Механические манометры . В них используются методы измерения давления, в которых силы измеряемого давления непосредственно сравниваются с весом столба жидкости, эталонного груза или с силами упругих чувствительных элементов. Механические манометры, сконструированные на основе первых двух методов, находят применение в стационарных условиях или используются как контрольные при проверке и тарировке других. При реализации третьего метода измерения давления в качестве упругих чувствительных элементов (УЧЭ) используются мембраны, мембранные коробки, сильфоны и трубчатые пружины. Их деформация зависит от значения измеряемого давления.

Рис. 12. Устройство мановакуумметра

В мановакуумметре (Рис. 12) в качестве УЧЭ применяются манометрический и барометрический сильфоны 9 и 6. Давление р к которое измеряется, подаётся в сильфон 9 . Сильфоном 6 измеряется давление р а , равное атмосферному. Под действием разности давлений происходит перемещение штока 8 , отклонение рычага 7 , перемещение тяги 2 , поворот сектора 1 , вращение трубки 5 и стрелки 4 относительно шкалы 3 .

При измерении давления механическими манометрами возникают методические, инструментальные и динамические погрешности.

Методическая погрешность появляется за счёт изменения абсолютного давления окружающей среды.

Инструментальные погрешности возникают из-за наличия трения, люфтов в опорах и шарнирах подвижных элементов, дисбаланса подвижной системы, а также от изменения температуры окружающей среды. Последнее вызывает изменения модуля упругости материала, из которого изготовлен УЧЭ, и геометрических размеров деталей передаточного механизма. Уменьшение этой погрешности достигается с помощью биметаллических температурных компенсаторов и подбором материалов, из которых изготавливаются УЧЭ.

Динамические погрешности обусловлены запаздыванием измерений, которые зависят от параметров трубопровода, соединяющего объект контроля с механическим манометром.

Электромеханические манометры. В этих манометрах силы измеряемого давления преобразуются в перемещение УЧЭ, которые воздействуют на параметры измерительных электрических схем (сопротивление R , индуктивность L или ёмкость С ). Преобразователь давления устанавливается непосредственно на объекте контроля, что позволяет отказаться от соединительных трубопроводов большой длины, избавиться от ряда погрешностей, упростить монтаж и эксплуатационное обслуживания.

Манометры типа ЭДМУ. Электрические дистанционные манометры унифицированного типа ЭДМУ (Рис. 13) имеют одинаковое устройство и элементы для всех диапазонов измеряемых давлений, за исключением УЧЭ и градуировки шкалы. Принципиальная электрическая схема приведена далее.


Рис. 13. Схема манометра типа ЭДМУ

Измеряемое давление р и подаётся в УЧЭ, который связан с щёткой Е 3 потенциометра В 1 через передаточный механизм. Значения сопротивлений R x и R y потенциометра преобразователя давления, меняющиеся в зависимости от давления р и , образуют два плеча мостовой схемы. Другими плечами мостовой схемы являются резисторы R 1 и R 2. Рамки логометра L 1, L 2и резистор R Д составляют измерительную диагональ моста. Общая точка соединения рамок подключена к полудиагонали, состоящей из резисторов R 3 и R 4. Они предназначены для компенсации температурных погрешностей, вызванных изменением сопротивления рамок логометра при колебаниях температуры окружающей среды. Рамки логометров имеют одинаковое число витков, но разные конструктивные размеры. Вследствие этого внутренняя рамка имеет меньшее сопротивление. Для обеспечения симметрии схемы в цепь внутренней рамки включено добавочное сопротивление R Д . При подключении к схеме напряжения питания в случае R x = R y мостовая схема симметрична. Ток, протекающий по полудиагонали через резисторы R 3 и R 4, разветвляется на два равных тока I 1 и I 2 рамок L L 2(Рис. 14). При нарушении равенства между R x и R y симметрия в схеме нарушается, вследствие чего нарушается и равенство токов. Токи I 1 и I 2 , протекая по рамкам логометра, создают магнитные поля, характеризующиеся векторами напряжённости:

H 1 = I 1 w H 2 = I 2 w,

где, w – число витков каждой из рамок.

Подвижный магнит, на оси которого крепиться стрелка, располагается по направлению вектора

H = H 1 + H 2 ,

где, H – вектор напряжённости результирующего магнитного поля.

Рис. 15. Кинематическая схема преобразователя давления

Измеряемое давление р и подаётся через штуцер 9 в полость преобразователя давления. Под действием р и происходит перемещение центра мембраны 8 , толкателя 6 ,качалки 5 , рычага 3 , и щёткодержателя 13. Пружина 4 возвращает рычаг в исходное положение при уменьшении давления р и .

Рис. 16. Конструкция логометра ЭДМУ

Конструкция логометра ЭДМУ (Рис. 16) состоит из подвижного магнита 2 и неподвижных рамок 3 и 10 . Магнит 2 и стрелка 5 крепиться к оси 9, концы которой вставлены в подпятники 6 . Медный корпус 1 магнитного успокоителя используется для демпфирования колебаний подвижной системы логометра.

Неподвижный магнит 4 возвращает стрелку прибора в нулевое положение при отключении напряжения питания.

Погрешности, вносимые в схему измерения датчиком давления, аналогичны погрешностям механических манометров. Погрешности, вносимые электрической схемой и указателем, возникают при изменении температуры окружающей среды, при действии на подвижную систему указателя сил трения, дисбаланса и люфтов, а также от магнитного гистерезиса в материале экрана и подвижного магнита. Общая суммарная погрешность (± 4) и наличие ненадёжного скользящего контракта являются недостатками манометров этого типа.

Манометры типа ЭМ являются приборами дифференциального типа, измеряющими разность двух давлений (Рис. 17). В качестве УЧЭ применяются гофрированные мембраны, деформация которых преобразуется в электрическую величину с помощью потенциометрического преобразователя. Указателем является четырёхрамочный логометр с подвижным магнитом.

