетрясение 1580, которое, судя по всему, пережил сам автор.

КЕМЕРОВСКИЙ ОБЪЕДИНЕННЫЙ УЧЕБНО-МЕТОДИЧЕСКИЙ ЦЕНТР ПО ГО И ЧС

МАТЕРИАЛ

для проведения занятий по программе дополнительной подготовки населения сейсмоопасных территорий Кемеровской области .

Кемерово. 2005г.

Предлагаемый материал рекомендуется в качестве пособия для проведения занятий по темам программы дополнительной подготовки учащихся образовательных учреждений сейсмоопасных территорий Кемеровской области к действиям при угрозе и возникновении чрезвычайных ситуаций, связанных с землетрясениями.

Материал подготовлен Кемеровским объединённым УМЦ по ГО и ЧС в соответствии с требованиями распоряжения администрации Кемеровской области от 01.01.2001 года.

ТЕМА №1 «ЗЕМЛЕТРЯСЕНИЯ. ИХ ПРОИСХОЖДЕНИЕ И ХАРАКТЕРИСТИКА»

Вероятность того, что вам когда-нибудь придется испытать землетрясение, и в самом деле довольно велика. С большинством людей это случается несколько раз в течение их жизни, и для многих встреча с землетрясением оказывается достаточно серьезной. В среднем по Земле один человек из каждых 8000 погибает при землетрясении, и вдесятеро больше за свою жизнь так или иначе страдают от землетрясения.

Землетрясение – подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии Земли и передающееся на большие расстояния в виде упругих колебаний.

По причинам возникновения землетрясения делятся на природные и антропогенные . Землетрясения природного характера возникают в результате тектонических процессов в коре Земли, при извержении вулканов, сильных обвалах, оползнях, обрушении карстовых пустот, падении метеоритов, столкновении Земли с космическими объектами.

Землетрясения антропогенного характера возникают в результате деятельности человека и являются следствием взрывов большой мощности, обрушения подземных инженерных сооружений, продавливания верхнего слоя земной поверхности при сооружении искусственных водохранилищ с большим объемом содержания воды, возведения городов с высокой плотностью застройки многоэтажными зданиями.

Землетрясения бывают вулканические , провальные , или обвальные , глубокофокусные , связанные с ударами о Землю космических тел, наведенные землетрясения , тектонические.

Вулканические землетрясения являются следствием локального извержения лавы и взрывов газов. Они встречаются сравнительно редко, слабы по интенсивности и имеют ограниченную сферу влияния.

Провальные, или обвальные землетрясения вызываются обширными обвалами карстовых пустот внутри Земли, заброшенных рудников, выгоревших торфяников. При этом сейсмические волны имеют незначительную силу и распространяются на небольшие расстояния.

Глубокофокусные землетрясения происходят на очень больших глубинных под Землей (около 700 км). Причины их изучены мало. Они очень мощные, но из-за удаления очага от поверхности Земли на сотни километров не представляют собой большой опасности.

Землетрясения, связанные с ударами о Землю космических тел , являются результатом ударов о Землю или взрывов в околоземном пространстве метеоритов, астероидов , комет.

Наведенные землетрясения возникают в результате деятельности человека, например, при сооружении искусственных водохранилищ с большим запасом воды, строительстве многоэтажных зданий на ограниченной площади, добычи полезных ископаемых , создании подземных хранилищ, взрывах большой мощности.

Тектонические землетрясения.

Наиболее разрушительными и часто повторяющимися из перечисленных выше землетрясений, являются тектонические . Они – результат внезапного разрыва сплошного вещества Земли и смещения отдельных участков земной коры. Согласно теории земная кора состоит из 7 основных (больших) и 12 малых плит, расположенных относительно друг друга под разными углами и соединенных между собой участками меньшей прочности. Плиты находятся в постоянном движении, перемещаются под воздействием конвекционных течений, поднимающихся из высокотемпературных глубин. Таким образом, границы между плитами являются геологически активными зонами, называются сейсмическими швами . Одни плиты двигаются навстречу друг другу и иногда даже перекрываются, другие расходятся в стороны, третьи скользят вдоль границ противоположных направлениях. Каждый тип этих движений порождает определенный тип разломов, и все они вызывают тектонические землетрясения. Пока дрейф плит проходит беспрепятственно, землетрясения бывают слабыми. Но когда плиты надвигаются друг на друга и их движение тормозится, тогда горная порода, образующая громадные блоки, начинает деформироваться. В ней, как и в пружине, накапливается упругая энергия, тем большая, чем больший объем охвачен деформациями, пока не будет превзойдена прочность горной породы. Как только это происходит и порода начинает разрушаться, блоки получают возможность подвигаться скачками, а тектоническая энергия, накопленная в породе, освобождается в виде сейсмических волн – происходит сильное землетрясение.

Время от времени в мире случаются и землетрясения во внутренних частях плит – так называемое внутриплитовые землетрясения .

Область возникновения подземного удара в толще земной коры или верхней мантии, являющегося причиной землетрясения, называют очагом землетрясения . Он может находится на разной глубине: от нескольких до десятков, а порой и сотен километров. Наиболее опасными являются землетрясения с глубиной расположения очага 10 – 100 км.

Центр очага землетрясения называется гипоцентром , а его проекция на земной поверхности – эпицентром . Эпицентр и прилегающая к нему область называются плейстосейсмовой зоной . Она характеризуется наибольшим воздействием землетрясения и самыми большими разрушениями.

Сейсмические волны

Большая часть выделившейся при землетрясении упругой энергии расходуется на разламывание и дробление пород, на вертикальное и горизонтальное смещение примыкающих блоков земной коры и на образование тепла. Небольшая часть энергии излучается во всех направлениях в окружающее пространство в виде сейсмических волн, которые распространяются в теле Земли. Когда волны достигают земной поверхности, они порождают те колебания почвы, которые мы воспринимаем как землетрясение.

