Процитированное в преамбуле определение искусственного интеллекта, данное Джоном Маккарти в 1956 году на конференции в Дартмутском университете , не связано напрямую с пониманием интеллекта у человека. Согласно Маккарти, ИИ-исследователи вольны использовать методы, которые не наблюдаются у людей, если это необходимо для решения конкретных проблем .

В то же время существует и точка зрения, согласно которой интеллект может быть только биологическим феноменом .

Как указывает председатель Петербургского отделения Российской ассоциации искусственного интеллекта Т. А. Гаврилова, в английском языке словосочетание artificial intelligence не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть английский аналог intellect .

Участники Российской ассоциации искусственного интеллекта дают следующие определения искусственного интеллекта:

Одно из частных определений интеллекта, общее для человека и «машины», можно сформулировать так: «Интеллект - способность системы создавать в ходе самообучения программы (в первую очередь эвристические) для решения задач определённого класса сложности и решать эти задачи» .

Предпосылки развития науки искусственного интеллекта

История искусственного интеллекта как нового научного направления начинается в середине XX века . К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений - теории алгоритмов - и были созданы первые компьютеры.

Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе зародился вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг , пишет статью под названием «Может ли машина мыслить?» , в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга .

История развития искусственного интеллекта в СССР и России

В СССР работы в области искусственного интеллекта начались в 1960-х годах . В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым . С начала 1960-х М. Л. Цетлин с коллегами разрабатывали вопросы, связанные с обучением конечных автоматов.

В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики . По мнению Д. А. Поспелова , науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики . При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х - начала 1960-х годов . Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются .

Подходы и направления

Подходы к пониманию проблемы

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.

  • нисходящий (англ. Top-Down AI ), семиотический - создание экспертных систем , баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы : мышление, рассуждение, речь, эмоции, творчество и т. д.;
  • восходящий (англ. Bottom-Up AI ), биологический - изучение нейронных сетей и эволюционных вычислений , моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер .

Последний подход, строго говоря, не относится к науке о ИИ в смысле, данном Джоном Маккарти, - их объединяет только общая конечная цель.

Тест Тьюринга и интуитивный подход

Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно тщательнее изучаются алгоритмы поиска пути и принятия решений .

Гибридный подход

Гибридный подход предполагает, что только синергийная комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.

Модели и методы исследований

Символьное моделирование мыслительных процессов

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений . Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем , на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована , то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем , принятие решений и теория игр , планирование и диспетчеризация , прогнозирование .

Работа с естественными языками

Немаловажным направлением является обработка естественного языка , в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В рамках этого направления ставится цель такой обработки естественного языка, которая была бы в состоянии приобрести знание самостоятельно, читая существующий текст, доступный по Интернету. Некоторые прямые применения обработки естественного языка включают информационный поиск (в том числе, глубокий анализ текста) и машинный перевод .

Представление и использование знаний

Направление инженерия знаний объединяет задачи получения знаний из простой информации , их систематизации и использования. Это направление исторически связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Производство знаний из данных - одна из базовых проблем интеллектуального анализа данных . Существуют различные подходы к решению этой проблемы, в том числе - на основе нейросетевой технологии , использующие процедуры вербализации нейронных сетей .

Машинное обучение

Проблематика машинного обучения касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Это направление было центральным с самого начала развития ИИ . В 1956 году, на Дартмундской летней конференции, Рей Соломонофф написал отчёт о вероятностной машине, обучающейся без учителя , назвав её: «Индуктивная машина вывода» .

Робототехника

Машинное творчество

Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки , литературных произведений (часто - стихов или сказок), художественное творчество . Создание реалистичных образов широко используется в кино и индустрии игр.

Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач , предложенная в 1946 году Г. С. Альтшуллером , положила начало таким исследованиям.

Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать, что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.

Другие области исследований

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх , нелинейное управление , интеллектуальные системы информационной безопасности .

В перспективе предполагается тесная связь развития искусственного интеллекта с разработкой квантового компьютера , так как некоторые свойства искусственного интеллекта имеют схожие принципы действия с квантовыми компьютерами .

Можно заметить, что многие области исследований пересекаются. Это свойственно любой науке. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ .

Современный искусственный интеллект

Можно выделить два направления развития ИИ:

  • решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека (см. Усиление интеллекта );
  • создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества (см. Сильный и слабый искусственный интеллект ).

Но в настоящий момент в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые наиболее известные разработки в области ИИ.

Применение

Некоторые из самых известных ИИ-систем:

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика), при игре на бирже и управлении собственностью. Методы распознавания образов (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Психология и когнитология

Методология когнитивного моделирования предназначена для анализа и принятия решений в плохо определённых ситуациях. Была предложена Аксельродом .

Основана на моделировании субъективных представлений экспертов о ситуации и включает: методологию структуризации ситуации: модель представления знаний эксперта в виде знакового орграфа (когнитивной карты) (F, W), где F - множество факторов ситуации, W - множество причинно-следственных отношений между факторами ситуации; методы анализа ситуации. В настоящее время методология когнитивного моделирования развивается в направлении совершенствования аппарата анализа и моделирования ситуации. Здесь предложены модели прогноза развития ситуации; методы решения обратных задач.

Философия

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве.

Философские проблемы создания искусственного интеллекта можно разделить на две группы, условно говоря, «до и после разработки ИИ». Первая группа отвечает на вопрос: «Что такое ИИ, возможно ли его создание, и, если возможно, то как это сделать?» Вторая группа (этика искусственного интеллекта) задаётся вопросом: «Каковы последствия создания ИИ для человечества?»

