Среди всего многообразия логарифмических неравенств отдельно изучают неравенства с переменным основанием. Они решаются по специальной формуле, которую почему-то редко рассказывают в школе:

log k (x ) f (x ) ∨ log k (x ) g (x ) ⇒ (f (x ) − g (x )) · (k (x ) − 1) ∨ 0

Вместо галки «∨» можно поставить любой знак неравенства: больше или меньше. Главное, чтобы в обоих неравенствах знаки были одинаковыми.

Так мы избавляемся от логарифмов и сводим задачу к рациональному неравенству. Последнее решается намного проще, но при отбрасывании логарифмов могут возникнуть лишние корни. Чтобы их отсечь, достаточно найти область допустимых значений. Если вы забыли ОДЗ логарифма, настоятельно рекомендую повторить - см. «Что такое логарифм ».

Все, что связано с областью допустимых значений, надо выписать и решить отдельно:

f (x ) > 0; g (x ) > 0; k (x ) > 0; k (x ) ≠ 1.

Эти четыре неравенства составляют систему и должны выполняться одновременно. Когда область допустимых значений найдена, остается пересечь ее с решением рационального неравенства - и ответ готов.

Задача. Решите неравенство:

Для начала выпишем ОДЗ логарифма:

Первые два неравенства выполняются автоматически, а последнее придется расписать. Поскольку квадрат числа равен нулю тогда и только тогда, когда само число равно нулю, имеем:

x 2 + 1 ≠ 1;
x 2 ≠ 0;
x ≠ 0.

Получается, что ОДЗ логарифма - все числа, кроме нуля: x ∈ (−∞ 0)∪(0; +∞). Теперь решаем основное неравенство:

Выполняем переход от логарифмического неравенства к рациональному. В исходном неравенстве стоит знак «меньше», значит полученное неравенство тоже должно быть со знаком «меньше». Имеем:

(10 − (x 2 + 1)) · (x 2 + 1 − 1) < 0;
(9 − x 2) · x 2 < 0;
(3 − x ) · (3 + x ) · x 2 < 0.

Нули этого выражения: x = 3; x = −3; x = 0. Причем x = 0 - корень второй кратности, значит при переходе через него знак функции не меняется. Имеем:

Получаем x ∈ (−∞ −3)∪(3; +∞). Данное множество полностью содержится в ОДЗ логарифма, значит это и есть ответ.

Преобразование логарифмических неравенств

Часто исходное неравенство отличается от приведенного выше. Это легко исправить по стандартным правилам работы с логарифмами - см. «Основные свойства логарифмов ». А именно:

  1. Любое число представимо в виде логарифма с заданным основанием;
  2. Сумму и разность логарифмов с одинаковыми основаниями можно заменить одним логарифмом.

Отдельно хочу напомнить про область допустимых значений. Поскольку в исходном неравенстве может быть несколько логарифмов, требуется найти ОДЗ каждого из них. Таким образом, общая схема решения логарифмических неравенств следующая:

  1. Найти ОДЗ каждого логарифма, входящего в неравенство;
  2. Свести неравенство к стандартному по формулам сложения и вычитания логарифмов;
  3. Решить полученное неравенство по схеме, приведенной выше.

Задача. Решите неравенство:

Найдем область определения (ОДЗ) первого логарифма:

Решаем методом интервалов. Находим нули числителя:

3x − 2 = 0;
x = 2/3.

Затем - нули знаменателя:

x − 1 = 0;
x = 1.

Отмечаем нули и знаки на координатной стреле:

Получаем x ∈ (−∞ 2/3)∪(1; +∞). У второго логарифма ОДЗ будет таким же. Не верите - можете проверить. Теперь преобразуем второй логарифм так, чтобы в основании стояла двойка:

Как видите, тройки в основании и перед логарифмом сократились. Получили два логарифма с одинаковым основанием. Складываем их:

log 2 (x − 1) 2 < 2;
log 2 (x − 1) 2 < log 2 2 2 .

Получили стандартное логарифмическое неравенство. Избавляемся от логарифмов по формуле. Поскольку в исходном неравенстве стоит знак «меньше», полученное рациональное выражение тоже должно быть меньше нуля. Имеем:

(f (x ) − g (x )) · (k (x ) − 1) < 0;
((x − 1) 2 − 2 2)(2 − 1) < 0;
x 2 − 2x + 1 − 4 < 0;
x 2 − 2x − 3 < 0;
(x − 3)(x + 1) < 0;
x ∈ (−1; 3).

Получили два множества:

  1. ОДЗ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Кандидат на ответ: x ∈ (−1; 3).

Осталось пересечь эти множества - получим настоящий ответ:

Нас интересует пересечение множеств, поэтому выбираем интервалы, закрашенные на обоих стрелах. Получаем x ∈ (−1; 2/3)∪(1; 3) - все точки выколоты.