Существуют два основных типа сейсмических волн - объемные волны , распространяющиеся в объеме (или теле) Земли и подобные звуковым волнам, и поверхностные волны , идущие вдоль земной поверхности, подобно морским волнам.

Объемные волны образуются непосредственно при вспарывании пород. Они излучаются в окружающей среде во всех направлениях, ослабевая по мере удаления от источника. Когда сейсмические волны сталкиваются с резким изменением свойств вещества в Земле или достигают ее поверхности, они отражаются и преломляются, образуя объемные волны нескольких типов. Однако два основных типа объемных волн - это волны Р (от латинского primae - первые) и S (secondae - вторые).

Волны Р, бегущие быстрее волн S, приходят в точку наблюдения первыми и вызывают там первый толчок, сигнализирующий о том, что произошло землетрясения. Волны S обычно запаздывают на несколько секунд, вызывая следующий, обычно более резкий удар.

В волнах Р частицы среды движутся вперед и назад вдоль направления распространения волны, поэтому для этой волны произошло бы название «тяни-толкай». Когда частицы движутся вперед-назад, они по очереди то сжимают, то растягивают вещество, совсем как в подводной звуковой волне.

Волны S совсем иные, так как в них отдельные части вещества колеблются перпендикулярно направлению распространения волн; по этой причине волны S часто называют поперечными (поскольку волны S создают в веществе не сжатия, а сдвиговые напряжения, их называют также сдвиговыми волнами).

Движение, которое мы ощущаем в любой точке земной поверхности, является результатом наложения волн разных типов. Измерение этого движения – нелегкая задача, но именно такие измерения служат нам для определения магнитуды и других характеристик землетрясений.

Сейсмографы.

Приборы, которые записывают движение грунта при землетрясениях, называются сейсмографами . Записи сейсмографов, называемые сейсмограммами , используются для определения местоположения и магнитуды землетрясений.

Сейсмограмма показывает, как изменяется во времени смещение почвы. Пока нет землетрясения, на сейсмограмме чертится прямая линия, которую нарушают лишь небольшие подрагивания – отзвуки местных помех («шумы»). Та движущаяся составная часть сейсмографа, в которой непосредственно образуется сейсмограмма, называется сейсмометром . Обычно это маятник или груз, подвешенный на пружине. В сейсмометре установлен также механизм затухания, важный для точного воспроизведения движений. Движение сейсмографа преобразуется в сейсмограмму одним из следующих способов: перо оставляет чернильную линию на бумаге, надетый на вращающийся барабан; световой луч оставляет свой след на движущейся фотопленке; электромагнитная система генерирует ток, который с помощью электронного устройства записывается на магнитной ленте.

Движение грунта в любой точке происходит в трех измерениях. Это значит, что точка движется в пространстве, а не просто в плоскости или по прямой. Чтобы полностью записать такое движение, каждый сейсмограф должен состоять из трех сейсмометров, движущихся в трех взаимно перпендикулярных направлениях (двух горизонтальных и одном вертикальном) и позволяющих получать соответствующие сейсмограммы. По трем движениям во взаимно перпендикулярных направлениях сейсмологи могут построить истинные движения грунта в пространстве.

Определение координат очага землетрясения.

Волны P, S распространяются с разной скоростью и приходят с разных сторон, поэтому они регистрируются станцией в разное время. В различных скальных породах скорости волн Р равны 3-8 км/с км/ч), а волн S – 2-5 км/скм/ч). Точное время прихода каждой волны определяется по отметкам времени, имеющимся на сейсмограмме. По времени прихода волн Р и S, зная скорости распространения этих волн, можно рассчитать расстояние от места установки приборов до гипоцентра землетрясения. После того, как для нескольких станций определены расстояния до гипоцентра, можно определить координаты гипоцентра и эпицентра. И только после этого можно приступать к определению магнитуды землетрясения по Рихтеру.

Магнитуда Рихтера.

Магнитуда – это мера полной энергии сейсмических волн. Разработанная Ч. Рихтером количественная шкала для оценки энергии очага (или интенсивности в очаге) землетрясения по своей идее сродни той, которая используется астрономами для градуировки звезд по шкале звездных величин, основанной на сравнительной яркости звезд при наблюдении через телескоп. Рихтер определил магнитуду как число, пропорциональное десятичному логарифму амплитуды (выраженной в микрометрах) наиболее сильной волны, записанной стандартным сейсмографом на расстоянии 100 км от эпицентра землетрясения.

Поскольку шкала магнитуд логарифмическая, увеличение магнитуды на единицу означает десятикратное возрастание амплитуды колебаний волне (или смещения грунта). Амплитуды сейсмических волн у землетрясения с магнитудой 6,0 в 10 раз больше, чем у землетрясения с магнитудой 5,0, в 100 раз больше, чем у землетрясения с магнитудой 4,0 и в 1000 раз больше, чем у землетрясения с магнитудой 3,0. Нулевая магнитуда не означает, что землетрясения нет; поскольку ноль – это логарифм единицы, такое землетрясение записывается стандартным сейсмографом на расстоянии 100 км с амплитудой в 1 мкм. Землетрясение с магнитудой 0 и в самом деле очень слабое, совершенно неощутимое для людей, однако оно вполне может быть записано сейсмографом. Можно обнаружить и измерить даже еще более слабые землетрясения с магнитудами -1, -2, -3.

Самое слабое из ощутимых землетрясений имеет магнитуду 1,5, а наименьшее землетрясение, способное причинить ущерб (хотя бы и минимальный), - около 4,5.

В самой шкале верхний предел магнитуды не предусмотрен, так как это расчетная величина. По этой причине шкалу Рихтера часто называют «открытой» шкалой. В действительности же сама Земля создает практический верхний предел, подобно тому, как чувствительность аппарата создает нижний предел. Сильнейшее из когда-либо зарегистрированных землетрясений имели магнитуду 8,9.