Рис. 17. Схема манометра типа ЭМ

Крайние точки потенциометра соединены накоротко, поэтому он эквивалентен круговому потенциометру. Каждая секция потенциометра соединена с соответствующим отводом рамки логометра. Напряжение питания 27 В ± 10% подаётся на щётку потенциометрического преобразователя и точку объединяющую все рамки логометра. При перемещении щётки потенциометра под действием сил давления происходит перераспределение токов в рамках логометра. В них создаются магнитные поля, характеризующиеся векторами напряженности. Подвижный магнит четырёхрамочного логометра располагается по направлению вектора напряжённости Н суммарного магнитного поля. Сопротивления R 1 и R 2 служат для регулировки ширины и равномерности шкалы. Применение такой схемы даёт возможность получать при малом перемещении жёсткого центра мембраны и щётки потенциометра большие углы отклонения стрелки указателя (размах шкалы достигает 270 0). Это существенно повышает точность измерения давления при прочих равных условиях. Вследствие симметричности схемы прибора на показания указателя не влияют ни изменение напряжения питания, ни сопротивления рамок при колебаниях температуры окружающей среды. Суммарная погрешность прибора ± 3%. Основными недостатками манометра типа ЭМ являются наличие скользящего контакта и увеличенное число соединительных проводов, что снижает надёжность прибора, увеличивает его массу и усложняет монтаж на борту ЛА.

Манометры типа ДИМ . Недостатки потенциометрических преобразователей, связанные с износом потенциометрических преобразователей, связанные с износом потенциометра, нарушением контактов при вибрациях и колебаниях измеряемого давления, повышенных температурах, устранены в дистанционных индуктивных манометрах типа ДИМ (Рис. 18). Это обеспечивается применением дифференциального индуктивного преобразователя. Манометры этого типа применяются для измеряемого давления при повышенных температурах и значительных высокочастотных помех (до 700 Гц). Принципиальная электрическая схема манометра приведена ниже.


Рис. 18. Схема манометра типа ДИМ

В качестве УЧЭ применяются либо гофрированные мембраны, либо мембранные коробки. Жёсткий подвижный центр УЧЭ соединён с якорем индуктивного преобразователя. Катушки индуктивного преобразователя L 1 и L 2 совместно с резисторами R 1 и R 2 образуют мостовую схему, которая работает на переменном токе 36В 400 Гц. В диагональ мостовой схеме включены рамки логометрического указателя. При измерении давления деформация УЧЭ передаётся на якорь, который изменяет воздушный зазор в магнитных цепях катушек L L 2. Это вызывает изменения индуктивности катушек и ведёт к перераспределению токов в рамках логометра. Так как логометр работает на постоянном токе, то в качестве выпрямителей в измерительную схему введены диоды Д 1 и Д 2. Максимальные погрешности манометров типа ДИМ составляет ± 4%, размах шкалы указателя 120 0 .

Сигнализаторы давления . Они предназначены для выдачи информации о наличии в системах силовых установок номинальных или критических режимов. УЧЭ 1 сигнализатора давления управляют работой контактов 4,5, коммутирующих электрическую цепь (Рис. 19).

Рис. 19. Схема сигнализатора давления

Сигнализатор давления 2 размыкает электрическую цепь с помощью упоров 3 и 6 при уменьшении разности давления Δр = р 2 – р 1 .

Измеритель отношения давлений типа ИОД . Он предназначен для контроля тяги двигателя по отношению давлений

π =р 2 / р 1

где, р 1 – полное давление на входе в двигатель;

р 2 – давление за турбиной двигателя.

Схема прибора (Рис. 20) состоит их датчика отношения давления (ДОД) и указателя отношения давлений (УОД). Она является измерительной схемой компенсационного типа в отличие от измерительных схем прямого преобразования. ДОД состоит: из рабочего сильфона17, в полость которого подаётся давление р 2 , анероид 1, реагирующего на изменение давления р 1 , подаваемого в корпус датчика; контактной системы 15, служащей для управления электродвигателем 13, через усилитель 16, потенциометра 2, фиксирующего отклонение рычага 18.


Рис. 20. Схема измерителя отношения давлений типа ИОД

УОД состоит: из усилителя 8; двигателя 10; механизма обратной связи, в который входят редуктор и потенциометр 12; механизма указателя, включающего ходовой механизм, шкалу 4, механизм ленты 3 и возвратную пружину 7. Лампы Л1 и Л2 освещают шкала указателя.

При изменении режима работы двигателя, следовательно, и изменении отношения давления подвижный контакт контактной системы 15, расположенной на рычаге 18, замкнётся с верхним или нижним неподвижным контактном, и электродвигатель 13 начнёт поворачивать анероид, изменяя угол его наклона к рычагу 18. При достижении равновесия приведённых сил сильфона и анероида происходит размыкание контактов и двигатель отключается. При этом с потенциометра 2 снимаются сигналы, пропорциональные отношению давлений. Он включён в мостовую измерительную схему указателя, содержащую потенциометр обратной связи 12 и подгоночные сопротивления 11. При разбалансе моста в диагонали возникает напряжение, которое усиливается усилителем 8 и поступает на электродвигатель 10 указателя, который уравновешивает мостовую схему с помощью потенциометрической обратной связи 12 и перемещает механизм указателя с показывающей лентой 3. При этом на шкале 4 указывается величина измеряемого отношения давлений. В случае отклонения питания или выхода из строя элементов прибора лента возвращается за нижнюю отметку шкалы возвратной пружиной 7. Подгоночные резисторы 11 позволяет произвести регулировку размаха чётно-белой границы ленты по шкале указателя. Вращением кремальеры 6 перемещается гайка со стрелкой 5 вдоль шкалы для отметки заранее установленного значения отношения давлений в точке контроля.

Термостружкосигнализаторы . Для своевременного предупреждения экипажа о появлении ненормальностей в работе подшипниковых узлов средней и задней опор ротора двигателя в нижней части камеры сгорания установлен корпус с масляными фильтрами и термостружкосигнализаторами (ТСС).

Система (Рис. 21) состоит из следующих основных элементов:

а) двух термостружкосигнализаторов 1, один из которых установлен в магистрали откачки масла от заднего подшипника ротора компрессора, другой – в магистрали откачки масла от подшипника ротора турбины;

б) сигнальной лампочки, расположенной на приборной доске в кабине экипажа.

