>

Рассмотрите загадочные и невидимые черные дыры во Вселенной: интересные факты, исследование Эйнштейна, сверхмассивные и промежуточные типы, теория, строение.

– одни из наиболее интересных и таинственных объектов в космическом пространстве. Обладают высокой плотностью, а гравитационная сила настолько мощная, что даже свету не удается вырваться за ее пределы.

Впервые о черных дырах заговорил Альберт Эйнштейн в 1916 году, когда создал общую теорию относительности. Сам термин возник в 1967 году благодаря Джону Уилеру. А первую черную дыру «заметили» в 1971 году.

Классификация черных дыр включает три типа: черные дыры звездной массы, сверхмассивные и черные дыры средней массы. Обязательно посмотрите видео про черные дыры, чтобы узнать много интересных фактов и познакомиться с этими загадочными космическими формированиями поближе.

Интересные факты о черных дырах

  • Если вы оказались внутри черной дыры, то гравитация будет вас растягивать. Но бояться не нужно, ведь вы умрете еще до того, как достигнете сингулярности. Исследования 2012 года предположили, что квантовые эффекты превращают горизонт событий в огненную стену, сделавшую из вас кучку пепла.
  • Черные дыры не «всасывают». Этот процесс вызывается вакуумом, которого нет в этом образовании. Так что материал просто падает.
  • Первой черной дырой стал Лебедь Х-1, найденный ракетами со счетчиками Гейгера. В 1971 году ученые получили сигнал радиоизлучения от Лебедя Х-1. Этот объект стал предметом спора между Кипом Торном и Стивеном Хокингом. Последний считал, что это не черная дыра. В 1990 году он признал свое поражение.
  • Крошечные черные дыры могли появиться сразу после Большого Взрыва. Стремительно вращающееся пространство сжимало некоторые области в плотные дыры, с меньшей массивностью, чем у Солнца.
  • Если звезда подойдет слишком близко, то ее может разорвать.
  • По общим подсчетам, существует примерно до миллиарда звездных черных дыр с массой втрое больше солнечной.
  • Если сравнивать теорию струн и классическую механику, то первая порождает больше разновидностей массивных гигантов.

Опасность черных дыр

Когда у звезды заканчивается топливо, она может запустить процесс саморазрушения. Если ее масса была втрое больше солнечной, то оставшееся ядро станет нейтронной звездой или белым карликом. Но более крупная звезда трансформируется в черную дыру.

Такие объекты маленькие, но обладают невероятной плотностью. Представьте, что перед вами объект, размером в город, но его масса в три раза больше солнечной. Это создает невероятно огромную гравитационную силу, которая притягивает пыль и газ, увеличивая ее размеры. Вы удивитесь, но в может располагаться несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Конечно, ничто во Вселенной не сравнится с устрашающими сверхмассивными черными дырами. Они превосходят солнечную массу в миллиарды раз. Полагают, что такие объекты есть практически в каждой галактике. Ученые пока не знают всех тонкостей процесса формирования. Скорее всего, они вырастают за счет накапливания массы из окружающего пыли и газа.

Возможно, они обязаны своим масштабам слиянию тысячи небольших черных дыр. Или же могло разрушиться целое звездное скопление.

Черные дыры в центрах галактик

Астрофизик Ольга Сильченко об открытии сверхмассивной черной дыры в туманности Андромеды, исследованиях Джона Корменди и темных гравитирующих телах:

Природа космических радиоисточников

Астрофизик Анатолий Засов о синхротронном излучении, черных дырах в ядрах далеких галактик и нейтральном газе:

Промежуточные черные дыры

Не так давно ученые нашли новый вид - черные дыры средней массы (промежуточные). Они могут формироваться, когда звезды в скоплении сталкиваются, поддавшись цепной реакции. В итоге, падают в центр и формируют сверхмассивную черную дыру.

В 2014 году астрономы обнаружили промежуточный тип в рукаве спиральной галактики. Их очень сложно найти, потому что могут располагаться в непредсказуемых местах.