Акселерографы.

Сейсмографы предназначены для записи малых перемещений грунта, вызываемых удаленными землетрясениями. Сейсмологи используют их для определения положения гипоцентров, оценки магнитуд и изучения механизма землетрясений. Инженеров, однако, интересует, как ведут себя конструкции, подвергающиеся воздействию сильных колебаний грунта при близких землетрясениях, т. е. тому виду сотрясений который приносит ущерб. Чтобы записать эти колебания грунта, требуется другой тип приборов, способный измерить не смещение почвы, а ее ускорение. Такие приборы называются акселерографами , а система из груза и подвеса внутри акселерографа – это акселерометр . Полученная запись, называемая акселерограммой , внешне похожа на сейсмограмму, но ее математические характеристики совсем иные. Акселерографы в отличие от сейсмографов не имеют системы непрерывной регистрации; вместо этого они включаются от самого землетрясения и имеют питание от батарей (поскольку при сильных землетрясениях электричество часто отключается). Акселерографы предназначены для измерения сильных местных землетрясений и не реагируют на удаленные землетрясения. Сейсмографы, напротив, достаточно чувствительны, чтобы обнаружить землетрясение, происшедшее в любом месте земного шара, однако их «зашкаливает», когда землетрясение происходит неподалеку.

Интенсивность.

Еще сотни лет назад люди пытались оценить величину землетрясения по размерам причиненного им ущерба. Если одно землетрясение разрушило больше зданий, чем другое, его можно считать более сильным. Хотя такой подход кажется естественным, он может привести к заблуждениям. Ведь объем разрушений очень сильно зависит от расстояния до гипоцентра и от местных факторов, например от качества построек и от свойств грунта. Сегодня мы называем степень ущерба в определенном месте интенсивностью землетрясения и измеряем ее в баллах с помощью специальной цифровой шкалы. Для каждого землетрясения существует лишь одна магнитуда по Рихтеру, однако это землетрясение может вызвать сотрясения различной интенсивности: от высокой в наиболее сильно пострадавших районах и до самой низкой, не связанной ни с каким ущербом, - вдали от эпицентра.

Интенсивность не является непосредственно измеряемой величиной; ее определение полностью субъективно. Чтобы получить значение интенсивности, надо обследовать пострадавшие районы, осмотреть повреждения зданий, резервуаров, дорог, каналов, горных склонов и всего того, что могло испытать воздействие землетрясения.

Интенсивность обозначается римскими цифрами, чтобы избежать путаницы с магнитудой и шкала ее содержит баллы от I до XII. Первоначальный вариант этой шкалы возник в 1902 г. Его предложил в Италии Джузеппе Меркалли. В нашей стране и ряде европейских стран для оценки интенсивности землетрясений используется 12-баллльная международная шкала MSK-64.

Условно землетрясения подразделяются на слабые (I-IV балла), сильные (V-VII баллов) и сильнейшие (разрушительные – восемь баллов и более).

Шкала Меркалли для оценки интенсивности землетрясений

(MSK -64)

I. Землетрясение людьми не ощущается (за исключением единичных наблюдателей, находящихся в особо чувствительных условиях), толчки регистрируются специальными приборами.

II. Землетрясение очень слабое. Колебания ощущаются лишь немногими людьми, находящимися в покое, особенно на верхних этажах зданий.

III. Землетрясение слабое. Колебания заметно ощущаются в помещениях, особенно на верхних этажах зданий: раскачиваются подвешенные предметы, открытые двери. Стоящие автомобили могут слегка покачиваться на рессорах. Чувствуется вибрация, как от прошедшей поблизости грузовой автомашины. Можно оценить длительность землетрясения.

IV. Умеренное землетрясение. Оно ощущается многими, кто находится в помещении, и лишь немногими – на открытом воздухе. В ночное время некоторые спящие просыпаются. Раскачиваются подвешенные предметы, дребезжат окна, хлопают двери, звенит посуда, трещат деревянные стены и каркасы. Стоящие у дома автомашины заметно покачиваются на рессорах.

V. Довольно сильное землетрясение. Ощущается почти всеми, просыпаются спящие. Двери раскачиваются на петлях, закрываются, открываются, стучат ставни. Жидкость в сосудах колеблется, иногда расплескивается. Бьется часть посуды, трескаются стекла в окнах, местами появляются трещины в штукатурке, опрокидывается неустойчивая мебель. Маятниковые часы останавливаются, начинают идти, замедляют ход. Иногда наблюдается раскачивание столбов, деревьев и других высоких предметов.

VI. Сильное землетрясение. Ощущается всеми. Многие в испуге выбегают из домов. Походка становится неустойчивой. Бьются окна, тарелки, стеклянная посуда. Книги, отдельные предметы падают с полок. Падают картины. Приходит в движение и опрокидывается мебель. Появляются трещины в штукатурке и кладке. Заметно сотрясаются деревья и кусты, слышен шелест листьев.

VII. Очень сильное землетрясение. Трудно держаться на ногах. Все жители выбегают из домов. Дрожат повешенные предметы. Ломается мебель. Многие здания получают значительные повреждения. Печные трубы обламываются на уровне крыш. Обваливаются штукатурка, плохо уложенные кирпичи, камни, черепица, карнизы, а также неукрепленные парапеты и архитектурные украшения. Появляются трещины в сухих грунтах. Происходят небольшие оползни и провалы на песчаных и гравийных склонах. Звонят большие колокола. Мутнеет вода в водоемах и реках от ила. Повреждаются бетонные оросительные каналы.