В корпусе маслофильта имеются два канала, один из которых соединён с полостью заднего подшипника компрессора, другой – с полостью подшипника турбины.

В каждом канале установлен маслофильтр 10 и ТСС 1, которые своими фланцами совместно крепятся к корпусу маслофильтров 11 двумя болтами.


Рис. 21. Конструкция маслофильтра

Корпус маслофильтров 11 своим верхним фланцем крепиться четырьмя болтами к фланцу, имеющему на нижнем ребре жёсткости корпуса камеры сгорания. Между фланцами устанавливается паронитовая прокладка.

На корпусе маслофильтров 11, кроме того, установлено два штуцера для соединения каналов корпуса трубопроводами с масляным агрегатом.

Каждый ТСС состоит из датчика, сигнализирующего о стальной стружке в откачиваемом масле, и датчика предельной температуры воздушно - масляной смеси.

Датчик наличия стальной стружки состоит из магнитного накопителя стружки, представляющего собой два постоянных магнита 4 и 6, установленных с воздушным зазором друг против друга разными полюсами. Магниты соединены проводами 2 и 3 с контактами штепсельного разъёма термостружкосигнализатора. На корпусе ТСС установлен штепсельный разъём для подключения его к электрическим цепям двигателя и самолёта.

Датчик предельной температуры расположен в верхней части корпуса 5 и состоит из корпуса 8, вставки 9 из легкоплавкого сплава и контактов, одним из которых является верхняя часть магнита 6 , а другим – кольцо 7.

Вставка 9 помещается внутри конуса 8 и поддерживается тремя равноотстоящими выступами.Кольцо 7 соединено проводом 2 с магнитом 4.

Принцип работы как датчика наличия стружки, так и термодатчика основан на замыкании минусовой цепи сигнальной лампочки системы термостружкосигнализации при появлении стружки или повышении температуры откачиваемой воздушно – масляной смеси выше допустимой величины.

При появлении металлической стружки в одной из указанных выше магистралей откачки масла между магнитами образуется замкнутая сеть, так как зазор между магнитами заполняется стружкой.

В результате этого на приборной доске в кабине экипажа загорается лампочка наличия стружки в двигателе.

В случае повышения температуры воздушно - масляной смеси в магистрали откачки из полости заднего подшипника компрессора выше 180 0 С и магистрали откачки из полости подшипника турбины выше 202 0 С легкоплавкие вставки расплавляются и соединяют поверхность магнитов 6 и колец 7 .Образуется замкнутая электрическая цепь, которая включает лампочку в кабине пилота, сигнализирующую о наличии стружки в масле.

Вывод: приборы контроля за работой силовых установок самолётов предназначены для контроля за тягой и тепловым режимом авиационных двигателей, состоянием смазки, запасом и расходом топлива, работой отдельных систем и агрегатов. К ним относятся приборы для измерения скорости вращения, температуры, давления, количества топлива в баках и расхода топлива. К этой же группе приборов относятся сигнализаторы заданных давлений в топливной системе и указатели положений конуса воздухозаборника, противопомпажных створок и рычага топлива, позволяющие проверить состояние соответствующих систем.

Двигатели самолётов, топливные и масляные баки, баллоны воздушных систем и другие объекты, за работой которых необходимо наблюдать во время полёта, располагается на расстоянии нескольких метров и даже десятков метров от кабины, где сосредоточено управление самолётов. Поэтому все приборы, контроля за работой силовых установок должны быть дистанционными.

Авиационные двигатели работают в напряжённом тепловом режиме, близком к предельному. Поэтому к термометрам, применяемым для контроля за тепловым режимом двигателя и обслуживающих систем. Предъявляется требование повышенной точности измерения. Так, при максимальных значениях измеряемых температур погрешность измерения температуры газов ТРД не должна превышать ± (0,5-1)%. Точность измерения температуры в системах охлаждения авиационных двигателей всех типов оценивается допустимой погрешностью ± (3-5)%.

Давление топлива в газотурбинных двигателях должно измеряться с погрешностью не более ± 1.5 % в диапазоне 0-10 кГ/см 2 и ±4 % в диапазоне 10-100 кГ/см 2 . Погрешность измерения давления масла не должна превышать ± 4%.

Заключение

Точное измерение фактического запаса топлива на самолёте и мгновенного или суммарного его расхода необходимо для обеспечения безопасности полёта и выдерживания оптимального режима работы двигателя. Погрешность измерения количества топлива при положении самолёта в линии полёта не должна превышать 2-3% фактического запаса топлива не должна быть более ± 2,5%.

Сигнализаторы заданных давлений должны срабатывать с погрешностью, не превышающей ± 5% номинальных значений давления срабатывания.

Вопросы на самостоятельную подготовку

1.Контролируемые параметры силовых установок, агрегатов и систем ЛА.

2.Принцип работы термометра типа ТЭУ.

3. Принцип работы термодатчика.

4. Принцип работы ТНВ.

5. Принцип работы термоэлектрических термометров.

6. Принцип действия магнитоэлектрического гальванометра

7. Приборы контроля состояния масляных систем двигателя.

Литература

1. В.Д. Константинов, И.Г. Уфимцев, Н.В. Козлов "Авиационное оборудование самолётов" стр. 119-148.

2. Ю. П. Доброленский "Авиационное оборудование" стр. 82-88.

3. А.С. Тыртычко, Н.Н. Точилов, М.М. Ногас, В.М. Блувштейн "Авиационное оборудование вертолётов" стр. 254-282.

4. В.В. Глухов, И.М. Синдеев, М.М. Шемаханов "Авиационное и радиоэлектронное оборудование ЛА." стр. 46-76.

5. Конспект лекций.


Похожая информация.


Приборы контроля работы двигателя измеряют: давление и температуру топлива и масла двигателя; скорость вращения коленчатого вала двигателя, количество и часовой расход топлива; температуру головок цилиндров или выходящих газов, вибрацию и другие параметры. Знание этих параметров позволяет контролировать режимы работы двигателя на Земле и в полете.

