Начиная рассуждать о средних величинах, чаще всего вспоминают, как заканчивали школу и поступали в учебное заведение. Тогда по аттестату рассчитывался средний балл: все оценки (и хорошие, и не очень) складывали, полученную сумму делили на их количество. Так вычисляется самый простой вид средней, которая называется средняя арифметическая простая. На практике в статистике применяются различные виды средних величин: арифметическая, гармоническая, геометрическая, квадратическая, структурные средние. Тот или иной их вид используется в зависимости от характера данных и целей исследования.

Средняя величина является наиболее распространенным статистическим показателем, с помощью которого дается обобщающая характеристика совокупности однотипных явлений по одному из варьирующих признаков. Она показывает уровень признака в расчете на единицу совокупности. С помощью средних величин проводится сравнение различных совокупностей по варьирующим признакам, изучаются закономерности развития явлений и процессов общественной жизни.

В статистике применяются два класса средних: степенные (аналитические) и структурные. Последние используются для характеристики структуры вариационного ряда и будут рассмотрены далее в гл. 8.

К группе степенных средних относят среднюю арифметическую, гармоническую, геометрическую, квадратическую. Индивидуальные формулы для их вычисления можно привести к виду, общему для всех степенных средних, а именно

где m - показатель степенной средней: при m = 1 получаем формулу для вычисления средней арифметической, при m = 0 - средней геометрической, m = -1 - средней гармонической, при m = 2 - средней квадратической;

x i - варианты (значения, которые принимает признак);

f i - частоты.

Главным условием, при котором можно использовать степенные средние в статистическом анализе, является однородность совокупности, которая не должна содержать исходных данных, резко различающихся по своему количественному значению (в литературе они носят название аномальных наблюдений).

Продемонстрируем важность этого условия на следующем примере.

Пример 6.1. Вычислим среднюю заработную плату сотрудников малого предприятия.

Таблица 6.1. Заработная плата работников
№ п/п Заработная плата, руб. № п/п Заработная плата, руб.
1 5 950 11 7 000
2 6 790 12 5 950
3 6 790 13 6 790
4 5 950 14 5 950
5 7 000 5 6 790
6 6 790 16 7 000
7 5 950 17 6 790
8 7 000 18 7 000
9 6 790 19 7 000
10 6 790 20 5 950

Для расчета среднего размера заработной платы необходимо просуммировать заработную плату, начисленную всем работникам предприятия (т.е. найти фонд заработной платы), и разделить на число работающих:


А теперь добавим в нашу совокупность всего лишь одного человека (директора этого предприятия), но с окладом в 50 000 руб. В таком случае вычисляемая средняя будет совсем другая:

Как видим, она превышает 7000 руб., т.д. она больше всех значений признака за исключением одного-единственного наблюдения.

Для того чтобы таких случаев не происходило на практике, и средняя не теряла бы своего смысла (в примере 6.1 она уже не выполняет роль обобщающей характеристики совокупности, которой должна быть), при расчете средней следует аномальные, резко выделяющиеся наблюдения либо исключить из анализа и тем самым сделать совокупность однородной, либо разбить совокупность на однородные группы и вычислить средние значения по каждой группе и анализировать не общую среднюю, а групповые средние значения.

6.1. Средняя арифметическая и ее свойства

Средняя арифметическая вычисляется либо как простая, либо как взвешенная величина.

При расчете средней заработной платы по данным таблицы примера 6.1 мы сложили все значения признака и поделили на их количество. Ход наших вычислений запишем в виде формулы средней арифметической простой

где х i - варианты (отдельные значения признака);

п - число единиц в совокупности.

Пример 6.2. Теперь сгруппируем наши данные из таблицы примера 6.1, т.д. построим дискретный вариационный ряд распределения работающих по уровню заработной платы. Результаты группировки представлены в таблице.

Запишем выражение для вычисления среднего уровня заработной платы в более компактной форме:

В примере 6.2 была применена формула средней арифметической взвешенной

где f i - частоты, показывающие, сколько раз встречается значение признака х i y единиц совокупности.