VIII. Разрушительное землетрясение. Типовые здания получают значительные повреждения, иногда частично разрушаются. Ветхие постройки разрушаются. Происходит отрыв панелей от каркасов. Поворачиваются и падают печные и фабричные трубы, памятники, башни, колонны, водонапорные башни. Ломаются подгнившие сваи. Обламываются ветви на деревьях, возникают трещины во влажном грунте и на крутых склонах. Изменяется температура воды в источниках и колодцах.

IX. Опустошительное землетрясение. Общая паника. Дома разрушаются. Серьезно повреждаются плотины и борта водохранилищ. Рвутся подземные трубопроводы. Появляются значительные трещины на земной поверхности.

X. Уничтожающее землетрясение. Большая часть построек разрушается до основания. Обрушиваются некоторые хорошо построенные деревянные здания и мосты серьезно повреждаются плотины, дамбы, насыпи. На земной поверхности появляются многочисленные трещины (в отдельных случаях – до 1 м шириной). Возникают большие оползни, вода выплескивается из каналов, рек, озер т. д. Приходит в движение песчаные и глинистый грунт на пляжах и низменных участках. Слегка изгибаются рельсы на железных дорогах. Ломаются ветки и стволы деревьев. Животные мечутся и кричат.

XI. Катастрофа. Только немногие каменные здания сохраняют устойчивость. Разрушаются плотины насыпи, мосты. Видны широкие трещины на поверхности земли. Подземные трубопроводы полностью выходят из строя. Сильно вспучиваются рельсы на железных дорогах. Сплывы и оползни на рыхлых грунтах.

XII. Сильная катастрофа. Полное разрушение зданий и сооружений. На глазах до неузнаваемости изменяется ландшафт, смещаются крупные скальные массивы, на поверхности земли появляются волны, образуются водопады , возникают новые озера, изменяются русла рек. Растительный и животный мир погибают от обвалов и осыпей в горных районах. Обломки грунта, предметов летают в воздухе.

Примерное соотношение между магнитудой по Рихтеру и максимальной интенсивностью по шкале ММ

Магнитуда по Рихтеру

Максимальная интенсивность по шкале ММ

Типичные эффекты

Как правило, не ощущается населением.

Ощущается некоторыми внутри зданий; повреждения отсутствуют.

Ощущается большинством людей; отсутствуют повреждения построек.

Небольшие повреждения зданий: трещины в стенах и печных трубах.

Умеренные повреждения: сквозные трещины в слабых стенах, падение неукрепленных печных труб

Большие повреждения: обрушения зданий плохой постройки, трещины в прочных зданиях.

Всеобщее и почти полное разрушение

Разработали преподаватели

Обсуждена на методическом совещании КОУМЦ ГОЧС.

ТЕМА №2 «ОПАСНОСТИ ЗЕМЛЕТРЯСЕНИЯ ДЛЯ НАСЕЛЕНИЯ»

Последствия землетрясений.

Последствия тектонических землетрясений многообразны и чрезвычайно опасны. Под их влиянием оказываются большие территории, в результате чего уничтожаются материальные ценности, нарушается экологическая обстановка, изменяются климат и ландшафт местности, возникают пожары, повреждается система коммунального хозяйства , уничтожаются сельскохозяйственные, природные угодья.

Поражения обломками разрушенных зданий, длительные нахождение в завалах, отсутствие своевременной помощи, паника приводят к травмам и гибели большого числа людей.

Землетрясения способны вызвать пожары вследствие разрушения печей, повреждения электрических сетей, технологического оборудования, на котором используется легковоспламеняющиеся вещества, хранилищ газа и топлива.

Выброс радиоактивных, аварийно химически опасных и других веществ происходит из-за повреждений или разрушений хранилищ, коммуникаций, технологического и исследовательского оборудования на объектах атомной энергетики , химической промышленности , коммунального хозяйства и других отраслей, научных учреждениях.

Следствием воздействия сейсмических волн на транспортные средства и элементы транспортных коммуникаций является транспортные аварии и катастрофы.

Повреждение или нарушение систем тепловодоснабжения, средств связи приводит к кризису в обеспечении жизнедеятельности населения.

Утрата государственного, общественного и личного достояния происходит вследствие разрушения или повреждения зданий, сооружений, коммуникаций, технических средств и комплексов, сельскохозяйственных и природных угодий, действия вторичных факторов землетрясения.

Для уменьшения отрицательных последствий землетрясений целесообразно проводить сейсмические наблюдения, использовать сейсмостойкие и технологии, постоянно повышать уровень подготовки населения к действиям в условиях землетрясений.

Правовые основы обеспечения сейсмобезопасности населения

Население России живет в условиях нарастания угроз и постоянного воздействия ЧС природного и техногенного характера. И с каждым годом они приобретают все более масштабный и устойчивый характер. На территории России большим разнообразием геологических, климатических и ландшафтных особенностей, встречается более 30 опасных природных явлений, среди которых наиболее разрушительными являются: наводнения, землетрясения, оползни, сели, смерчи, лавины и т. д.

Основным документом, определяющим общие для Российской Федерации организационно-правовые нормы в области защиты граждан РФ и окружающей природной среды, является Федеральный закон «О защите населения и территорий от ЧС природного и техногенного характера» от 21.12.94 г. .

Более 50 процентов территории России подвержены влиянию землетрясений, вызывающих катастрофический или серьезный ущерб.

На сейсмоопасных территориях – Камчатке, Сахалине , в Бурятии , Прибайкалье и особенно на Северном Кавказе сильные землетрясения, как правило, вызывали не только миллиардные ущербы, ранения и гибель людей, но и социальные потрясения.

Катастрофические землетрясения ведут к нищете, болезням, безработице , ставят под угрозу социальные программы, реализуемые в стране.

На сейсмоопасных территориях проходят многие важные коммуникации страны (транспорт, газовые и нефтяные магистрали), находятся гидростанции, атомные электростанции и другие объекты, разрушение которых ведет к экологической деградации территорий и гибели людей.