Манометры

На самолете устанавливают манометры контроля давления в масляной и топливной систем двигателя, гидравлической системы, воздушной системы запуска двигателя и кислородного оборудования.

а) Мановакуумметры измеряют давление горючей смеси во всасывающем патрубке авиадвигателя в диапазоне от 0 до 1,5 - 2 атм. Чувствительным элементом является анероидная коробка (рис.1), установленная в герметичный корпус. Измеряемое давление поступает через штуцер внутрь корпуса прибора. При изменении давления анероидная коробка деформируется и через передаточный механизм перемещает стрелку.

Рис. 1 – Мановакуумметр

1 – анероидная коробка; 2 – неподвижный центр коробки; 3 – подвижный центр коробки; 4 – температурный компенсатор; 5 – тяга; 6 – штуцер; 7 – валик; 8 – зубчатый сектор; 9 – стрелка; 10 – пружина

б) Механические манометры

Принцип работы механического манометра (рис.2) основан на использовании чувствительного элемента - трубчатой пружины 1, внутрь которой через штуцер поступает измеряемое давление. Под действием этого давления пружина разжимается и ее свободный конец 2, двигаясь, перемещает стрелку.

Рис. 2 Кинематическая схема механического манометра

1 – трубчатая пружина; 2 – подвижный конец трубчатой пружины

Пример использования такого манометра (МА-100) на самолете Л-410 УВП, который предназначен для измерения давления гидросмеси в системе стояночного тормоза. Лицевая часть указателя представлена на рис. 3.

Двухстрелочный механический манометр ЛУН-1446.01-8 предназначен для измерения давления в тормозной системе. Лицевая часть указателя показана на рис. 3. Принцип действия аналогичен манометру МА-100.

Рис. 3 Лицевые части указателей манометра МА-100 и ЛУН-1446.01-8

в) Дистанционные манометры измеряют давление топлива, масла, гидросмеси в системе тормозов. Состоят из датчиков, установленных на двигателе и указателей на приборной доске пилотов.

1 – постоянный магнит; 2 – подвижный магнит 1 – мембрана; 2 – шток; 3 – якорь;

3 – потенциометр; 4 – скользящий контакт; 4 – диоды; 5 – подвижный магнит;

5 – мембрана 6 – стрелка

Рис. 4 - Схема дистанционного Рис. 5 - Схема манометра

манометра на постоянном токе на переменном токе

Манометр с потенциометрическим датчиком (рис. 4) представляет собой герметичный корпус, внутри которого имеется манометрическая коробка. Внутрь коробки поступает измеряемое давление, которое деформирует манометрическую коробку. Деформация манометрической коробки преобразуется в перемещение скользящего контакта потенциометра П, включенного в мостовую схему с логометром. Питание комплекта от сети постоянного тока.

Недостатки потенциометрических преобразователей, связанны с износом потенциометра, нарушением контактов при вибрациях и колебаниях измеряемого давления, повышенных температурах.

Эти недостатки устранены в дистанционных индуктивных манометрах типа ДИМ. В них перемещение подвижного центра манометрической коробки под действием давления преобразуется в изменение воздушных зазоров в магнитопроводе, на котором установлены катушки индуктивности. Изменение зазоров приводит к изменению индуктивностей, которые включены в мостовую схему переменного тока.

Рис. 6 Лицевые части двухстрелочных манометров 2ДИМ-240 и 2ДИМ-150

Пример использования манометра ДИМ на самолете Л-410 УВП: Давление в основной сети и в контуре тормозов отбражается дистанционным индуктивным манометром 2ДИМ-240. В комплект дистанционного индуктивного манометра 2ДИМ-240 входят: манометр двухстрелочный УИ2-240К (рис. 6) и два датчика давления ИД-240.

Питание комплекта от сети переменного тока 36 В 400 Гц.

Приборы для контроля параметров самолета (приборы контроля работы двигателя) предназначены для контроля двигателя и всех движущихся частей самолета.

Приборная панель современного авиалайнера

Безопасность полета, в большей мере, зависит от надежности двигателей. Поэтому чаще всего используют несколько двигательных установок, для того чтобы при выходе из строя одной из них, была возможность и далее продолжать безопасный полет. Это естественно ведет к росту количества датчиков, так что во многих случаях устройства, следящие за работой двигателя, объединяются на специальном пульте приборов и контролируются бортинженером. К приборам для контроля параметров самолета относятся счетчики числа оборотов, термометры смазочного средства, охлаждающей жидкости и реактивной струи, указатели запаса и расхода топлива и др.

Счетчики числа оборотов могут конструироваться как счетчики с непосредственным отсчетом показаний, так и дистанционные счетчики оборотов. В их самой простой механической форме есть измерители центробежного типа, у которых индикатор напрямую приводится посредством упругого вала. Устройства для дистанционного отсчета оборотов, в большинстве случаев, состоят из датчика переменного тока на двигателе и индикатора в кабине экипажа. Иногда также применяются индукционные счетчики оборотов, но они создают помехи для магнитных компасов и поэтому должны монтироваться на большом расстоянии от них.

Указатели запаса и расхода топлива. Для пилота очень важно, иметь полную информацию о соответствующем запасе топлива, которая позволяет ему определить возможную максимальную дальность полета. Старые самолеты чаще всего оборудовались поплавковым указателем запаса топлива, который, в зависимости от случая, даже устанавливался как непосредственный индикатор над топливным баком - например, у крыльевого топливного бака - и считывался пилотом со своего места. Показания этих приборов зависимы от места их расположения и вряд ли могли использоваться для индикации содержания топлива всех топливных баков на панели с приборами кабины экипажа.

Возникла необходимость в применении электрических систем, у которых установленный на топливном баке датчик состоит из поплавка и потенциометра. Поплавки могут быть вращающимися или маятниковыми. Индикаторные устройства управляются потенциометрами. Также благодаря дополнительным контактам они могут взять на себя функции указателя наличия топлива в баке. На современных самолетах используются элекэлектрическое измерение запаса на емкостном основании. Этот способ имеет существенное преимущество в том, что измерение больше не ограничивается определенной отметкой в топливном баке. В него встраиваются несколько расположенных друг к другу труб, причем их емкость меняется в зависимости от степени использования и с помощью простого усилителя выводится на стрелочный индикатор.