Расчет средней арифметической взвешенной удобно проводить в таблице, как это показано ниже (табл. 6.3):

Таблица 6.3. Расчет средней арифметической в дискретном ряду
Исходные данные Расчетный показатель
заработная плата, руб. численность работающих, чел. фонд заработной платы, руб.
x i f i x i f i
5 950 6 35 760
6 790 8 54 320
7 000 6 42 000
Итого 20 132 080

Следует отметить, что средняя арифметическая простая используется в тех случаях, когда данные не сгруппированы или сгруппированы, но все частоты равны между собой.

Часто результаты наблюдения представляют в виде интервального ряда распределения (см. таблицу в примере 6.4). Тогда при расчете средней в качестве x i берут середины интервалов. Если первый и последний интервалы открыты (не имеют одной из границ), то их условно "закрывают", принимая за величины данного интервала величину примыкающего интервала, т.д. первый закрывают исходя из величины второго, а последний - по величине предпоследнего.

Пример 6.3. По результатам выборочного обследования одной из групп населения рассчитаем размер среднедушевого денежного дохода.

В приведенной таблице середина первого интервала равна 500. Действительно, величина второго интервала - 1000 (2000-1000); тогда нижняя граница первого равна 0 (1000-1000), а его середина - 500. Аналогично поступаем с последним интервалом. За его середину принимаем 25 000: величина предпоследнего интервала 10 000 (20 000-10 000), тогда его верхняя граница - 30 000 (20 000 + 10 000), а середина, соответственно, - 25 000.

Таблица 6.4. Расчет средней арифметической в интервальном ряду
Среднедушевой денежный доход, руб. в месяц Численность населения к итогу, % f i Середины интервалов x i x i f i
До 1 000 4,1 500 2 050
1 000-2 000 8,6 1 500 12 900
2 000-4 000 12,9 3 000 38 700
4 000-6 000 13,0 5 000 65 000
6 000-8 000 10,5 7 000 73 500
8 000-10 000 27,8 9 000 250 200
10 000-20 000 12,7 15 000 190 500
20 000 и выше 10,4 25 000 260 000
Итого 100,0 - 892 850

Тогда среднедушевой размер месячного дохода составит

5.1. Понятие средней величины

Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

где X i – варианта (значение) осредняемого признака;

n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

,

где X i – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
f i – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:


Средний возраст рассчитаем по формуле простой средней:

Сгруппируем исходные данные. Получим следующий ряд распределения:

В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.

Формулы степенных средних приведены в табл. 4.4.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 5.1

Виды степенных средних

Вид степенной
средней
Показатель
степени (m)
Формула расчета
Простая Взвешенная
Гармоническая -1
Геометрическая 0
Арифметическая 1
Квадратическая 2
Кубическая 3

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,..., i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

q n =q 0 × i 1 × i 2 ×...×i n .

Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Отсюда

5.3. Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где X Me – нижняя граница медианного интервала;
h Me – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
S Me-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
m Me – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме 2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

где Х Mo – нижнее значение модального интервала;
m Mo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
m Mo -1 – то же для интервала, предшествующего модальному;
m Mo+1 – то же для интервала, следующего за модальным;
h – величина интервала изменения признака в группах.

Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

5.4. Показатели вариации

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (X max) и минимальным (X min) наблюдаемыми значениями признака:

H=X max - X min .

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

(Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

Дисперсия признака (s 2) определяется на основе квадратической степенной средней:

.

Показатель s, равный , называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s 2 – дисперсия признака, рассчитанная по данным выборки.

Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

Боярский А.Я. Теоретические исследования по статистике: Сб. Науч. Трудов.– М.: Статистика,1974. С. 19–57.

Предыдущая

В данной главе описывается назначение средних величин, рассматриваются их основные виды и формы, методика расчета. При изучении представленного материала необходимо усвоить требования к построению средних величин, так как их соблюдение позволяет использовать эти величины как типические характеристики значений признака по совокупности однородных единиц.