Термин «сильный искусственный интеллект» ввёл Джон Сёрль , его же словами подход и характеризуется:

Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум .

При этом нужно понять, возможен ли «чистый искусственный» разум («метаразум»), понимающий и решающий реальные проблемы и, вместе с тем, лишённый эмоций, характерных для человека и необходимых для его индивидуального выживания [ ] .

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

Этика

Другие традиционные конфессии достаточно редко описывают проблематику ИИ. Но отдельные богословы тем не менее обращают на это внимание. Например, протоиерей Михаил Захаров, рассуждая с точки зрения христианского мировоззрения, ставит следующий вопрос: «Человек есть разумно-свободное существо, сотворенное Богом по Его образу и подобию. Мы привыкли все эти определения относить к биологическому виду Homo Sapiens. Но насколько это обосновано?» . Отвечает он на этот вопрос так:

Если предположить, что исследования в области искусственного интеллекта когда-либо приведут к появлению искусственного существа, превосходящего человека по интеллекту, обладающего свободой воли, будет ли это означать, что это существо - человек? … человек есть творение Божие. Можем ли мы это существо назвать творением Божиим? На первый взгляд, оно есть творение человека. Но и при сотворении человека вряд ли стоит буквально понимать, что Бог Своими руками из глины вылепил первого человека. Вероятно это иносказание, указывающее на материальность человеческого тела, созданного по воле Божией. Но без воли Божией ничего не происходит в этом мире. Человек, как со-творец этого мира, может, исполняя волю Божию, создавать новые твари. Такие твари, созданные руками человека по Божией воле, вероятно можно назвать творениями Божиими. Ведь человек создает новые виды животных и растений. А мы считаем растения и животных творениями Божиими. Так же можно относиться и к искусственному существу не биологической природы.

Научная фантастика

Тема ИИ рассматривается под разными углами в творчестве Роберта Хайнлайна : гипотеза возникновения самоосознания ИИ при усложнении структуры далее определённого критического уровня и наличии взаимодействия с окружающим миром и другими носителями разума («The Moon Is a Harsh Mistress», «Time Enough For Love», персонажи Майкрофт, Дора и Ая в цикле «История будущего»), проблемы развитии ИИ после гипотетического самоосознания и некоторые социально-этические вопросы («Friday»). Социально-психологические проблемы взаимодействия человека с ИИ рассматривает и роман Филипа К. Дика «Снятся ли андроидам электроовцы? », известный также по экранизации «Бегущий по лезвию».

В творчестве фантаста и философа Станислава Лема описано и во многом предвосхищено создание виртуальной реальности, искусственного интеллекта, нанороботов и многих других проблем философии искусственного интеллекта. Особенно стоит отметить футурологию Сумма технологии . Кроме того, в приключениях Ийона Тихого неоднократно описываются взаимоотношения живых существ и машин: бунт бортового компьютера с последующими неожиданными событиями (11 путешествие), адаптация роботов в человеческом обществе («Стиральная трагедия» из «Воспоминаний Ийона Тихого»), построение абсолютного порядка на планете путём переработки живых жителей (24-ое путешествие), изобретения Коркорана и Диагора («Воспоминания Ийона Тихого»), психиатрическая клиника для роботов («Воспоминания Ийона Тихого»). Кроме того, существует целый цикл повестей и рассказов Кибериада , где почти всеми персонажами являются роботы, которые являются далёкими потомками роботов, сбежавших от людей (людей они именуют бледнотиками и считают их мифическими существами).

Фильмы

Начиная практически с 1960-х годов вместе с написанием фантастических рассказов и повестей, снимаются фильмы об искусственном интеллекте. Многие повести авторов, признанных во всём мире, экранизируются и становятся классикой жанра, другие становятся вехой в развитии

Искусственный интеллект (ИИ) (англ. Artificial intelligence, AI) - это наука и разработка интеллектуальных машин и систем, особенно интеллектуальных компьютерных программ, направленных на то, чтобы понять человеческий интеллект. При этом используемые методы не обязательно биологически правдоподобны. Но проблема состоит в том, что неизвестно какие вычислительные процедуры мы хотим называть интеллектуальными. А так как мы понимаем только некоторые механизмы интеллекта, то под интеллектом в пределах этой науки мы понимаем только вычислительную часть способности достигать целей в мире.

Различные виды и степени интеллекта существуют у многих людей, животных и некоторых машин, интеллектуальных информационных систем и различных моделей экспертных систем с различными базами знаний. При этом как видим такое определение интеллекта не связано с пониманием интеллекта у человека – это разные вещи. Более того, эта наука моделирует человеческий интеллект, так как, с одной стороны, можно изучить кое-что о том, как заставить машины решить проблемы, наблюдая других людей, а с другой – большинство работ в ИИ изучают проблемы, которые требуется решать человечеству в промышленном и технологическом смысле. Поэтому ИИ-исследователи вольны использовать методы, которые не наблюдаются у людей, если это необходимо для решения конкретных проблем.

Именно в таком смысле термин ввел Дж. Маккарти в 1956 году на конференции в Дартмутском университете, и до сих пор, несмотря на критику тех, кто считает, что интеллект – это только биологический феномен, в научной среде термин сохранил свой первоначальный смысл, несмотря на явные противоречия с точки зрения человеческого интеллекта.

В философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла-Саймона. Поэтому, несмотря на множество подходов как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем, можно выделить два основных подхода к разработке ИИ:

· нисходящий (англ. Top-Down AI ), семиотический – создание экспертных систем, баз знаний и систем логического вывода, имитирующие высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;

· восходящий (англ. Bottom-Up AI ), биологический – изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе более мелких «неинтеллектуальных» элементов.

Последний подход, строго говоря, не относится к науке о искусственном интеллекте в смысле, данном Дж. Маккарти, их объединяет только общая конечная цель.

История искусственного интеллекта как нового научного направления начинается в середине XX века. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений - теории алгоритмов, и были созданы первые компьютеры.

Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе был поставлен вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг, в статье «Может ли машина мыслить?», дает ответы на подобные вопросы, и описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга.

Тест Тьюринга – это эмпирический тест, идея которого была предложена Аланом Тьюрингом в статье «Вычислительные машины и разум», опубликованной в 1950 году в философском журнале «Mind ». Целью данного теста является определение возможности искусственного мышления близкого к человеческому. Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы - ввести человека в заблуждение, заставив сделать неверный выбор». Все участники теста не видят друг друга.

Существует три подхода к определению искусственного интеллекта:

1) Логический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов. Учебной моделью систем искусственного интеллекта в 80-х годах был принят язык и система логического программирования Пролог. Базы знаний, записанные на языке Пролог, представляют наборы фактов и правил логического вывода, записанных языка логических. Логическая модель баз знаний позволяет записывать не только конкретные сведения и данные в форме фактов на языке Пролог, но и обобщенные сведения с помощью правил и процедур логического вывода и в том числе логических правил определения понятий, выражающих определённые знания как конкретные и обобщенные сведения. В целом исследования проблем искусственного интеллекта в информатике в рамках логического подхода к проектированию баз знаний и экспертных систем направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем.

2) Агентно-ориентированный подход развивается с начала 1990-х годов. Согласно этому подходу, интеллект - это вычислительная часть (планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов. Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно сильнее изучаются алгоритмы поиска и принятия решений.

3) Интуитивный подход предполагает, что ИИ будет способен проявлять поведение, не отличающееся от человеческого, причём, в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга, который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).

Определением выбраны, следующие направления исследований в области ИИ:

- Символьное моделирование мыслительных процессов.

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие ИИ как науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.

- Работа с естественными языками.

Немаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

- Накопление и использование знаний.

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них - машинное обучение - касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов. Многие задачи успешно решаются с помощью биологического моделирования. Биологическое моделирование

Большие и интересные достижения имеются в области моделирования биологических систем. Строго говоря, сюда можно отнести несколько независимых направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы - агента, взаимодействующего с внешней средой, называется агентным подходом. Особо стоит упомянуть компьютерное зрение, которое связано ещё и с робототехникой.

- Робототехника.

Вообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ.

- Машинное творчество.

Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки, литературных произведений (часто - стихов или сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр. Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.

- Другие области исследований.

Существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы информационной безопасности.

Подходы к созданию интеллектуальных систем. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами. От умения выделить только существенную информацию зависит эффективность и вообще результативность. Широта классов задач, эффективно решаемых человеческим разумом, требует невероятной гибкости в методах абстрагирования. Не доступной при любом инженерном подходе, который исследователь выбирает изначально по заведомо порочному признаку, за его способность быстро дать эффективное решение какой-то наиболее близкой этому исследователю задачи. То есть уже за реализованную в виде правил единственную модель абстрагирования и конструирования сущностей. Это выливается в значительные затраты ресурсов для непрофильных задач, то есть система от интеллекта возвращается к грубой силе на большинстве задач и сама суть интеллекта улетучивается из проекта.

Особенно трудно без символьной логики приходится когда задача заключается в выработке правил так как их составляющие, не будучи полноценными единицами знаний, не логичны. Большинство исследований останавливается как раз на невозможности хотя бы обозначить новые возникшие трудности средствами выбранных на предыдущих этапах символьных системах. Тем более решить их и тем более обучить компьютер решать их или хотя бы идентифицировать и выходить из таких ситуаций.

Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп, первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Интеллекта как такового, без всяких оговорок и условностей.

Широко практикуется создание гибридных интеллектуальных систем, в которых применяются сразу несколько моделей. Экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения.

Развитие теории нечетких множеств. Начало развитию теории нечетких множеств положила статья «Нечеткие множества», опубликованная профессором из США Лотфи Заде, который впервые ввел понятие нечеткого множества, предложил идею и первую концепцию тео­рии, которая давала возможность нечеткого описания реальных систем. Важнейшим направлением теории нечетких множеств является нечеткая логика, применяемая для управления системами, а также в экспериментах по формированию их моделей.

В 60-е годы начался период быстрого развития компьютеров и цифровых технологий на базе двоичной логики. В то время считалось, что использование данной логики позволит решать многие научные и технические проблемы. По этой причине появление нечеткой логики оставалось почти незамеченным, несмотря на всю ее концептуальную революционность. Тем не менее, важность нечеткой логики была осознана рядом представителей научного сообщества и она получила развитие, а также практическую реализацию в рамках различных промышленных приложений. Через некоторое время стал повышаться интерес к ней и со стороны научных школ, объединявших приверженцев технологий на основе двоичной логики. Это произошло из-за того, что обнаружилось достаточно много практических задач, которые не поддавались решению с помощью традиционных математических моделей и методов, несмотря на существенно возросшие доступные скорости реализации вычислений. Требовалась новая методология, характерные черты которой предстояло найти в нечеткой логике.