За все годы истории СССР и Российской Федерации в стране не были реализованы общегосударственные программы по сейсмической безопасности, в результате чего десятки миллионов человек на сейсмоопасных территориях живут в домах, характеризующихся дефицитом сейсмостойкости в 2-3 балла. В стране нет системы страхования от последствий землетрясений.

В основе работ по оценке сейсмической опасности и сейсмического риска используются современные карты общего сейсмического районирования территории Российской Федерации. Эти карты позволяют более достоверно оценивать степень сейсмической опасности и планировать "сейсмическую перспективу", а также определять приемлемый уровень сейсмического риска.

В 1997 г коллективом сотрудников Института физики Земли РАН (ответственный исполнитель и редактор) разработан комплект карт общего сейсмического районирования России (ОСР-97), предназначенный для строительства объектов различных категорий ответственности и сроков службы. Карты построены с учетом фундаментальной закономерности: чем больше масштаб явления, тем реже оно возникает. Исходя из этого составлено три карты (А, В,С), отражающих расчетную интенсивность сейсмических сотрясений (в баллах шкалы MSK-64), ожидаемых на данной площади с заданной вероятностью Р (10%, 5%, 1%) в течение определенного интервала времени t, равного 50 годам.

В настоящее время на основе ОСР разрабатывается методика оценки опасности на основе расчета величины сейсмической сотрясаемости, позволяющая для каждого участка территории определять вероятность повторяемости сотрясений равных или превышающих определенный уровень интенсивности. Построенная на этой основе карта сейсмической сотрясаемости даст возможность в баллах с определенным периодом повторяемости сотрясений дать вероятную оценку сейсмической опасности для любой территории.

Около 25 процентов территории Российской Федерации с населением более 20 млн. человек может подвергаться землетрясениям 7 баллов и выше. В районах Северного Кавказа, Сахалина, Камчатки, Курильских островов и Прибайкалья прогнозируются землетрясения интенсивностью 9 баллов и более. Площадь сейсмоопасных районов от 6 до 10 баллов составляет в Российской Федерации 6,4 млн. кв. км. В сейсмически опасных районах России расположено 330 населенных пунктов.

В районе гг. Сочи, Грозный, Петропавловск-Камчатский , в Прибайкалье и на других густонаселенных территориях Российской Федерации согласно сейсмологическим прогнозам может произойти землетрясение интенсивностью 9 баллов и выше, то есть сопоставимое по масштабам с землетрясением в г. Спитак (Армения, 7 декабря 1988 г.), когда погибло 35 тыс. человек, а материальный ущерб превысил 10 млрд. долларов США.

Существенное увеличение площадей территорий повышенной сейсмической опасности по сравнению с прежними представлениями, делает необходимым проведение масштабных работ по уточнению региональной сейсмичности, детальному объектному и сейсмическому микрорайонированию с целью использования полученных данных для проведения мероприятий по повышению сейсмической безопасности и защиты объектов различного назначения на территории Российской Федерации.

Детальное сейсмическое районирование имеет своей задачей выявление или уточнение сейсмогенерирующих зон, сейсмические события в которых представляют опасность для конкретных объектов (городов, населенных пунктов, крупных промышленных и энергетических объектов и т. д.).

Сейсмическое микрорайонирование позволяет учесть влияние разнообразных местных грунтово-геологических условий на прогнозируемые сейсмические воздействия. Карты сейсмического микрорайонирования служат основой для оценки сейсмической опасности строительной площадки и должны содержать всю необходимую информацию для проектирования эффективной сейсмозащиты зданий и сооружений.

Поскольку значительная часть территории Российской Федерации характеризуется высоким или повышенным уровнем сейсмического риска, а развитие опасных геологических процессов природного и природно-техногенного характера усугубляет возможные разрушительные последствия землетрясений, необходимость сохранения жизни и здоровья людей, предотвращения или снижения уровня материальных потерь и ущерба окружающей среде определяет комплексную задачу : обеспечить сейсмическую безопасность населения и устойчивость материально-технических объектов в пределах показателей приемлемого риска, значения которого должны быть дифференцированы по регионам Российской Федерации.

Высокий уровень сейсмического риска определяется в значительной степени высокой сейсмической уязвимостью, то есть недостаточной сейсмостойкостью части построенных гражданских, промышленных, гидротехнических и других сооружений, а также неготовностью к землетрясениям большинства населенных пунктов.

В будущем можно ожидать не только землетрясений в пределах интенсивности, прогнозируемой картами общего сейсмического районирования, но и землетрясений более высокой интенсивности, превышающей расчетные сейсмические воздействия на сооружения.

Таким образом, проблема обеспечения сейсмической безопасности является комплексной, требующей межведомственных решений и согласований, оценки и прогноза не только прямого, но и косвенного ущерба, реализации большого числа многоуровневых задач в масштабах страны.

Постановлением Правительства РФ от 25.09.01 г. № 000 утверждена федеральная целевая программа «Сейсмобезопасность территории России» (гг.) (с изм., внесенным распоряжением Правительством РФ от 01.01.2001 г.).

Целями Программы являются

· максимальное повышение сейсмической безопасности,

· снижение социального, экономического, экологического риска в сейсмически опасных районах Российской Федерации,

· снижение ущербов от разрушительных землетрясений путем усиления и реконструкции существующих сооружений,

· а также подготовки городов и других населенных пунктов, транспортных и энергетических сооружений, трубопроводов к сильным землетрясениям.