Формы и виды средних величин

Средняя величина представляет собой обобщенную характеристику уровня значений признака, которая получена в расчете на единицу совокупности. В отличие от относительной величины, которая является мерой соотношения показателей, средняя величина служит мерой признака на единицу совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть существенные и случайные. Например, ставки процента по банковским ссудам определяются исходными для всех кредитных организаций факторами (уровень резервных требований и базовая ставка процента gо ссудам, предоставляемым коммерческим банкам центральным банком, и др.), а также особенностями каждой конкретной сделки в зависимости от риска, присущего данной ссуде, ее размера и срока погашения, издержек по оформлению ссуды и контролю за ее погашением и др.

В средней величине обобщаются индивидуальные значения признака и отражается влияние общих условий, наиболее характерных для данной совокупности в конкретных условиях места и времени. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Средняя величина будет отражать типичный уровень признака в данной совокупности единиц, когда она рассчитана по качественно однородной совокупности. В связи с этим метод средних используют в сочетании с методом группировок.

Средние величины, характеризующие совокупность в целом, называют общими, а средние, отражающие особенность группы или подгруппы, – групповыми.

Сочетание общих и групповых средних позволяет проводить сравнения во времени и пространстве, существенно расширяет границы статистического анализа. Например, при подведении итогов переписи 2002 г. было установлено, что для России, как и для большинства европейских стран, характерно старение населения. По сравнению с переписью 1989 г. средний возраст жителей страны увеличился на три года и составил 37,7 года, мужчин – 35,2 года, женщин – 40,0 лет (по данным 1989 г. эти показатели соответственно были 34,7, 31,9 и 37,2 лет). По данным Росстата, ожидаемая продолжительность жизни при рождении в 2011 г. мужчин – 63 года, женщин – 75,6 лет.

Каждая средняя отражает особенность изучаемой совокупности по какому-то одному признаку. Для принятия практических решений, как правило, необходима характеристика совокупности по нескольким признакам. В этом случае используют систему средних величин.

Например, для достижения должного уровня доходности операций при приемлемом уровне риска банковской деятельности средние ставки процента по выданным кредитам устанавливают с учетом средних ставок процента по депозитам и другим финансовым инструментам.

Форма, вид и методика расчета средней величины зависят от поставленной цели исследования, вида и взаимосвязи изучаемых признаков, а также от характера исходных данных. Средние величины делятся на две основные категории:

  • 1) степенные средние;
  • 2) структурные средние.

Формула средней определяется значением степени применяемой средней. С увеличением показателя степени k возрастает соответственно средняя величина.

Кафедра статистики

КУРСОВАЯ РАБОТА

ТЕОРИЯ СТАТИСТИКИ

На тему: Средние величины

Выполнил: Номер группы: СТП - 72

Юнусова Гульназия Чамилевна

Проверил: Серьга Людмила Константиновна


Введение

1. Сущность средних величин, общие принципы применения

2. Виды средних величин и сфера их применения

2.1 Степенные средние величины

2.1.1 Средняя арифметическая величина

2.1.2 Средняя гармоническая величина

2.1.3 Средняя геометрическая величина

2.1.4 Средняя квадратическая величина

2.2. Структурные средние величины

2.2.1 Медиана

3. Основные методологические требования правильного расчета средних величин

Заключение

Список использованной литературы


Введение

История практического применения средних насчитывает десятки столетий. Основная цель расчета средней состояла в изучении пропорций между величинами. Значимость расчетов средних величин возросла в связи с развитием теории вероятностей и математической статистики. Решение многих теоретических и практических задач было бы невозможно без расчетов средней и оценки колеблемости индивидуальных значений признака.

Ученые разных направлений стремились дать определение средней. Например, выдающийся французский математик О.Л.Коши (1789 - 1857) считал, что средней нескольких величин является новая величина, заключающаяся между наименьшей и наибольшей из рассматриваемых величин.