Цели урока:

Дидактические:

  • 1 уровень – научить решать простейшие логарифмические неравенства, применяя определение логарифма, свойства логарифмов;
  • 2 уровень – решать логарифмические неравенства, выбирая самостоятельно способ решения;
  • 3 уровень – уметь применять знания и умения в нестандартных ситуациях.

Развивающие: развивать память, внимание, логическое мышление, навыки сравнения, уметь обобщать и делать выводы

Воспитательные: воспитывать аккуратность, ответственность за выполняемое задание, взаимопомощь.

Методы обучения: словесный, наглядный, практический, частично-поисковый, самоуправления, контроля.

Формы организации познавательной деятельности учащихся: фронтальный, индивидуальный, работа в парах.

Оборудование: набор тестовых заданий, опорный конспект, чистые листы для решений.

Тип урока: изучение нового материала.

Ход урока

1. Организационный момент. Объявляются тема и цели урока, схема проведения урока: каждому ученику выдается оценочный лист, который ученик заполняет в течении урока; для каждой пары учеников – печатные материалы с заданиями, выполнять задания нужно в парах; чистые листы для решений; опорные листы: определение логарифма; график логарифмической функции, ее свойства; свойства логарифмов; алгоритм решения логарифмических неравенств.

Все решения после самооценки сдаются учителю.

Оценочный лист учащегося

2. Актуализация знаний.

Указания учителя. Вспомните определение логарифма, график логарифмической функции и ее свойства. Для этого прочитайте текст на с.88–90, 98–101 учебника “Алгебра и начала анализа 10–11” под редакцией Ш.А Алимова, Ю.М Колягина и др.

Ученикам раздаются листы, на которых записаны: определение логарифма; изображен график логарифмической функции, ее свойства; свойства логарифмов; алгоритм решения логарифмических неравенств, пример решения логарифмического неравенства, сводящегося к квадратному.

3. Изучение нового материала.

Решение логарифмических неравенств основано на монотонности логарифмической функции.

Алгоритм решения логарифмических неравенств:

А) Найти область определения неравенства (подлогарифмическое выражение больше нуля).
Б) Представить (если возможно) левую и правую части неравенства в виде логарифмов по одному и тому же основанию.
В) Определить, возрастающей или убывающей является логарифмическая функция: если t>1, то возрастающая; если 01, то убывающая.
Г) Перейти к более простому неравенству (подлогарифмических выражений), учитывая, что знак неравенства сохранится, если функция возрастает, и изменится, если она убывает.

Учебный элемент № 1.

Цель: закрепить решение простейших логарифмических неравенств

Форма организации познавательной деятельности учащихся: индивидуальная работа.

Задания для самостоятельной работы на 10 минут. Для каждого неравенства имеются несколько вариантов ответов, нужно выбрать верный и проверить по ключу.


КЛЮЧ: 13321, максимальное кол-во баллов – 6 б.

Учебный элемент № 2.

Цель: закрепить решение логарифмических неравенств, применяя свойства логарифмов.

Указания учителя. Вспомните основные свойства логарифмов. Для этого прочитайте текст учебника на с.92, 103–104.

Задания для самостоятельной работы на 10 минут.

КЛЮЧ: 2113, максимальное кол-во баллов – 8 б.

Учебный элемент № 3.

Цель: изучить решение логарифмических неравенств методом сведения к квадратному.

Указания учителя: метод сведения неравенства к квадратному состоит в том, что нужно преобразовать неравенство к такому виду, чтобы некоторую логарифмическую функцию обозначить новой переменной, получив при этом квадратное неравенство относительно этой переменной.

Применим метод интервалов.

Вы прошли первый уровень усвоения материала. Теперь вам придется самостоятельно выбрать метод решения логарифмических уравнений, используя все свои знания и возможности.

Учебный элемент № 4.

Цель: закрепить решение логарифмических неравенств, выбрав самостоятельно рациональный способ решения.

Задания для самостоятельной работы на 10 минут

Учебный элемент № 5.

Указания учителя. Молодцы! Вы освоили решение уравнений второго уровня сложности. Целью дальнейшей вашей работы является применение своих знаний и умений в более сложных и нестандартных ситуациях.

Задания для самостоятельного решения:

Указания учителя. Замечательно, если вы справились со всем заданием. Молодцы!

Оценка за весь урок зависит от числа набранных баллов по всем учебным элементам:

  • если N ≥ 20, то вы получаете оценку “5”,
  • при 16 ≤ N ≤ 19 – оценка “4”,
  • при 8 ≤ N ≤ 15 – оценка “3”,
  • при N < 8 выполнить работу над ошибками к следующему уроку (решения можно взять у учителя).

Оценочные лисы сдать учителю.

5. Домашнее задание: если вы набрали не более 15 б – выполните работу над ошибками (решения можно взять у учителя), если вы набрали более 15 б – выполните творческое задание по теме “Логарифмические неравенства”.