Основными задачами Программы являются:

1) осуществление мероприятий по сейсмоусилению наиболее важных сооружений и разработка необходимых градостроительных мероприятий с целью максимального снижения сейсмического риска, начиная с наиболее сейсмически опасных районов;

2) проведение обследования и паспортизации зданий и сооружений в сейсмоопасных районах;

3) создание и развитие научно-методической базы, механизмов реализации нормативных документов по оценке сейсмической опасности территорий;

4) формирование нормативной базы для обеспечения сейсмической надежности строящихся и эксплуатируемых жилых, общественных, промышленных зданий, энергетических и транспортных сооружений;

5) разработка научно-методической базы для снижения сейсмической уязвимости существующих сооружений и населенных пунктов;

6) разработка инновационных технологий сейсмоизоляции и других новых систем сейсмозащиты зданий и сооружений, их оснований и фундаментов;

Содержание статьи

ЗЕМЛЕТРЯСЕНИЯ, колебания Земли, вызванные внезапными изменениями в состоянии недр планеты. Эти колебания представляют собой упругие волны, распространяющиеся с высокой скоростью в толще горных пород. Наиболее сильные землетрясения иногда ощущаются на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами) даже в противоположном полушарии. Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли – эпицентром землетрясения. Очаги большей части землетрясений лежат в земной коре на глубинах не более 16 км, однако в некоторых районах глубины очагов достигают 700 км. Ежедневно происходят тысячи землетрясений, но лишь немногие из них ощущаются человеком.

Упоминания о землетрясениях встречаются в Библии, в трактатах античных ученых – Геродота , Плиния и Ливия , а также в древних китайских и японских письменных источниках. До 19 в. большинство сообщений о землетрясениях содержало описания, обильно приправленные суевериями, и теории, основанные на скудных и недостоверных наблюдениях. Серию систематических описаний (каталогов) землетрясений в 1840 начал А.Перри (Франция). В 1850-х годах Р.Малле (Ирландия) составил большой каталог землетрясений, а его подробный отчет о землетрясении в Неаполе в 1857 стал одним из первых строго научных описаний сильных землетрясений.

Причины землетрясений.

Хотя уже с давних времен ведутся многочисленные исследования, нельзя сказать, что причины возникновения землетрясений полностью изучены. По характеру процессов в их очагах выделяют несколько типов землетрясений, основными из которых являются тектонические, вулканические и техногенные.

Тектонические землетрясения

возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение – 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.

Вулканические землетрясения

происходят вследствие резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.

Техногенные землетрясения

могут быть вызваны подземными ядерными испытаниями, заполнением водохранилищ, добычей нефти и газа методом нагнетания жидкости в скважины, взрывными работами при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.

Сейсмические волны.

Колебания, распространяющиеся из очага землетрясения, представляют собой упругие волны, характер и скорость распространения которых зависят от упругих свойств и плотности пород. К упругим свойствам относятся модуль объемной деформации, характеризующий сопротивление сжатию без изменения формы, и модуль сдвига, определяющий сопротивление усилиям сдвига. Скорость распространения упругих волн увеличивается прямо пропорционально квадратному корню значений параметров упругости и плотности среды.

Продольные и поперечные волны.

На сейсмограммах эти волны появляются первыми. Раньше всего регистрируются продольные волны, при прохождении которых каждая частица среды подвергается сначала сжатию, а затем снова расширяется, испытывая при этом возвратно-поступательное движение в продольном направлении (т.е. в направлении распространения волны). Эти волны называются также Р- волнами, или первичными волнами. Их скорость зависит от модуля упругости и жесткости породы. Вблизи земной поверхности скорость Р -волн составляет 6 км/с, а на очень большой глубине - ок. 13 км/с. Следующими регистрируются поперечные сейсмические волны, называемые также S -волнами, или вторичными волнами. При их прохождении каждая частица породы колеблется перпендикулярно направлению распространения волны. Их скорость зависит от сопротивления породы сдвигу и составляет примерно 7 / 12 от скорости распространения Р- волн.

Поверхностные волны

распространяются вдоль земной поверхности или параллельно ей и не проникают глубже 80- 160 км. В этой группе выделяются волны Рэлея и волны Лява (названные по именам ученых, разработавших математическую теорию распространения таких волн). При прохождении волн Рэлея частицы породы описывают вертикальные эллипсы, лежащие в очаговой плоскости. В волнах Лява частицы породы колеблются перпендикулярно направлению распространения волн. Поверхностные волны часто обозначаются сокращенно как L -волны. Скорость их распространения составляет 3,2- 4,4 км/с. При глубокофокусных землетрясениях поверхностные волны очень слабые.

Амплитуда и период

характеризуют колебательные движения сейсмических волн. Амплитудой называется величина, на которую изменяется положение частицы грунта при прохождении волны по сравнению с предшествовавшим состоянием покоя. Период колебаний - промежуток времени, за который совершается одно полное колебание частицы. Вблизи очага землетрясения наблюдаются колебания с различными периодами – от долей секунды до нескольких секунд. Однако на больших расстояниях от центра (сотни километров) короткопериодные колебания выражены слабее: для Р -волн характерны периоды от 1 до 10 с, а для S -волн – немного больше. Периоды поверхностных волн составляют от нескольких секунд до нескольких сотен секунд. Амплитуды колебаний могут быть значительными вблизи очага, однако на расстояниях 1500 км и более они очень малы - менее нескольких микрон для волн Р и S и менее 1 см – для поверхностных волн.

Отражение и преломление.

Встречая на своем пути слои пород с отличающимися свойствами, сейсмические волны отражаются или преломляются подобно тому, как луч света отражается от зеркальной поверхности или преломляется, переходя из воздуха в воду. Любые изменения упругих характеристик или плотности материала на пути распространения сейсмических волн заставляют их преломляться, а при резких изменениях свойств среды часть энергии волн отражается (см . рис.).

Пути сейсмических волн.