Однако создателем теории средних следует считать бельгийского статистика А. Кетле (1796 - 1874). Им предпринята попытка определить природу средних величин и закономерностей, в них проявляющихся. Согласно Кетле, постоянные причины действуют одинаково (постоянно) на каждое изучаемое явление. Именно они делают эти явления похожими друг на друга, создают общее для всех их закономерности.

Следствием учения А. Кетле об общих и индивидуальных причинах явилось выделения средних величин в качестве основного приема статистического анализа. Он подчеркивал, что статистические средние представляют собой не просто меру математического измерения, а категорию объективной действительности. Типическую, реально существующую среднюю он отождествлял с истинной величиной, отклонения от которой могут быть только случайными.

Ярким выражением изложенного взгляда на среднюю является его теория «среднего человека», т.е. человека среднего роста, веса, силы, среднего объема грудной клетки, емкости легких, средней остроты зрения и обычным цветом лица. Средние характеризуют «истинный» тип человека, все отклонения от этого типа указывают на уродливость или болезнь.

Взгляды А.Кетле получили дальнейшее развитие в работах немецкого статистика В.Лексиса (1837 - 1914).

Другая разновидность идеалистической теории средних основана на философии махизма. Ее основатель английский статистик А. Боули (1869 - 1957). В средних он видел способ наиболее простого описания количественных характеристик явления. Определяя значение средних или, как он выражается, «их функцию», Боули на первый план выдвигает махистский принцип мышлений. Так, он писал, что функция средних ясна: она заключается в том, чтобы выражать сложную группу при помощи немногих простых чисел. Ум не в состоянии сразу охватить величины миллионов статистических данных, они должны быть сгруппированы, упрощены, приведены к средним.

Последователем А.Кетле был и итальянский статистик К.Джини (1884-1965), автор крупной монографии «Средние величины». К.Джини подверг критике определение средней, данное советским статистиком А.Я. Боярским, и сформулировал свое: «Средняя нескольких величин является результатом действий, выполняемых по определенному правилу над данными величинами, и представляет собой либо одну из данных величин, которая не больше и не меньше всех остальных (средняя действительная или эффективная), либо какую-либо новую величину, промежуточную между наименьшей и наибольшей из данных величин (счетная средняя)».

В данной курсовой работе мы подробно рассмотрим основные проблемы теории средних величин. В первой главе выявим сущность средних величин и общие принципы применения. Во второй главе рассмотрим виды средних величин и сферу их применения на конкретных примерах. В третьей главе будут рассмотрены основные методологические требования расчета средних величин.


1. Сущность средних величин, общие принципы применения

Средние величины являются одними изнаиболее распространенных обобщающих статистических показателей. Они имеютсвоей целью одним числом охарактеризовать статистическую совокупность состоящуюиз меньшинства единиц. Средние величины тесно связаны с законом больших чисел.Сущность этой зависимости заключается в том, что при большом числе наблюденийслучайные отклонения от общей статистики взаимопогашаются и в среднем более отчетливо проявляется статистическая закономерность.

Средняя величина - это обобщающий показатель, характеризующий типический уровень явления в конкретных условиях места и времени. Он выражает уровень признака, типический для каждой единицы совокупности.

Средняя является объективной характеристикой только для однородных явлений. Средние для неоднородных совокупностей называются огульными и могут применяться только в сочетании с частными средними однородных совокупностей.

Средняя применяется в статистических исследованиях для оценки сложившегося уровня явления, для сравнения между собой нескольких совокупностей по одному и тому же признаку, для исследования динамики развития изучаемого явления во времени, для изучения взаимосвязей явлений.

Средние широко применяются в различных плановых, прогнозных, финансовыхрасчетах.

Главное значение средних величин состоит в их обобщающей функции,т.е. замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений. Всем известны особенности развития современных людей, проявляющиеся в том числе и в более высоком росте сыновей по сравнению с отцами, дочерей в сравнении с матерями в том же возрасте. Но как измерить это явление?