Но только одного измерения запаса теперь уже не достаточно, прежде всего, на турбинных двигателях, потребляющих большое количество топлива. Поэтому необходимы специальные расходомеры, которые измеряют в топливном трубопроводе потребляемое количество топлива каждым двигателем (т.н. индикатор мгновенного расхода топлива). Эти измерительные приборы, благодаря счетному механизму, позволяют в любое время считывать данные относительно остатка топлива в баке. Интересными в последнее время представляются некоторые разработанные автономные измерители, которые показывают или оставшееся время полета или оставшуюся его максимальную дальность. Основанием для произведения автономных расчетов служат соответствующее потребление топлива и режим эксплуатации двигателей.

Смотрите также:

  • Бортовые измерительные приборы
  • О некоторых вопросах налогообложения и амортизации…
  • Рабочий газ и реактивное сопло
  • Зачем устанавливать радиостанцию со встроенной настройкой?
  • Тяга и скорость реактивной струи
  • Сваливание и штопор — как их избежать
  • Сверхзвуковые пассажирские самолёты - вчера, сегодня, завтра
  • Классификация военных самолетов
  • Бака Гранде заказать самолет город: Бака Гранде страна: США
  • Зимовка в Паттайе — советы бывалого

АВИАЦИОННЫЕ БОРТОВЫЕ ПРИБОРЫ
приборное оборудование, помогающее летчику вести самолет. В зависимости от назначения авиационные бортовые приборы делятся на пилотажно-навигационные, приборы контроля работы авиадвигателей и сигнализационные устройства. Навигационные системы и автоматы освобождают пилота от необходимости непрерывно следить за показаниями приборов. В группу пилотажно-навигационных приборов входят указатели скорости, высотомеры, вариометры, авиагоризонты, компасы и указатели положений самолета. К приборам, контролирующим работу авиадвигателей, относятся тахометры, манометры, термометры, топливомеры и т.п. В современных бортовых приборах все больше информации выносится на общий индикатор. Комбинированный (многофункциональный) индикатор дает возможность пилоту одним взглядом охватывать все объединенные в нем индикаторы. Успехи электроники и компьютерной техники позволили достичь большей интеграции в конструкции приборной доски кабины экипажа и в авиационной электронике. Полностью интегрированные цифровые системы управления полетом и ЭЛТ-индикаторы дают пилоту лучшее представление о пространственном положении и местоположении самолета, чем это было возможно ранее.

ПАНЕЛЬ УПРАВЛЕНИЯ современного авиалайнера более просторна и менее загромождена, чем на авиалайнерах прежних моделей. Органы управления расположены непосредственно "под рукой" и "под ногой" пилота.


Новый тип комбинированной индикации - проекционный - дает пилоту возможность проецировать показания приборов на лобовое стекло самолета, тем самым совмещая их с панорамой внешнего вида. Такая система индикации применяется не только на военных, но и на некоторых гражданских самолетах.

ПИЛОТАЖНО-НАВИГАЦИОННЫЕ ПРИБОРЫ


Совокупность пилотажно-навигационных приборов дает характеристику состояния самолета и необходимых воздействий на управляющие органы. К таким приборам относятся указатели высоты, горизонтального положения, воздушной скорости, вертикальной скорости и высотомер. Для большей простоты пользования приборы сгруппированы Т-образно. Ниже мы кратко остановимся на каждом из основных приборов.
Указатель пространственного положения. Указатель пространственного положения представляет собой гироскопический прибор, который дает пилоту картину внешнего мира в качестве опорной системы координат. На указателе пространственного положения имеется линия искусственного горизонта. Символ самолета меняет положение относительно этой линии в зависимости от того, как сам самолет меняет положение относительно реального горизонта. В командном авиагоризонте обычный указатель пространственного положения объединен с командно-пилотажным прибором. Командный авиагоризонт показывает пространственное положение самолета, углы тангажа и крена, путевую скорость, отклонение скорости (истинной от "опорной" воздушной, которая задается вручную или вычисляется компьютером управления полетом) и представляет некоторую навигационную информацию. В современных самолетах командный авиагоризонт является частью системы пилотажно-навигационных приборов, которая состоит из двух пар цветных электронно-лучевых трубок - по две ЭЛТ для каждого пилота. Одна ЭЛТ представляет собой командный авиагоризонт, а другая - плановый навигационный прибор (см. ниже). На экраны ЭЛТ выводится информация о пространственном положении и местоположении самолета во всех фазах полета.



Плановый навигационный прибор. Плановый навигационный прибор (ПНП) показывает курс, отклонение от заданного курса, пеленг радионавигационной станции и расстояние до этой станции. ПНП представляет собой комбинированный индикатор, в котором объединены функции четырех индикаторов - курсоуказателя, радиомагнитного индикатора, индикаторов пеленга и дальности. Электронный ПНП с встроенным индикатором карты дает цветное изображение карты с индикацией истинного местоположения самолета относительно аэропортов и наземных радионавигационных средств. Индикация направления полета, вычисления поворота и желательного пути полета предоставляют возможность судить о соотношении между истинным местоположением самолета и желаемым. Это позволяет пилоту быстро и точно корректировать путь полета. Пилот может также выводить на карту данные о преобладающих погодных условиях.