Подобно робототехнике, нечеткая логика была с большим интересом встречена не в стране своего происхождения, США, а за ее пределами, и как следствие этого, первый опыт промышленного использования нечеткой логики - для управления котельными установками электростанций - связан с Европой. Все попытки использовать для управления паровым котлом традиционные методы, порой весьма замыслова­тые, оканчивались неудачей - настолько сложной оказалась эта нелинейная система. И только применение нечеткой логики позволило синте­зировать регулятор, который удовлетворял всем требованиям. В 1976 г. нечеткая логика была положена в основу системы автоматического управления карусельной печью в производстве цемента. Однако, первые практические результаты использования нечеткой логики, полученные в Европе и Америке, не вызвали какого-либо значительного повышения интереса к ней. Точно так же, как было с робототехникой, страной, которая первой начала повсеместное внедрение нечеткой логики, осознав ее огромный потенциал, стала Япония.

Среди созданных в Японии прикладных нечетких систем наибольшую известность получила разработанная компанией Hitachi система управления поездами метрополитена в г. Сендай. Реализация проекта велась с участием опытного машиниста, знания и опыт которого легли в основу разработанной модели управления. Система автоматически снижа­ла скорость поезда при подъезде его к станции, обеспечивая остановку в требуемом месте. Еще одним преимуществом поезда была его высокая комфортабельность, обусловленная плавностью набора и снижения скорости. Имелся и целый ряд других преимуществ по сравнению с традиционными системами управления.

Быстрое развитие нечеткой логики в Японии привело к тому, что ее практические приложения появились не только в промышленности, но и в производстве товаров народного потребления. Примером здесь может служить видеокамера, оборудованная нечеткой подсистемой стабилизации изображения, применявшейся для компенсации колебаний изображения, вызванных малоопытностью оператора. Данная задача была слишком сложной для решения ее традиционными методами, поскольку требовалось отличать случайные колебания изображения от целенаправленного перемещения объектов съемки (например, движения людей).

Другим примером является автоматическая стиральная ма­шина, управляемая одним нажатием кнопки (Zimmerman 1994 г.). Подобная «целостность» вызвала интерес и была встречена с одобрением. Использование методов нечеткой логики позволило оптимизировать процесс стирки, обеспечивая автоматическое распознавание типа, объема и степе­ни загрязненности одежды, не говоря уже о том, что сведение механизма управления машиной к одной единственной кнопке позволило значительно упростить обращение с ней.

Изобретения в области нечеткой логики были воплощены японскими фирмами и во многих других устройствах, среди которых микроволновые печи (Sanyo), антиблокировочные системы и автоматические коробки передач (Nissan), интегрированное управление динамическими характеристиками автомобиля (INVEC), а также регуляторы жестких дисков в компьютерах, обеспечивающие уменьшение времени доступа к информации.

Помимо упоминавшихся выше приложений, с начала 90-х годов. наблюдается интенсивное развитие нечетких методов в рамках целого ряда прикладных областей, в том числе и не связанных с техникой:

Система управления электронным кардиостимулятором;

Система управления механическими транспортными средствами;

Системы охлаждения;

Кондиционеры и вентиляционное оборудование;

Оборудование для сжигания мусора;

Стеклоплавильная печь;

Система контроля кровяного давления;

Диагностика опухолей;

Диагностика текущего состояния сердечно-сосудистой системы;

Система управления подъемными и мостовыми кранами;

Обработка изображений;

Быстродействующее зарядное устройство;

Распознавание слов;

Управление биопроцессорами;

Управление электродвигателями;

Сварочное оборудование и процессы сварки;

Системы управления движением транспорта;

Биомедицинские исследования;

Водоочистные сооружения.

В настоящий момент в создании искусственного интеллекта (в первоначальном смысле этого слова, экспертные системы и шахматные программы сюда не относятся) наблюдается интенсивное перемалывание всех предметных областей, имеющих хоть какое-то отношение к ИИ, в базы знаний. Практически все подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.

Исследования ИИ влились в общий поток технологий сингулярности (видового скачка, экспотенциального развития человека), таких как информатика, экспертные системы, нанотехнология, молекулярная биоэлектроника, теоретическая биология, квантовая теория(и), ноотропики, экстромофилы и т. д. см. ежедневный поток новостей Курцвейля, MIT .

Результаты разработок в области ИИ вошли в высшее и среднее образование России в форме учебников информатики, где теперь изучаются вопросы работы и создания баз знаний, экспертных систем на базе персональных компьютеров на основе отечественных систем логического программирования, а также изучения фундаментальных вопросов математики и информатики на примерах работы с моделями баз знаний и экспертных систем в школах и вузах.

Разработанны следующие системы искусственного интеллекта:

1. Deep Blue - победил чемпиона мира по шахматам. (Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам и система не была признана Каспаровым, хотя оригинальные компактные шахматные программы - неотъемлемый элемент шахматного творчества. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain. Данная история - пример запутанных и засекреченных отношений ИИ, бизнеса и национальных стратегических задач.)

2. Mycin – одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора.

3. 20q – проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в Интернете на сайте 20q.net.

4. Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

5. Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. В августе 2001 года роботы выиграли у людей в импровизированном соревновании по трейдингу (BBC News, 2001). Методы распознавания образов, (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр вынуждены применять ИИ той или иной степени проработанности. Стандартными задачами ИИ в играх являются нахождение пути в двухмерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Искусственный интеллект тесно связан с трансгуманизмом. А вместе с нейрофизиологией, эпистемологией когнитивной психологией он образует более общую науку, называемую когнитивистикой. Отдельную роль в искусственном интеллекте играет философия. Также, с проблемами искусственного интеллекта тесно связана эпистемология - наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами ИИ о том, как лучше представлять и использовать знания и информацию. Производство знаний из данных - одна из базовых проблем интеллектуального анализа данных. Существуют различные подходы к решению этой проблемы, в том числе - на основе нейросетевой технологии, использующие процедуры вербализации нейронных сетей.