В разных семьях наблюдаются самые различные соотношения роста старшего и младшего поколения. Далеко не всякий сын выше отца и не каждая дочь выше матери. Но если измерить средний рост многих тысяч лиц, то по среднему росту сыновей и отцов, дочерей и матерей можно точно установить и сам факт акселерации, и типичную среднюю величину увеличения роста за одно поколение.

На производство одного и того же количества товара определенного вида и качества разные производители (заводы, фирмы) затрачивают неодинаковое количество труда и материальных ресурсов. Но рынок осредняет эти затраты, и стоимость товара определяется средним расходом ресурсов на производство.

Погода в определенном пункте земного шара в один и тот же день в разные годы может быть очень различной. Например, в Санкт-Петербурге 31 марта температура воздуха за сто с лишним лет наблюдений колебалась от -20,1° в 1883 г. до +12,24° в 1920 г. Примерно такие же колебания и в другие дни года. По таким индивидуальным данным о погоде в какой-то произвольно взятый год нельзя составить представление о климате Санкт-Петербурга. Характеристики климата - это средние за длительный период характеристики погоды - температуры воздуха, его влажность, скорость ветра, сумма осадков, число часов солнечного сияния за неделю, месяц и весь год и т.д.

Если средняя величина обобщает качественно однородные значения признака, то она является типической характеристикой признака в данной совокупности. Так, можно говорить об измерении типичного роста русских девушек рождения 1973 г. по достижении ими 20-летнего возраста. Типичной характеристикой будет средняя величина надоя молока от коров черно-пестрой породы на первом году лактации при норме кормления 12,5 кормовой единицы в сутки.

Однако неправильно сводить роль средних величин только характеристике типичных значений признаков в однородных по данному признаку совокупностях. На практике значительно чаще современная статистика использует средние величины, обобщающие явно неоднородные явления, как, например, урожайность всех зерновых культур по территории всей России. Или рассмотрим такую среднюю, как среднее потребление мяса на душу населения: ведь среди этого населения и дети до одного года, вовсе не потребляющие мяса, и вегетарианцы, и северяне, и южане, шахтеры, спортсмены и пенсионеры. Еще более ясна нетипичность такого среднего показателя, как произведенный национальный доход в среднем на душу населения.

Средняя величина национального дохода на душу, средняя урожайность зерновых по всей стране, среднее потребление разных продуктов питания - это характеристики государства, как единой народнохозяйственной системы, это так называемые системные средние.

Системные средние могут характеризовать как пространственные или объектные системы, существующие одномоментно (государство, отрасль, регион, планета Земля и т.п.), так и динамические системы, протяженные во времени (год, десятилетие, сезон и т.п.).

Примером системной средней, характеризующей период времени, может служить средняя температура воздуха в Санкт-Петербурге за 1992 г., равная +6,3°. Эта средняя обобщает крайне разнородные температуры зимних морозных дней и ночей, летних жарких дней, весны и осени. 1992 г. был теплым годом, его средняя температура не является типичной для Санкт-Петербурга. В качестве типической среднегодовой температуры воздуха в городе следует использовать многолетнюю среднюю, скажем, за 30 лет с 1963 по 1992 г., которая равна +5,05°. Эта средняя является типической средней, так как обобщает однородные величины; средние годовые температуры одного и того же географического пункта, варьирующие за 30 лет от +2,90° в 1976 г. до +7,44° в 1989 г.

Лекция 5. Средние величины

Понятие средней величины в статистике

Средняя арифметическая и ее свойства

Другие виды степенных средних величин

Мода и медиана

Квартили и децили

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Средняя величина (в статистике) – обобщающий показатель, характеризующий типичный размер или уровень общественных явлений в расчете на единицу совокупности при прочих равных условиях.

С помощью метода средних решаются следующие основные задачи :

1. Характеристика уровня развития явлений.

2. Сравнение двух или нескольких уровней.

3. Изучение взаимосвязей социально - экономических явлений.

4. Анализ размещения социально-экономических явлений в пространстве.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения. Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

Средняя арифметическая;

Средняя геометрическая;

Средняя гармоническая;

Средняя квадратическая;

Средняя хронологическая.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png