Микрочерные дыры

Физик Эдуард Боос о безопасности БАК, рождении микрочерной дыры и понятии мембраны:

Теория черных дыр

Черные дыры - чрезвычайно массивные объекты, но охватывают сравнительно скромный объем пространства. Кроме того, обладают огромной гравитацией, не позволяя объектам (и даже свету) покинуть их территорию. Однако, напрямую увидеть их невозможно. Исследователям приходится обращаться к излучению, появляющемуся, когда черная дыра питается.

Интересно, но бывает так, что вещество, направляющееся к черной дыре, отскакивает от горизонта событий и выбрасывается наружу. При этом формируются яркие струи материала, передвигающиеся на релятивистских скоростях. Эти выбросы можно зафиксировать на больших дистанциях.

– удивительные объекты, в которых сила тяжести настолько огромна, что может сгибать свет, деформировать пространство и искажать время.

В черных дырах можно выделить три слоя: внешний и внутренний горизонт событий и сингулярность.

Горизонт событий черной дыры – граница, где у света пропадают все шансы на бегство. Как только частичка переходит этот рубеж, она не сможет уйти. Внутренняя область, где находится масса черной дыры, называется сингулярностью.

Если мы говорим с позиции классической механики, то ничто не может покинуть черную дыру. Но квантовая вносит свою поправку. Дело в том, что у каждой частицы есть античастица. Они обладают одинаковыми массами, но разным зарядом. Если пересеклись, то могут аннигилировать друг друга.

Когда такая пара возникает за пределами горизонта событий, то одна из них может втянуться, а вторая оттолкнется. Из-за этого горизонт способен уменьшиться, а черная дыра разрушиться. Ученые все еще пытаются изучить этот механизм.

Аккреция

Астрофизик Сергей Попов о сверхмассивных черных дырах, образовании планет и аккреции вещества в ранней Вселенной:

Наиболее известные черные дыры

Часто задаваемые вопросы о черных дырах

Если более емко, то черная дыра - определенный участок в космосе, в котором сконцентрировано такое огромное количество массы, что ни одному объекту не удается избежать гравитационного влияния. Когда речь идет о гравитации, мы полагаемся на общую теорию относительности, предложенную Альбертом Эйнштейном. Чтобы разобраться в деталях изучаемого объекта, будем двигаться поэтапно.

Давайте представим, что вы находитесь на поверхности планеты и подбрасываете булыжник. Если вы не обладаете мощью Халка, то не сможете приложить достаточно силы. Тогда камень поднимется на определенную высоту, но под давлением гравитации рухнет обратно. Если же у вас есть скрытый потенциал зеленого силача, то вы способны придать объекту достаточное ускорение, благодаря которому он полностью покинет зону гравитационного воздействия. Это называется «скорость убегания».

Если разбить на формулу, то эта скорость зависит от планетарной массы. Чем она больше, тем мощнее гравитационный захват. Скорость вылета будет полагаться на то, где именно вы находитесь: чем ближе к центру, тем проще выбраться. Скорость вылета нашей планеты – 11.2 км/с, а вот – 2.4 км/с.

Приближаемся к самому интересному. Допустим у вас есть объект с невероятной концентрацией массы, собранной в крошечном месте. В таком случае скорость убегания превышает скорость света. А мы знаем, что ничто не движется быстрее этого показателя, а значит, никто не сможет преодолеть такую силу и сбежать. Даже световому лучу это не под силу!

Еще в 18 веке Лаплас размышлял над чрезвычайной концентрацией массы. После общей теории относительности Карл Шварцшильд смог найти математическое решение для уравнения теории, чтобы описать подобный объект. Дальше свою лепту внесли Оппенгеймер, Волькофф и Снайдер (1930-е гг.). С того момента люди начали обсуждать эту тему всерьез. Стало ясно: когда у массивной звезды заканчивается топливо, она не способна противостоять силе гравитации и обязана рухнуть в черную дыру.