В информатике проблемы искусственного интеллекта рассматриваются с позиций проектирования экспертных систем и баз знаний. Под базами знаний понимается совокупность данных и правил вывода, допускающих логический вывод и осмысленную обработку информации. В целом исследования проблем искусственного интеллекта в информатике направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы подготовки пользователей и разработчиков таких систем.

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве. С одной стороны, они неразрывно связаны с этой наукой, а с другой - привносят в неё некоторый хаос. Философские проблемы создания искусственного интеллекта можно разделить на две группы, условно говоря, «до и после разработки ИИ». Первая группа отвечает на вопрос: «Что такое ИИ, возможно ли его создание, и, если возможно, то как это сделать?» Вторая группа (этика искусственного интеллекта) задаётся вопросом: «Каковы последствия создания ИИ для человечества?»

Вопросы создания искусственного интеллекта. Просматриваются два направления развития ИИ: первое - решении проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека, второе - в создании Искусственного Разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

Среди исследователей ИИ до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки. Существуют разные точки зрения на вопрос, что считать интеллектом. Аналитический подход предполагает анализ высшей нервной деятельности человека до низшего, неделимого уровня (функция высшей нервной деятельности, элементарная реакция на внешние раздражители (стимулы), раздражение синапсов совокупности связанных функцией нейронов) и последующее воспроизведение этих функций.

Некоторые специалисты за интеллект принимают способность рационального, мотивированного выбора, в условиях недостатка информации. То есть интеллектуальной просто считается та программа деятельности, которая сможет выбрать из определённого множества альтернатив, например, куда идти в случае «налево пойдёшь…», «направо пойдёшь…», «прямо пойдёшь…».

Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году. Две основных точки зрения на этот вопрос носят названия гипотез сильного и слабого искусственного интеллекта.

Термин «сильный искусственный интеллект» ввел Джон Сёрль, его же словами подход и характеризуется: «Такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум». Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

Мысленный эксперимент «Китайская комната» Джона Сёрля - аргумент в пользу того, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления. Мышление есть процесс обработки находящейся в памяти информации: анализ, синтез и самопрограммирование. Аналогичную позицию занимает и Роджер Пенроуз, который в своей книге «Новый ум короля» аргументирует невозможность получения процесса мышления на основе формальных систем.


6. Вычислительные устройства и микропроцессоры.

Микропроцессор (МП) – это устройство, которое осуществляет прием, об­работку и выдачу информации. Конструктивно МП содержит одну или несколько интегральных схем и выполняет действия, определенные программой, записанной в памяти.(рис. 6.1)

Рисунок 6.1 – Внешний вид МП

Ранние процессоры создавались в виде уникальных составных частей для единственных в своём роде компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров.

Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры, и др.). Вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Микропроцессорная система (МПС) – это вычислительная, контрольно-измерительная или управляющая система, основным устройством обработки информации в которой является МП. Микропроцессорная система строится из набора микропроцессорных БИС (рис. 6.2).

Рисунок 6.2 – Пример микропроцессорной системы

Генератор тактовых импульсов задаёт временной интервал, который является единицей измерения (квантом) продолжительности выполнения команды. Чем выше частота, тем при прочих равных условиях более быстродействующей является МПС. МП, ОЗУ и ПЗУ - это неотъемлемые части системы. Интерфейсы ввода и вывода - устройства сопряжения МПС с блоками ввода и вывода информации. Для измерительных приборов характерны устройства ввода в виде кнопочного пульта и измерительных преобразователей (АЦП, датчиков, блоки ввода цифровой информации). Устройства вывода обычно представляют цифровые табло, графический экран (дисплей), внешние устройства сопряжения с измерительной системой. Все блоки МПС связаны между собой шинами передачи цифровой информации. В МПС используют магистральный принцип связи, при котором блоки обмениваются информацией по единой шине данных. Количество линий в шине данных обычно соответствует разрядности МПС (количеству бит в слове данных). Шина адреса применяется для указания направления передачи данных - по ней передаётся адрес ячейки памяти или блока ввода-вывода, которые получают или передают информацию в данный момент. Шина управления служит для передачи сигналов, синхронизирующих всю работу МПС.

В основу построения МПС положены три принципа:

Магистральность;

Модульность;

Микропрограммное управление.

Принцип магистральности – определяет характер связей между функциональными блоками МПС – все блоки соединяются с единой системной шиной.

Принцип модульности состоит в том, что система строится на основе ограниченного количества типов конструктивно и функционально законченных модулей.

Принципы магистральности и модульности позволяют наращивать управляющие и вычислительные возможности МП путем подсоединения других модулей к системной шине.

Принцип микропрограммного управления заключается в возможности осуществления элементарных операций - микрокоманд (сдвигов, пересылок информации, логических операций), с помощью которых создается технологический язык, т. е. набор команд, максимально соответствующий назначению системы.

По назначению МП разделяют на универсальные и специализированные.

Универсальными микропроцессорами являются МП общего назначения, кото­рые решают широкий класс задач вычисления, обработки и управления. Примером использования универсальных МП являются компьютеры, построенные на IBM и Macintosh платформах.