Указатель воздушной скорости. При движении самолета в атмосфере встречный поток воздуха создает скоростной напор в трубке Пито, закрепленной на фюзеляже или на крыле. Воздушная скорость измеряется путем сравнения скоростного (динамического) напора со статическим давлением. Под действием разности динамического и статического давлений прогибается упругая мембрана, с которой связана стрелка, показывающая по шкале воздушную скорость в километрах в час. Указатель воздушной скорости показывает также эволютивную скорость, число Маха и максимальную эксплуатационную скорость. На центральной панели расположен резервный пневмоуказатель воздушной скорости.
Вариометр. Вариометр необходим для поддержания постоянной скорости подъема или снижения. Как и высотомер, вариометр представляет собой, в сущности, барометр. Он указывает скорость изменения высоты, измеряя статическое давление. Имеются также электронные вариометры. Вертикальная скорость указывается в метрах в минуту.
Высотомер. Высотомер определяет высоту над уровнем моря по зависимости атмосферного давления от высоты. Это, в сущности, барометр, проградуированный не в единицах давления, а в метрах. Данные высотомера могут представляться разными способами - с помощью стрелок, комбинаций счетчиков, барабанов и стрелок, посредством электронных приборов, получающих сигналы датчиков давления воздуха. См. также БАРОМЕТР .

НАВИГАЦИОННЫЕ СИСТЕМЫ И АВТОМАТЫ


На самолетах устанавливаются различные навигационные автоматы и системы, помогающие пилоту вести самолет по заданному маршруту и выполнять предпосадочное маневрирование. Некоторые такие системы полностью автономны; другие требуют радиосвязи с наземными средствами навигации.
Электронные навигационные системы. Существует ряд различных электронных систем воздушной навигации. Всенаправленные радиомаяки - это наземные радиопередатчики с радиусом действия до 150 км. Они обычно определяют воздушные трассы, обеспечивают наведение при заходе на посадку и служат ориентирами при заходе на посадку по приборам. Направление на всенаправленный радиомаяк определяет автоматический бортовой радиопеленгатор, выходная информация которого отображается стрелкой указателя пеленга. Основным международным средством радионавигации являются всенаправленные азимутальные радиомаяки УКВ-диапазона VOR; их радиус действия достигает 250 км. Такие радиомаяки используются для определения воздушной трассы и для предпосадочного маневрирования. Информация VOR отображается на ПНП и на индикаторах с вращающейся стрелкой. Дальномерное оборудование (DME) определяет дальность прямой видимости в пределах около 370 км от наземного радиомаяка. Информация представляется в цифровой форме. Для совместной работы с маяками VOR вместо ответчика DME обычно устанавливают наземное оборудование системы TACAN. Составная система VORTAC обеспечивает возможность определения азимута с помощью всенаправленного маяка VOR и дальности с помощью дальномерного канала TACAN. Система посадки по приборам - это система радиомаяков, обеспечивающая точное наведение самолета при окончательном заходе на посадочную полосу. Курсовые посадочные радиомаяки (радиус действия около 2 км) выводят самолет на среднюю линию посадочной полосы; глиссадные радиомаяки дают радиолуч, направленный под углом около 3° к посадочной полосе. Посадочный курс и угол глиссады представляются на командном авиагоризонте и ПНП. Индексы, расположенные сбоку и внизу на командном авиагоризонте, показывают отклонения от угла глиссады и средней линии посадочной полосы. Система управления полетом представляет информацию системы посадки по приборам посредством перекрестья на командном авиагоризонте. СВЧ-система обеспечения посадки - это точная система наведения при посадке, имеющая радиус действия не менее 37 км. Она может обеспечивать заход по ломаной траектории, по прямоугольной "коробочке" или по прямой (с курса), а также с увеличенным углом глиссады, заданным пилотом. Информация представляется так же, как и для системы посадки по приборам.
См. также АЭРОПОРТ ; ВОЗДУШНЫМ ДВИЖЕНИЕМ УПРАВЛЕНИЕ . "Омега" и "Лоран" - радионавигационные системы, которые, используя сеть наземных радиомаяков, обеспечивают глобальную рабочую зону. Обе системы допускают полеты по любому маршруту, выбранному пилотом. "Лоран" применяется также при заходе на посадку без использования средств точного захода. Командный авиагоризонт, ПНП и другие приборы показывают местоположение самолета, маршрут и путевую скорость, а также курс, расстояние и расчетное время прибытия для выбранных путевых точек.
Инерциальные системы. Инерциальная навигационная система и инерциальная система отсчета являются полностью автономными. Но обе системы могут использовать внешние средства навигации для коррекции местоположения. Первая из них определяет и регистрирует изменения направления и скорости с помощью гироскопов и акселерометров. С момента взлета самолета датчики реагируют на его движения, и их сигналы преобразуются в информацию о местоположении. Во второй вместо механических гироскопов используются кольцевые лазерные. Кольцевой лазерный гироскоп представляет собой треугольный кольцевой лазерный резонатор с лазерным лучом, разделенным на два луча, которые распространяются по замкнутой траектории в противоположных направлениях. Угловое смещение приводит к возникновению разности их частот, которая измеряется и регистрируется. (Система реагирует на изменения ускорения силы тяжести и на вращение Земли.) Навигационные данные поступают на ПНП, а данные положения в пространстве - на командный авиагоризонт. Кроме того, данные передаются на систему FMS (см. ниже). См. также ГИРОСКОП ; ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ . Система обработки и индикации пилотажных данных (FMS). Система FMS обеспечивает непрерывное представление траектории полета. Она вычисляет воздушные скорости, высоту, точки подъема и снижения, соответствующие наиболее экономному потреблению топлива. При этом система использует планы полета, хранящиеся в ее памяти, но позволяет также пилоту изменять их и вводить новые посредством компьютерного дисплея (FMC/CDU). Система FMS вырабатывает и выводит на дисплей летные, навигационные и режимные данные; она выдает также команды для автопилота и командного пилотажного прибора. В дополнение ко всему она обеспечивает непрерывную автоматическую навигацию с момента взлета до момента приземления. Данные системы FMS представляются на ПНП, командном авиагоризонте и компьютерном дисплее FMC/CDU.

ПРИБОРЫ КОНТРОЛЯ РАБОТЫ АВИАДВИГАТЕЛЕЙ


Индикаторы работы авиадвигателей сгруппированы в центре приборной доски. С их помощью пилот контролирует работу двигателей, а также (в режиме ручного управления полетом) изменяет их рабочие параметры. Для контроля и управления гидравлической, электрической, топливной системами и системой поддержания нормальных рабочих условий необходимы многочисленные индикаторы и органы управления. Индикаторы и органы управления, размещаемые либо на панели бортинженера, либо на навесной панели, часто располагают на мнемосхеме, соответствующей расположению исполнительных органов. Индикаторы мнемосхем показывают положение шасси, закрылков и предкрылков. Может указываться также положение элеронов, стабилизаторов и интерцепторов.