В теории Эйнштейна гравитация выступает проявлением кривизны в пространстве и времени. Дело в том, что обычные геометрические правила здесь не работают и массивные объекты искажают пространство-время. Черная дыра обладает причудливыми свойствами, поэтому ее искажение видно отчетливее всего. Например, у объекта есть «горизонт событий». Это поверхность сферы, отмечающая черту дыры. То есть, если вы перешагнете этот предел, то назад пути нет.

Если буквально, то это место, где скорость убегания приравнивается к световой. Вне этого места скорость убегания уступает скорости света. Но если ваша ракета способна разогнаться, то энергии хватит на побег.

Сам горизонт довольно странный с точки зрения геометрии. Если вы расположены далеко, то вам покажется, что смотрите на статическую поверхность. Но если подойти ближе, то приходит осознание, что она движется наружу со световой скоростью! Теперь понятно, почему легко войти, но так сложно сбежать. Да, это очень запутанно, ведь фактически горизонт стоит на месте, но одновременно и мчится со скоростью света. Это как в ситуации с Алисой, которой нужно было бежать максимально быстро, чтобы просто остаться на месте.

При попадании в горизонт, пространство и время переживают такое сильное искажение, что координаты начинают описывать роли радиального расстояния и времени переключения. То есть «r», отмечающая дистанцию от центра, становится временной, а за «пространственность» теперь отвечает «t». В итоге, вы не сможете перестать передвигаться с меньшим показателем r, как и не способны в обычном времени попасть в будущее. Вы придете к сингулярности, где r = 0. Можно выбрасывать ракеты, запускать двигатель на максимум, но вам не убежать.

Термин «черная дыра» придумал Джон Арчибальд Уилер. До этого их называли «остывшими звездами».

Физик Эмиль Ахмедов об изучении черных дыр, Карле Шварцшильде и гигантских черных дырах:

Существует два способа вычислить, насколько что-то велико. Можно назвать массу или какую величину занимает участок. Если брать первый критерий, то нет конкретного предела массивности черной дыры. Можно использовать любое количество, если вы способны сжать ее до необходимой плотности.

Большая часть этих образований появилась после смерти массивных звезд, поэтому можно ожидать, что их вес должен быть равнозначен. Типичная масса для такой дыры должна быть в 10 раз больше солнечной – 10 31 кг. Кроме того, в каждой галактике должна проживать центральная сверхмассивная черная дыра, чья масса превосходит солнечную в миллион раз – 10 36 кг.

Чем массивнее объект, тем больше массы охватывает. Радиус горизонта и масса прямо пропорциональны, то есть, если черная дыра весит в 10 раз больше другой, то и ее радиус в 10 раз крупнее. Радиус дыры с солнечной массивностью равняется 3 км, а если в миллион раз больше, то 3 миллиона км. Кажется, что это невероятно массивные вещи. Но не будем забывать, что для астрономии это стандартные понятия. Солнечный радиус достигает 700000 км, а у черной дыры у в 4 раза больше.

Допустим, что вам не повезло и ваш корабль неумолимо движется к сверхмассивной черной дыре. Нет смысла бороться. Вы просто выключили двигатели и идете навстречу неизбежному. Чего ожидать?

Начнем с невесомости. Вы пребываете в свободном падении, поэтому экипаж, корабль и все детали невесомы. Чем ближе подходите к центру отверстия, тем сильнее ощущаются приливные гравитационные силы. Например, ваши ноги ближе к центру, чем голова. Тогда вам начинает казаться, что вас растягивают. В итоге, вас просто разорвет на части.

Эти силы неприметны, пока вы не подойдете на удаленность в 600000 км от центра. Это уже после черты горизонта. Но мы говорим об огромном объекте. Если вы падаете в дыру с солнечной массой, то приливные силы охватили бы вас в 6000 км от центра и разорвали до того, как вы подошли к горизонту (поэтому мы отправляем вас в большую, чтобы смогли умереть уже внутри дыры, а не на подходе).