Специализированные микропроцессоры предназначены для решения задач лишь определенного класса. К специализированным МП относятся: сигнальные, мультимедийные МП и транспьютеры.

Сигнальные процессоры (DSP) предназначены для цифровой обработки сигналов в реальном масштабе времени (например, для фильтрации сигналов, вычис­ления свертки, вычисления корреляционной функции, ограничения и пре­образования сигнала, выполнения прямого и обратного преобразования Фурье). (рисунок 6.3) К сигнальным процесорам относятся процессоры компаний Texas Instruments - TMS320C80, Analog Devices - - ADSP2106x, Motorola -DSP560xx и DSP9600x.

Рисунок 6.3 – Пример внутренней структуры DSP

Медийные и мультимедийные процессоры предназначены для обработки аудиосигналов, графической информации, видеоизображений, а также для решения ряда задач в мультимедиакомпьютерах, игровых приставках, бытовой технике. К таковым процессорам относятся процессоры компаний MicroUnity - Mediaprocessor, Philips - Trimedia, Cromatic Reserch - Mpact Media Engine, Nvidia - NV1, Cyrix - MediaGX.

Транспьютеры предназначены для организации массовых параллельных вычислений и работы в мультипроцессорных системах. Для них характер­ным является наличие внутренней памяти и встроенного межпроцессорного интерфейса, т. е. каналов связи с другими БИС МП.

По типу архитектуры, или принципу построения, различают МП с фоннеймановской и МП с гарвардской архитектурой.

Понятие архитектуры микропроцессора определяет его составные части, а также связи и взаимодействие между ними.

Архитектура включает:

Структурную схему МП;

Программную модель МП (описание функций регистров);

Информацию об организации памяти (емкость и способы адресации памяти);

Описание организации процедур ввода/вывода.

Фоннеймановскую архитектуру (рис. 6.4, а) предложил в 1945 году американский математик Джо фон Нейман. Ее особенностью является то, что программа и данные находятся в общей памяти, доступ к которой осуществляется по одной шине данных и команд.

Гарвардская архитектура впервые была реализована в 1944 году в релейной вычислительной машине Гарвардского университета (США). Особенностью этой архитектуры является то, что память данных и память программ раз­делены и имеют отдельные шину данных и шину команд (рис. 6.4, б), что позволяет повысить быстродействие МП системы.

Рисунок 6.4. Основные типы архитектур: (а - фоннеймановская; 6 - гарвардская)

По типу системы команд различают CISC-процессоры (Complete Instruction Set Computing) с полным набором команд (типичными представителями CISC является семейство микропроцессоров Intel x86) и RISC-процессоры (Reduced Instruction Set Computing) с сокращенным набором команд (характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации).

Однокристальный микроконтроллер (MCU) – микросхема, предназначенная для управления электронными устройствами (рисунок 5). Типичный микроконтроллер сочетает в себе функции процессора и периферийных устройств, может содержать ОЗУ и ПЗУ. По сути, это однокристальный компьютер, способный выполнять простые задачи. Использование одной микросхемы, вместо целого набора значительно снижает размеры, энергопотребление и стоимость устройств, созданных на базе микроконтроллеров.

Рисунок 6.5 – примеры исполнения микроконтроллеров

Микроконтроллеры являются основой для построения встраиваемых систем, их можно встретить во многих современных приборах, таких, как телефоны, стиральные машины и т. п. Бо́льшая часть выпускаемых в мире процессоров - микроконтроллеры.

На сегодняшний день популярностью у разработчиков пользуются 8-битные микроконтроллеры, совместимые с i8051 фирмы Intel, микроконтроллеры PIC фирмы Microchip Technology и AVR фирмы Atmel, шестнадцатибитные MSP430 фирмы TI, а также ARM, архитектуру которых разрабатывает фирма ARM и продаёт лицензии другим фирмам для их производства.

При проектировании микроконтроллеров приходится соблюдать баланс между размерами и стоимостью с одной стороны и гибкостью и производительностью с другой. Для разных приложений оптимальное соотношение этих и других параметров может различаться очень сильно. Поэтому существует огромное количество типов микроконтроллеров, отличающихся архитектурой процессорного модуля, размером и типом встроенной памяти, набором периферийных устройств, типом корпуса и т. д.

Неполный список периферии, которая может присутствовать в микроконтроллерах, включает в себя:

Универсальные цифровые порты, которые можно настраивать на ввод или вывод;

Различные интерфейсы ввода-вывода, такие как UART, I²C, SPI, CAN, USB, IEEE 1394, Ethernet;

Аналого-цифровые и цифро-аналоговые преобразователи;

Компараторы;

Широтно-импульсные модуляторы;

Таймеры, встроенный тактовый генератор и сторожевой таймер;

Контроллеры бесколлекторных двигателей;

Контроллеры дисплеев и клавиатур;

Радиочастотные приемники и передатчики;

Массивы встроенной флэш-памяти.

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов - используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2018 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.


В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Среди важнейших классов задач, которые ставились перед разработчиками интеллектуальных систем с момента определения искусственного интеллекта как научного направления (с середины 50-х годов ХХ века), следует выделить следующие направления искусственного интеллекта , которые решают задачи, что плохо поддаются формализации: доказательство теорем, распознавания изображений, машинный перевод и понимание человеческой речи, игровые программы, машинная творчество, экспертные системы. Кратко рассмотрим их сущность.