Продольные и поперечные волны распространяются в толще Земли, при этом непрерывно увеличивается объем среды, вовлекаемой в колебательный процесс. Поверхность, соответствующая максимальному продвижению волн определенного типа в данный момент, называется фронтом этих волн. Поскольку модуль упругости среды возрастает с глубиной быстрее, чем ее плотность (до глубины 2900 км), скорость распространения волн на глубине выше, чем вблизи поверхности, и фронт волны оказывается более продвинутым вглубь, чем в латеральном (боковом) направлении. Траекторией волны называется линия, соединяющая точку, находящуюся на фронте волны, с источником волны. Направления распространения волн Р и S представляют собой кривые, обращенные выпуклостью вниз (из-за того, что скорость движения волн больше на глубине). Траектории волн Р и S совпадают, хотя первые распространяются быстрее.

Сейсмические станции, находящиеся вдали от эпицентра землетрясения, регистрируют не только прямые волны Р и S , но также волны этих типов, уже отраженные один раз от поверхности Земли - РР и SS (или РR 1 и SR 1), а иногда - отраженные дважды - РРР и SSS (или РR 2 и SR 2). Существуют также отраженные волны, которые проходят один отрезок пути как Р -волна, а второй, после отражения, - как S -волна. Образующиеся обменные волны обозначаются как РS или SР. На сейсмограммах глубокофокусных землетрясений наблюдаются также и другие типы отраженных волн, например, волны, которые прежде, чем достичь регистрирующей станции, отразились от поверхности Земли. Их принято обозначать маленькой буквой, за которой следует заглавная (например, рR ). Эти волны очень удобно использовать для определения глубины очага землетрясения.

На глубине 2900 км скорость P -волн резко снижается от >13 км/с до ~ 8 км/с; а S -волны не распространяются ниже этого уровня, соответствующего границе земного ядра и мантии. Оба типа волн частично отражаются от этой поверхности, и некоторое количество их энергии возвращается к поверхности в виде волн, обозначаемых как Р с Р и S с S . Р -волны проходят сквозь ядро, но их траектория при этом резко отклоняется и на поверхности Земли возникает теневая зона, в пределах которой регистрируются только очень слабые Р -волны. Эта зона начинается на расстоянии ок. 11 тыс. км от сейсмического источника, а уже на расстоянии 16 тыс. км Р -волны снова появляются, причем их амплитуда значительно возрастает из-за фокусирующего влияния ядра, где скорости волн низкие. Р -волны, прошедшие сквозь земное ядро, обозначаются РКР или Р ў . На сейсмограммах хорошо выделяются также волны, которые по пути от источника к ядру идут как волны S , затем проходят сквозь ядро как волны Р , а при выходе волны снова преобразуются в тип S. В самом центре Земли, на глубине более 5100 км, существует внутреннее ядро, находящееся предположительно в твердом состоянии, но природа его пока не вполне ясна. Волны, проникающие сквозь это внутреннее ядро, обозначаются как РКIКР или SКIКS (см . рис. 1).

Регистрация землетрясений.

Прибор, записывающий сейсмические колебания, называется сейсмографом, а сама запись - сейсмограммой. Сейсмограф состоит из маятника, подвешенного внутри корпуса на пружине, и записывающего устройства.

Одно из первых записывающих устройств представляло собой вращающийся барабан с бумажной лентой. При вращении барабан постепенно смещается в одну сторону, так что нулевая линия записи на бумаге имеет вид спирали. Каждую минуту на график наносятся вертикальные линии - отметки времени; для этого используются очень точные часы, которые периодически сверяют с эталоном точного времени. Для изучения близких землетрясений необходима точность маркировки - до секунды или меньше.

Во многих сейсмографах для преобразования механического сигнала в электрический используются индукционные устройства, в которых при перемещении инертной массы маятника относительно корпуса изменяется величина магнитного потока, проходящего через витки индукционной катушки. Возникающий при этом слабый электрический ток приводит в действие гальванометр, соединенный с зеркальцем, которое отбрасывает луч света на светочувствительную бумагу записывающего устройства. В современных сейсмографах регистрация колебаний ведется в цифровом виде с использованием компьютеров.

Магнитуда землетрясений

обычно определяется по шкале, основанной на записях сейсмографов. Эта шкала известна под названием шкалы магнитуд, или шкалы Рихтера (по имени американского сейсмолога Ч.Ф.Рихтера, предложившего ее в 1935). Магнитуда землетрясения - безразмерная величина, пропорциональная логарифму отношения максимальных амплитуд определенного типа волн данного землетрясения и некоторого стандартного землетрясения. Существуют различия в методах определения магнитуд близких, удаленных, мелкофокусных (неглубоких) и глубоких землетрясений. Магнитуды, определенные по разным типам волн, отличаются по величине. Землетрясения разной магнитуды (по шкале Рихтера) проявляются следующим образом:

2 - самые слабые ощущаемые толчки;

4 1 / 2 - самые слабые толчки, приводящие к небольшим разрушениям;

6 - умеренные разрушения;

8 1 / 2 - самые сильные из известных землетрясений.

Интенсивность землетрясений

оценивается в баллах при обследовании района по величине вызванных ими разрушений наземных сооружений или деформаций земной поверхности. Для ретроспективной оценки балльности исторических или более древних землетрясений используют некоторые эмпирически полученные соотношения. В США оценка интенсивности обычно проводится по модифицированной 12-балльной шкале Меркалли.

1 балл . Ощущается немногими особо чувствительными людьми в особенно благоприятных для этого обстоятельствах.

3 балла . Ощущается людьми как вибрация от проезжающего грузовика.

4 балла . Дребезжат посуда и оконные стекла, скрипят двери и стены.

5 баллов . Ощущается почти всеми; многие спящие просыпаются. Незакрепленные предметы падают.

6 баллов . Ощущается всеми. Небольшие повреждения.

8 баллов . Падают дымовые трубы, памятники, рушатся стены. Меняется уровень воды в колодцах. Сильно повреждаются капитальные здания.

10 баллов . Разрушаются кирпичные постройки и каркасные сооружения. Деформируются рельсы, возникают оползни.