Введение

Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма, т. е. идея выражать числа в виде степени одного и того же основания, принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером(1550-1617) и швейцарцем Иобстом Бюрги(1552-1632) Первым опубликовал работу Непер в 1614г. под названием «Описание удивительной таблицы логарифмов», теория логарифмов Непера была дана в достаточно полном объёме, способ вычисления логарифмов дан наиболее простой, поэтому заслуги Непера в изобретении логарифмов больше, чем у Бюрги. Бюрги работал над таблицами одновременно с Непером, но долгое время держал их в секрете и опубликовал лишь в 1620г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм», который в переводе с греческого- «соотнесённые числа», взятые одно из арифметической прогресси, а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие, обратное возведению в степень, он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления, теория их проще, чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Логарифмические уравнения и неравенства

1. Логарифмические уравнения

Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида

log a x = b . (1)

Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = a b .

Пример 1. Решить уравнения:

a) log 2 x = 3, b) log 3 x = -1, c)

Решение. Используя утверждение 1, получим a) x = 2 3 или x = 8; b) x = 3 -1 или x = 1 / 3 ; c)

или x = 1.

Приведем основные свойства логарифма.

Р1. Основное логарифмическое тождество:

где a > 0, a ≠ 1 и b > 0.

Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:

log a N 1 ·N 2 = log a N 1 + log a N 2 (a > 0, a ≠ 1, N 1 > 0, N 2 > 0).


Замечание. Если N 1 ·N 2 > 0, тогда свойство P2 примет вид

log a N 1 ·N 2 = log a |N 1 | + log a |N 2 | (a > 0, a ≠ 1, N 1 ·N 2 > 0).

Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя

(a > 0, a ≠ 1, N 1 > 0, N 2 > 0).

Замечание. Если

, (что равносильно N 1 N 2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N 1 N 2 > 0).

P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:

log a N k = k log a N (a > 0, a ≠ 1, N > 0).

Замечание. Если k - четное число (k = 2s ), то

log a N 2s = 2s log a |N | (a > 0, a ≠ 1, N ≠ 0).

P5. Формула перехода к другому основанию:

(a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),

в частности, если N = b , получим

(a > 0, a ≠ 1, b > 0, b ≠ 1). (2)

Используя свойства P4 и P5, легко получить следующие свойства

(a > 0, a ≠ 1, b > 0, c ≠ 0), (3) (a > 0, a ≠ 1, b > 0, c ≠ 0), (4) (a > 0, a ≠ 1, b > 0, c ≠ 0), (5)

и, если в (5) c - четное число (c = 2n ), имеет место

(b > 0, a ≠ 0, |a | ≠ 1). (6)

Перечислим и основные свойства логарифмической функции f (x ) = log a x :

1. Область определения логарифмической функции есть множество положительных чисел.

2. Область значений логарифмической функции - множество действительных чисел.

3. При a > 1 логарифмическая функция строго возрастает (0 < x 1 < x 2 log a x 1 < log a x 2), а при 0 < a < 1, - строго убывает (0 < x 1 < x 2 log a x 1 > log a x 2).

4. log a 1 = 0 и log a a = 1 (a > 0, a ≠ 1).

5. Если a > 1, то логарифмическая функция отрицательна при x (0;1) и положительна при x (1;+∞), а если 0 < a < 1, то логарифмическая функция положительна при x  (0;1) и отрицательна при x (1;+∞).

6. Если a > 1, то логарифмическая функция выпукла вверх, а если a (0;1) - выпукла вниз.

Следующие утверждения (см., например, ) используются при решении логарифмических уравнений.

Неравенство называется логарифмическим, если в нём содержится логарифмическая функция.

Методы решения логарифмических неравенств не отличаются от , за исключением двух вещей.

Во-первых, при переходе от логарифмического неравенства к неравенству подлогарифмических функций следует следить за знаком получающегося неравенства . Он подчиняется следующему правилу.

Если основание логарифмической функции больше $1$, то при переходе от логарифмического неравенства к неравенству подлогарифмических функций знак неравенства сохраняется, а если же меньше $1$, то меняется на противоположный.

Во-вторых, решение любого неравенства – промежуток, а, значит, в конце решения неравенства подлогарифмических функций необходимо составить систему из двух неравенств: первым неравенством этой системы будет неравенство подлогарифмических функций, а вторым – промежуток области определения логарифмических функций, входящих в логарифмическое неравенство.

Практика.

Решим неравенства:

1. $\log_{2}{(x+3)} \geq 3.$

$D(y): \ x+3>0.$

$x \in (-3;+\infty)$

Основание логарифма равно $2>1$, поэтому знак не меняется. Пользуясь определением логарифма, получим:

$x+3 \geq 2^{3},$

$x \in }

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png