Направления искусственного интеллекта

Доказательство теорем . Изучение приемов доказательства теорем сыграло важную роль в развитии искусственного интеллекта. Много неформальных задач, например, медицинская диагностика, применяют при решении методические подходы, которые использовались при автоматизации доказательства теорем. Поиск доказательства математической теоремы требует не только провести дедукцию, исходя из гипотез, но также создать интуитивные предположения о том, какие промежуточные утверждение следует доказать для общего доказательства основной теоремы.

Распознавание изображений . Применение искусственного интеллекта для распознавании образов позволила создавать практически работающие системы идентификации графических объектов на основе аналогичных признаков. В качестве признаков могут рассматриваться любые характеристики объектов, подлежащих распознаванию. Признаки должны быть инвариантны к ориентации, размера и формы объектов. Алфавит признаков формируется разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно сложившийся алфавит признаков. Распознавания состоит в априорном получении вектора признаков для выделенного на изображении отдельного объекта и, затем, в определении которой из эталонов алфавита признаков этот вектор отвечает.

Машинный перевод и понимание человеческой речи . Задача анализа предложений человеческой речи с применением словаря является типичной задачей систем искусственного интеллекта. Для ее решения был создан язык-посредник, облегчающий сопоставление фраз из разных языков. В дальнейшем этот язык-посредник превратилась в семантическую модель представления значений текстов, подлежащих переводу. Эволюция семантической модели привела к созданию языка для внутреннего представления знаний. В результате, современные системы осуществляют анализ текстов и фраз в четыре основных этапа: морфологический анализ, синтаксический, семантический и прагматический анализ.

Игровые программы . В основу большинства игровых программ положены несколько базовых идей искусственного интеллекта, таких как перебор вариантов и самообучения. Одна из наиболее интересных задач в сфере игровых программ, использующих методы искусственного интеллекта, заключается в обучении компьютера игры в шахматы. Она была основана еще на заре вычислительной техники, в конце 50-х годов.

В шахматах существуют определенные уровни мастерства, степени качества игры, которые могут дать четкие критерии оценки интеллектуального роста системы. Поэтому компьютерными шахматами активно занимался ученые со всего мира, а результаты их достижений применяются в других интеллектуальных разработках, имеющих реальное практическое значение.

В 1974 году впервые прошел чемпионат мира среди шахматных программ в рамках очередного конгресса IFIP (International Federation of Information Processing) в Стокгольме. Победителем этого соревнования стала шахматная программа «Каисса». Она была создана в Москве, в Институте проблем управления Академии наук СССР.

Машинная творчество . К одной из областей применений искусственного интеллекта можно отнести программные системы, способные самостоятельно создавать музыку, стихи, рассказы, статьи, дипломы и даже диссертации. Сегодня существует целый класс музыкальных языков программирования (например, язык C-Sound). Для различных музыкальных задач было создано специальное программное обеспечение: системы обработки звука, синтеза звука, системы интерактивного композиции, программы алгоритмической композиции.

Экспертные системы . Методы искусственного интеллекта нашли применение в создании автоматизированных консультирующих систем или экспертных систем. Первые экспертные системы были разработаны, как научно-исследовательские инструментальные средства в 1960-х годах прошлого столетия.

Они были системами искусственного интеллекта, специально предназначенными для решения сложных задач в узкой предметной области, такой, например, как медицинская диагностика заболеваний. Классической целью этого направления изначально было создание системы искусственного интеллекта общего назначения, которая была бы способна решить любую проблему без конкретных знаний в предметной области. Ввиду ограниченности возможностей вычислительных ресурсов, эта задача оказалась слишком сложной для решения с приемлемым результатом.

Коммерческое внедрение экспертных систем произошло в начале 1980-х годов, и с тех пор экспертные системы получили значительное распространение. Они используются в бизнесе, науке, технике, на производстве, а также во многих других сферах, где существует вполне определенная предметная область. Основное значение выражения «вполне определенное», заключается в том, что эксперт-человек способен определить этапы рассуждений, с помощью которых может быть решена любая задача по данной предметной области. Это означает, что аналогичные действия могут быть выполнены компьютерной программой.

Теперь с уверенностью можно сказать, что использование систем искусственного интеллекта открывает широкие границы.

Сегодня, экспертные системы являются одним из самых успешных применений технологии искусственного интеллекта. Поэтому рекомендуем Вам ознакомится с .


Определение

Искусственный интеллект можно определить как научную дисциплину, которая занимается автоматизацией разумного поведения.

Искусственный интеллект (ИИ , англ. Artificial intelligence, AI ) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Цели и задачи

Целью исскуственного интеллекта является создание технических систем, способных решать задачи невычислительного характера и выполнять действия, требующие переработки содержательной ин­формации и считающиеся прерогативой человеческого мозга. К числу таких задач относятся, например, задачи на доказательство тео­рем, игровые задачи (скажем, при игре в шахматы), задачи по пере­воду с одного языка на другой, по сочинению музыки, распознаванию зрительных образов, решению сложных творческих про­блем науки и общественной практики. Одной из важных задач исскуственного интеллекта является создание интеллектуальных роботов, способных автоном­но совершать операции по достижению целей, поставленных че­ловеком, и вносить коррективы в свои действия.

Структура понятия

"Искусственный интеллект" складывается из нескольких основных положений и дисциплин, являющихся его основой. Более подробно это описано на рисунке предоставленном ниже. Изображение взято из

Ниже приведены основные определения использованных на картинке терминов.