12 баллов . Полное разрушение. На земной поверхности видны волны.

В России и некоторых соседних с ней странах принято оценивать интенсивность колебаний в баллах МSК (12-балльной шкалы Медведева - Шпонхойера - Карника), в Японии - в баллах ЯМА (9-балльной шкалы Японского метеорологического агентства).

Интенсивность в баллах (выражающихся целыми числами без дробей) определяется при обследовании района, в котором произошло землетрясение, или опросе жителей об их ощущениях при отсутствии разрушений, или же расчетами по эмпирически полученным и принятым для данного района формулам. Среди первых сведений о произошедшем землетрясении становится известной именно его магнитуда, а не интенсивность. Магнитуда определяется по сейсмограммам даже на больших расстояниях от эпицентра.

Последствия землетрясений.

Сильные землетрясения оставляют множество следов, особенно в районе эпицентра: наибольшее распространение имеют оползни и осыпи рыхлого грунта и трещины на земной поверхности. Характер таких нарушений в значительной степени определяется геологическим строением местности. В рыхлом и водонасыщенном грунте на крутых склонах часто происходят оползни и обвалы, а мощная толща водонасыщенного аллювия в долинах деформируется легче, чем твердые породы. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. И даже не очень сильные землетрясения получают отражение в рельефе местности.

Смещения по разломам или возникновение поверхностных разрывов могут изменить плановое и высотное положение отдельных точек земной поверхности вдоль линии разлома, как это произошло во время землетрясения 1906 в Сан-Франциско. При землетрясении в октябре 1915 в долине Плезант в Неваде на разломе образовался уступ длиной 35 км и высотой до 4,5 м. При землетрясении в мае 1940 в долине Импириал в Калифорнии подвижки произошли на 55-километровом участке разлома, причем наблюдались горизонтальные смещения до 4,5 м. В результате Ассамского землетрясения (Индия) в июне 1897 в эпицентральной области высота местности изменилась не менее, чем на 3 м.

Значительные поверхностные деформации прослеживаются не только вблизи разломов и приводят к изменению направления речного стока, подпруживанию или разрывам водотоков, нарушению режима источников воды, причем некоторые из них временно или навсегда перестают функционировать, но в то же время могут появиться новые. Колодцы и скважины заплывают грязью, а уровень воды в них ощутимо меняется. При сильных землетрясениях вода, жидкая грязь или песок могут фонтанами выбрасываться из грунта.

При смещении по разломам происходят повреждения автомобильных и железных дорог, зданий, мостов и прочих инженерных сооружений. Однако качественно построенные здания редко разрушаются полностью. Обычно степень разрушений находится в прямой зависимости от типа сооружения и геологического строения местности. При землетрясениях умеренной силы могут происходить частичные повреждения зданий, а если они неудачно спроектированы или некачественно построены, то возможно и их полное разрушение.

При очень сильных толчках могут обрушиться и сильно пострадать сооружения, построенные без учета сейсмической опасности. Обычно не обрушиваются одно- и двухэтажные постройки, если у них не очень тяжелые крыши. Однако бывает, что они смещаются с фундаментов и часто у них растрескивается и отваливается штукатурка.

Дифференцированные движения могут приводить к тому, что мосты сдвигаются со своих опор, а инженерные коммуникации и водопроводные трубы разрываются. При интенсивных колебаниях уложенные в грунт трубы могут «складываться», всовываясь одна в другую, или выгибаться, выходя на поверхность, а железнодорожные рельсы деформироваться. В сейсмоопасных районах сооружения должны проектироваться и строиться с соблюдением строительных норм, принятых для данного района в соответствии с картой сейсмического районирования.

В густонаселенных районах едва ли не больший ущерб, чем сами землетрясения, наносят пожары, возникающие в результате разрыва газопроводов и линий электропередач, опрокидывания печей, плит и разных нагревательных приборов. Борьба с пожарами затрудняется из-за того, что водопровод оказывается поврежденным, а улицы непроезжими вследствие образовавшихся завалов.

Сопутствующие явления.

Иногда подземные толчки сопровождаются хорошо различимым низким гулом, когда частота сейсмических колебаний лежит в диапазоне, воспринимаемом человеческим ухом, иногда такие звуки слышатся и при отсутствии толчков. В некоторых районах они представляют собой довольно обычное явление, хотя ощутимые землетрясения происходят очень редко. Имеются также многочисленные сообщения о возникновении свечения во время сильных землетрясений. Общепринятого объяснения таких явлений пока нет. Цунами (большие волны на море) возникают при быстрых вертикальных деформациях морского дна во время подводных землетрясений. Цунами распространяются в океанах в пределах глубоководных зон океанов со скоростью 400–800 км/ч и могут вызвать разрушения на берегах, удаленных на тысячи километров от эпицентра. У близлежащих к эпицентру берегов эти волны иногда достигают в высоту 30 м.

При многих сильных землетрясениях помимо основных толчков регистрируются форшоки (предшествующие землетрясения) и многочисленные афтершоки (землетрясения, следующие за основным толчком). Афтершоки обычно слабее, чем основной толчок, и могут повторяться в течение недель и даже лет, становясь все реже и реже.

Географическое распространение землетрясений.

Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских о-вов на восток до Юго-Восточной Азии.

Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские о-ва до Камчатки и затем через Японские о-ва, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике.

Вторая зона от Азорских о-вов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи.

Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта.

Существует ряд районов, где землетрясения происходят довольно часто. К ним относятся Восточная Африка, Индийский океан и в Северной Америке долина р.Св. Лаврентия и северо-восток США.

По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских о-вов, а в Средиземноморской зоне - к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка.

Прогноз землетрясений.

Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды.

Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники). Такого рода исследования проводятся на специальных геодинамических полигонах (например, Паркфилдском в Калифорнии, Гармском в Таджикистане и др.). С 1960 работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png