СИГНАЛИЗАЦИОННЫЕ УСТРОЙСТВА


В случае нарушений в работе двигателей или систем, неправильного задания конфигурации или рабочего режима самолета вырабатываются предупредительные, уведомительные или рекомендательные сообщения для экипажа. Для этого предусмотрены визуальные, звуковые и тактильные средства сигнализации. Современные бортовые системы позволяют уменьшить число раздражающих тревожных сигналов. Приоритетность последних определяется по степени неотложности. На электронных дисплеях высвечиваются текстовые сообщения в порядке и с выделением, соответствующими степени их важности. Предупредительные сообщения требуют немедленных корректирующих действий. Уведомительные - требуют лишь немедленного ознакомления, а корректирующих действий - в последующем. Рекомендательные сообщения содержат информацию, важную для экипажа. Предупредительные и уведомительные сообщения делаются обычно и в визуальной, и в звуковой форме. Системы предупредительной сигнализации предупреждают экипаж о нарушении нормальных условий эксплуатации самолета. Например, система предупреждения об угрозе срыва предупреждает экипаж о такой угрозе вибрацией обеих штурвальных колонок. Система предупреждения опасного сближения с землей дает речевые предупредительные сообщения. Система предупреждения о сдвиге ветра дает световой сигнал и речевое сообщение, когда на маршруте самолета встречается изменение скорости или направления ветра, способное вызвать резкое уменьшение воздушной скорости. Кроме того, на командном авиагоризонте высвечивается шкала тангажа, что позволяет пилоту быстрее определить оптимальный угол подъема для восстановления траектории.

ОСНОВНЫЕ ТЕНДЕНЦИИ


"Режим S" - предполагаемый канал обмена данными для службы управления воздушным движением - позволяет авиадиспетчерам передавать пилотам сообщения, выводимые на лобовое стекло самолета. Сигнализационная система предупреждения воздушных столкновений (TCAS) - это бортовая система, выдающая экипажу информацию о необходимых маневрах. Система TCAS информирует экипаж о других самолетах, появляющихся поблизости. Затем она выдает сообщение предупредительного приоритета с указанием маневров, необходимых для того, чтобы избежать столкновения. Глобальная система местоопределения (GPS) - военная спутниковая система навигации, рабочая зона которой охватывает весь земной шар, - теперь доступна и гражданским пользователям. К концу тысячелетия системы "Лоран", "Омега", VOR/DME и VORTAC практически полностью вытеснены спутниковыми системами. Монитор состояния (статуса) полета (FSM) - усовершенствованная комбинация существующих систем уведомления и предупреждения -помогает экипажу в нештатных летных ситуациях и при отказах систем. Монитор FSM собирает данные всех бортовых систем и выдает экипажу текстовые предписания для выполнения в аварийных ситуациях. Кроме того, он контролирует и оценивает эффективность принятых мер коррекции.

ЛИТЕРАТУРА


Духон Ю.И. и др. Справочник по связи и радиотехническому обеспечению полетов. М., 1979 Боднер В.А. Приборы первичной информации. М., 1981 Воробьев В.Г. Авиационные приборы и измерительные системы. М., 1981

Энциклопедия Кольера. - Открытое общество . 2000 .

  • Словарь военных терминов
  • - (бортовые СОК) технические средства, предназначеные для регистрации и сохранения полетной информации, характеризующей условия полёта, действия экипажа и функционирование бортового оборудования. СОК используются для: анализа причин и… … Википедия

    Совокупность методов и средств для определения действительных и желаемых положения и движения летательного аппарата, рассматриваемого как материальная точка. Термин навигация чаще применяется к длительным маршрутам (суда, самолеты, межпланетные… … Энциклопедия Кольера

    Совокупность прикладных знаний, позволяющих авиационным инженерам на занятий в области аэродинамики, проблем прочности, двигателестроения и динамики полета летательных аппаратов (т.е. теории) создать новый летательный аппарат или улучшить… … Энциклопедия Кольера - метод измерения ускорения судна или летательного аппарата и определения его скорости, положения и расстояния, пройденного им от исходной точки, при помощи автономной системы. Системы инерциальной навигации (наведения) вырабатывают навигационную… … Энциклопедия Кольера

    Устройство для автоматического управления самолетом (удержания на заданном курсе); применяется в длительных перелетах, позволяет летчику отдохнуть. Приборы того же принципа действия, но отличающиеся конструктивно, используются для управления… … Энциклопедия Кольера

    Совокупность предприятий, занятых конструированием, производством и испытаниями самолетов, ракет, космических аппаратов и кораблей, а также их двигателей и бортового оборудования (электрической и электронной аппаратуры и др.). Эти предприятия… … Энциклопедия Кольера

удовольствия

P2002-Sierra RG представляет собой двухместный низкоплан с параллельным расположением кресел и убирающимися шасси. Выполненный со вкусом P2002 Sierra RG — самолет для получения удовольствия от управления и созерцания окружающего вас мира.

Краткие сведения

Макс. дальность

Готов к маршрутным полетам

Максимальная скорость

Места

Два места с параллельным расположением кресел
Дневные и ночные полеты по ПВП

Расход топлива

Всего лишь 4.5 галлона США в час при
использовании как автомобильного, так и авиационного топлива.