Что внутри? Не хочется разочаровывать, но ничего примечательного. Некоторые объекты могут искажаться по внешнему виду и больше ничего необычного. Даже после перехода горизонта вы будете видеть вещи вокруг себя, так как они движутся с вами.

Сколько на все это уйдет времени? Все завит от вашей удаленности. Например, вы начали с точки покоя, где сингулярность в 10 раз больше радиуса дыры. Для подхода к горизонту понадобится лишь 8 минут, а затем еще 7 секунд, чтобы войти в сингулярность. Если падаете в маленькую черную дыру, то все произойдет быстрее.

Как только перешагнете горизонт, можете стрелять ракетами, кричать и плакать. На все это у вас 7 секунд, пока не попадете в сингулярность. Но ничего уже не спасет. Поэтому просто насладитесь поездкой.

Допустим, вы обречены и падаете в дыру, а ваш друг/подруга наблюдает за этим издалека. Ну, он увидит все по-другому. Заметит, что ближе к горизонту вы замедлите свой ход. Но даже если человек просидит сотню лет, он так и не дождется, когда вы достигнете горизонта.

Попробуем объяснить. Черная дыра могла появиться из коллапсирующей звезды. Так как материал разрушается, то Кирилл (пусть будет вашим другом) видит его уменьшение, но никогда не заметит подхода к горизонту. Именно поэтому их называли «замороженными звездами», ведь кажется, будто они замерзают с определенным радиусом.

В чем же дело? Назовем это оптической иллюзией. Для формирования дыры не нужна бесконечность, как и для перехода через горизонт. По мере вашего подхода свету требуется больше времени, чтобы добраться к Кириллу. Если точнее, то излучение в реальном времени от вашего перехода зафиксируется у горизонта навечно. Вы уже давно перешагнули за линию, а Кирилл все еще наблюдает световой сигнал.

Или же можно подойти с другой стороны. Время тянется дольше возле горизонта. Например, вы обладаете супермощным кораблем. Вам удалось приблизиться к горизонту, побыть там пару минут и выбраться живым к Кириллу. Кого же вы увидите? Старика! Ведь для вас время текло намного медленнее.

Что тогда верно? Иллюзия или игра времени? Все зависит от используемой системы координат при описании черной дыры. Если полагаться на координаты Шварцшильда, то при пересечении горизонта временная координата (t) приравнивается к бесконечности. Но показатели этой системы предоставляют размытое представление того, что происходит возле самого объекта. У линии горизонта все координаты искажаются (сингулярность). Но вам можно использовать обе системы координат, поэтому два ответа имеют силу.

В реальности вы просто станете невидимкой, и Кирилл перестанет вас видеть еще до того, как пройдет много времени. Не стоит забывать о красном смещении. Вы излучаете наблюдаемый свет на определенной волне, но Кирилл увидит его на более длинной. Волны удлиняются по мере приближения к горизонту. Кроме того, не стоит забывать, что излучение происходит в определенных фотонах.

Например, в момент перехода вы отправите последний фотон. Он достигнет Кирилла в определенное конечное время (примерно час для сверхмассивной черной дыры).

Конечно, нет. Не забывайте про существование горизонта событий. Только из этой области вы не можете выбраться. Достаточно просто не приближаться к ней и чувствуйте себя спокойно. Более того, с безопасного расстояния вам этот объект будет казаться самым обычным.

Информационный парадокс Хокинга

Физик Эмиль Ахмедов о действии гравитации на электромагнитные волны, информационном парадоксе черных дыр и принципе предсказуемости в науке:

Не паникуйте, так как Солнцу никогда не трансформироваться в подобный объект, потому что ему просто не хватит массы. Тем более, что оно будет сохранять свой теперешний внешний вид еще 5 миллиардов лет. Затем перейдет к этапу красного гиганта, поглотив Меркурий, Венеру и хорошо поджарив нашу планету, а затем станет обычным белым карликом.