Нечёткая логика и теория нечётких множеств - раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В этой статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале , а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Искусственные нейронные сети (ИНС) - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети Маккалока и Питтса. Впоследствии, после разработки алгоритмов обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

Интеллектуальный агент - программа, самостоятельно выполняющая задание, указанное пользователем компьютера, в течение длительных промежутков времени. Интеллектуальные агенты используются для содействия оператору или сбора информации. Одним из примеров заданий, выполняемых агентами, может служить задача постоянного поиска и сбора необходимой информации в Интернете. Компьютерные вирусы, боты, поисковые роботы - всё это также можно отнести к интеллектуальным агентам. Хотя такие агенты имеют строгий алгоритм, «интеллектуальность» в этом контексте понимается как способность приспосабливаться и обучаться.

Экспертная система (ЭС, expert system) - компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предтечи экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания.

Генетический алгоритм (англ. genetic algorithm ) - это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, напоминающих биологическую эволюцию. Является разновидностью эволюционных вычислений. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.

Модели и методы исследований

Символьное моделирование мыслительных процессов

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений . Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр , планирование и диспетчеризация, прогнозирование.

Работа с естественными языками

Немаловажным направлением является обработка естественного языка , в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

Накопление и использование знаний

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний , объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них - машинное обучение - касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

К области машинного обучения относится большой класс задач на распознавание образов . Например, это распознавание символов, рукописного текста, речи, анализ текстов. Многие задачи успешно решаются с помощью биологического моделирования (см. след. пункт). Особо стоит упомянуть компьютерное зрение , которое связано ещё и с робототехникой.

Биологическое моделирование искусственного интеллекта

Отличается от понимания искусственного интеллекта по Джону Маккарти, когда исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и протекающие в ней процессы, присущие биологическим системам, сторонники данного подхода считают, что феномены человеческого поведения, его способность к обучению и адаптации, есть следствие именно биологической структуры и особенностей ее функционирования.

Сюда можно отнести несколько направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы - агента, взаимодействующего с внешней средой, называется агентным подходом .

Перспективы развития

На данный момент в развитии искусственного интеллекта произошло разветвление на основные отрасли, которым уделяется основное внимание в виде материальных и интеллектуальных вложений. Изображение взято из

Литература

1) "Управление знаниями корпорации и реинжиниринг бизнеса" Абдикеев, Киселев

Основными ресурсами развития компаний во все большей мере становятся люди и знания, которыми они обладают, интеллектуальный капитал и растущая профессиональная компетенция кадров. Сегодня требуются новые методы развития организации, основанные на стыке гуманитарного и инженерного подходов, что позволит получить синергетический эффект от их взаимодействия. Этот подход базируется на современных достижениях информационных технологий, а именно когнитивных технологиях развития организации. Актуально развитие симбиоза концепции управления знаниями, реинжиниринга бизнес-процессов и когнитивной человеческой составляющей.
Для менеджеров высшего звена, бизнес-аналитиков, слушателей программ МВА по направлениям "Стратегический менеджмент", "Антикризисное управление", студентов экономических вузов магистерского уровня, аспирантов и преподавателей в области корпоративного менеджмента и реинжиниринга бизнеса.

2) " Модели и методы искусственного интеллекта. Применение в экономике." М.Г. Матвеев, А.С. Свиридов, Н.А. Алейникова

П редставлены теоретические основы искусственного интеллекта: информационные аспекты, сведения о бинарной и нечеткой логике, а также методы и модели актуальных направлений искусственного интеллекта, экспертных систем, инженерии знаний, нейронных сетей и генетических алгоритмов. Подробно рассмотрены вопросы практической реализации интеллектуальных систем. Приведено множество примеров, иллюстрирующих разработку и применение рассматриваемых методов и моделей. Особое внимание уделено экономическим задачам.

3) "Искусственный интеллект и интеллектуальные системы управления. " И. М. Макаров, В. М. Лохин, С. В. Манько, М. П. Романов; отв. ред. И. М. Макарова

Рассматривается новый, активно развивающийся класс интеллектуальных систем автоматического управления, построенных на технологии обработки знаний с позиций эффективного применения при решении задач управления в условиях неопределенности. Изложены основы построения интеллектуальных систем.

4) "Искусственный интеллект: современный подход. " С. Рассел, П. Норвиг

В книге представлены все современные достижения и изложены идеи, которые были сформулированы в исследованиях, проводившихся в течениe последних пятидесяти лет, а также собраны на протяжении двух тысячелетий в области знаний, ставших стимулом к развитию искусственного интеллекта как науки проектирования рациональных агентов.

Список источников


5) http://ru.wikipedia.org/wiki/%D0%98%D1%81%D0%BA%D1%83%D1%81%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B8%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82

Данный раздел посвящен генетическим алгоритмам. Что такое генетические алгоритмы? По сути, это оптимизационные алгоритмы, относящиеся к классу эвристик. Данные алгоритмы позволяют исключить перебор всех вариантов и значительно сокращают время вычислений. Специфика работы этих алгоритмов сводится к имитации эволюционных процессов.

9) http://www.gotai.net/implementations.aspx

Здесь Вы найдете идеи и готовые решения по применению искусственного интеллекта и связанных теорий для решения тех или иных практических задач.

10) http://www.gotai.net/documents-logic.aspx

В этом разделе собраны материалы, так или иначе относящиеся к классическому способу моделирования систем ИИ, моделирования на основе различных логических аппаратов. Как правило, это материалы, связанные с экспертными системами, системами поддержки принятия решения и агентными системы.

11) http://khpi-iip.mipk.kharkiv.edu/library/ai/conspai/12.html

Тенденции развития AI



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png