Экстерьер

Самолет P2002 Sierra RG обладает превосходными эксплуатационными и летными характеристиками, что подтверждается фактом многочисленных продаж сверхлегких самолетов P2002, легких спортивных и сверхлегких воздушных судов по всему миру, и утвержденных в 15 странах, за исключением Европейских государств. Простота в пилотировании и выполнении технического обслуживания позволяют данному воздушному судну быть отличным решением для проведения обучения в летных организациях. Он также является идеальным решением для выполнения задач по наблюдению с воздуха как развлекательного характера, так и для частного использования. Возможность использовать топливо 100LL AVGAS или неэтилированное автомобильное топливо (до 10% содержания этанола) делает этот самолет еще более универсальным и экономически выгодным в эксплуатации. В P2002 Sierra RG совмещаются самые передовые разработки самолетостроения компании Tecnam. Применение современного программного обеспечения для проектирования, структурного анализа, а также опыт в постройке воздушных судов с использованием всех типов материалов является результатом непрерывного развития процесса производства воздушных судов.
Благодаря трапецевидному низкорасположенному крылу и щелевым закрылкам, Р2002 Sierra RG является превосходным самолетом с идеальным сочетанием аэродинамических, эксплуатационных характеристик.

Детали интерьера

Самолёт оборудован креслами, регулируемыми в полете по уровню высоты при перемещении кресла вперед.
Багажный отсек, вместимостью на 44 фунта/20 кг, расположен за креслами с достаточным местом для размещения нескольких дорожных сумок. Все самолеты Tecnam оборудованы спаренными органами управления с изогнутой формой у основания для легкого доступа и покидания воздушного судна. Двойная система управления с наличием нажимной переговорной кнопки (PTT) и электрического триммера стабилизатора на ручке с индикатором триммера на панели управления является стандартной.
Интерьер достаточно просторный, эргономичный и комфортный. Двойная система РУДов позволяет осуществлять управление как левой, так и правой рукой.
Обогрев и предотвращение обмерзания входят в стандартную конфигурацию.
Вентиляционные отверстия расположены в дверях. Конструкцией всех самолетов Tecnam предусмотрен отличный передний обзор.
Самолет оборудован двойными стандартными педалями системы путевого управления и управляемым носовым колесом. Широкая приборная панель стандартного типа позволяет разместить широкий спектр оборудования.
Шасси вверх и вперед за удовольствием с Sierra RG!


Авионика

Стандартный пакет авионики GARMIN

GMA 340 Аудиопанель
GNC 255A Связное/навигационное оборудование
GTX 328 Ответчик
АРМ 406 Мгц
Антенны:
— Ответчика
— УКВ
— АРМ
— Маркерного радиомаяка
Динамики
Микрофон
Переговорная кнопка на ручке управления командира экипажа/второго пилота

Список стандартного оборудования

Указатели и приборы управления полетом

Магнитный компас
Указатель скорости (в узлах)
Высотомер (дюймы)
Вариометр
Указатель крена
Указатель положения закрылков
Система ПВД
Система статического давления
Указатель положения триммера стабилизатора
Три лампочки положения шасси
Индикатор транзитного / незафиксированного положения шасси

Приборы контроля работы двигателя

Тахометр
Счетчик моточасов
Указатель давления масла
Указатель температуры масла
Указатель температуры головки цилиндра
Указатель давления топлива
Вольтметр
Левый и правый топливомеры

Топливная система

Два встроенных топливных бака общей емкостью 100 литров
Механический топливный насос (с приводом от двигателя)
Клапан быстрого слива отстоя топлива
Дополнительные электрические топливные насосы

Органы управления полетом

Гидравлические тормоза
Стояночный тормоз
Электрические закрылки
Спаренные органы управления
Управляемая передняя стойка шасси
Триммер стабилизатора (электрический переключатель на ручке управления)
Органы управления двигателем:
— Два РУД
— Обогрев карбюратора
— Обогатитель
Шасси:
— Электрогидравлическая система уборки/выпуска шасси
— Переключатель положения шасси
— Звуковая сигнализация положения шасси
— Аварийный выпуск шасси
Система триммирования органов управления полетом:
— Управление триммером стабилизатора и указатель положения триммера
Топливный кран, положения Вкл/Выкл

— Стартер
— Топливный насос
— Левый и правый магнето двигателя

Электрическая система

Аккумулятор 12 Вольт 18 Ампер
Генераторы 12 Вольт, 20 Ампер
Выключатели:
— Посадочная фара
— Проблесковые огни
Панель АЗС

Документация к ВС

Ограниченная гарантия производителя (2 года)
Руководство пилота
Руководство по техническому обслуживанию

Интерьер

Кресла пилотов
— Регулируемое положение (вперед и назад)
Ремни безопасности и плечевые ремни безопасности (все кресла)
Ковровый настил на всю ширину
Багажные отсеки

Внешняя часть

Сдвижной фонарь с замком и ключом
Заднее окно
Швартовочные кольца
Убирающиеся шасси
Колеса основных стоек шасси 5,00 X 5, колесо передней стойки шасси 4,00 X 6
Сигнализация приближения к сваливанию

БАНО

БАНО и крыльевые проблесковые огни
Светодиодная рулежная фара

Комфортность кабины

Регулируемый вентилятор (в 2-х местах)

Силовая установка и воздушный винт

Один четырехцилиндровый двигатель Rotax 912 ULS2 мощностью 100 л.с.
Смешанная (жидкостная/воздушная) система охлаждения, встроенный редуктор
Двойная система зажигания
Левый и правый РУД
Трубчатая стальная моторама
Двухлопастной воздушный винт изменяемого шага Gt Propeller
Кок воздушного винта
Воздушный фильтр
Масляный фильтр
Масляный и водяной радиаторы

Комплекты

1003 Модификация категории до полной (Advanced):


Топливный кран ANDAIR
Радиооборудование Ica210 с установкой
Ответчик Gtx 327 с установкой
АРМ AK 450 с установкой

Парашют JUNKERS, рассчитанный на вес 600 кг

1004 Версия US-LSA, включает:

Противопожарная перегородка из нержавеющей стали
Указатель скорости (в узлах)
Топливный кран Andair
Переключатели на приборной панели:
_ Раздельный стартер
_ Авионика
Замок стартера
Панель АЗС
Тонировка всех окон
Швартовочные кольца
Противопожарная обмотка трубопровода масляной и топливной систем
Термостатический масляный клапан
Крепежная сеть багажного отсека
Светодиодная рулежная фара
Внешний источник питания
Расширенная гарантия на двигатель Rotax (Продление на 1 год)
Система обогрева с обогревателем стекла



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png