Но давайте предадимся фантазии. Итак, Солнце стало черной дырой. Начнем с того, что сразу нас укутает темнота и холод. Земля и прочие планеты не будут всасываться в дыру. Они продолжат вращаться вокруг нового объекта по обычным орбитам. Почему? Потому что горизонт будет достигать всего 3 км, и гравитация ничего не сможет с нами сделать.

Да. Естественно, мы не можем полагаться на видимое наблюдение, так как свету не удается вырваться. Но есть косвенные улики. Например, вы видите участок, в котором может быть черная дыра. Как это проверить? Начните с измерения массы. Если видно, что в одной области ее слишком много или она как бы незаметна, то вы на верном пути. Есть две точки поиска: галактический центр и двойные системы с рентгеновским излучением.

Таким образом, в 8 галактиках нашли массивные центральные объекты, чья масса ядер колеблется от миллиона до миллиарда солнечных. Массу вычисляют через наблюдение за скоростью вращения звезд и газа вокруг центра. Чем быстрее, тем больше должна быть масса, чтобы удержать их на орбите.

Эти массивные объекты считают черными дырами по двум причинам. Ну, больше просто нет вариантов. Нет ничего массивнее, темнее и компактнее. К тому же есть теория, что у всех активных и крупных галактиках в центре прячется такой монстр. Но все же это не 100% доказательства.

Но в пользу теории говорят две последних находки. У ближайшей активной галактики заметили систему «водяного мазера» (мощный источник микроволнового излучения) возле ядра. При помощи интерферометра ученые отобразили распределение газовых скоростей. То есть, они измерили скорость в пределах половины светового года в галактическом центре. Это помогло им понять, что внутри расположен массивный объект, чей радиус достигает половины светового года.

Вторая находка убеждает еще больше. Исследователи при помощи рентгена наткнулись на спектральную линию галактического ядра, указывающую на присутствие рядом атомов, скорость движения которых невероятно высокая (1/3 световой). Кроме того, излучение соответствовало красному смещению, что отвечает горизонту черной дыры.

Еще один класс можно найти в Млечном Пути. Это звездные черные дыры, формирующиеся после взрыва сверхновой. Если бы они существовали отдельно, то даже вблизи мы бы вряд ли ее заметили. Но нам везет, ведь большинство существуют в двойных системах. Их легко отыскать, так как черная дыра будет тянуть массу своего соседа и влиять на него гравитацией. «Вырванный» материал формирует аккреционный диск, в котором все нагревается, а значит, создает сильное излучение.

Предположим, вам удалось найти двойную систему. Как понять, что компактный объект представляет собою черную дыру? Снова обращаемся к массе. Для этого измерьте орбитальную скорость соседней звезды. Если масса невероятно огромная при таких малых размерах, то вариантов больше не остается.

Это сложный механизм. Подобную тему Стивен Хокинг затронул еще в 1970-х годах. Он говорил, что черные дыры не совсем «черные». Там присутствуют квантово-механические эффекты, заставляющие ее создавать излучение. Постепенно дыра начинает сжиматься. Скорость излучения растет с уменьшением массы, поэтому дыра излучает все больше и ускоряет процесс сжатия, пока не растворится.

Однако, это лишь теоретическая схема, ведь никто не может точно сказать, что происходит на последнем этапе. Некоторые думают, что остается небольшой, но стабильный след. Современные теории не придумали пока ничего лучше. Но сам процесс невероятен и сложен. Приходится вычислять параметры в искривленном пространстве-времени, а сами результаты не поддаются проверке в привычных условиях.

Здесь можно воспользоваться Законом сохранения энергии, но только для коротких продолжительностей. Вселенная может создавать энергию и массу с нуля, но только они должны быстро исчезать. Одно из проявлений – вакуумные флуктуации. Пары частиц и античастиц вырастают из ниоткуда, существуют определенный недолгий срок и гибнут во взаимном уничтожении. При их появлении энергетический баланс нарушается, но все восстанавливается после исчезновения. Кажется фантастикой, но этот механизм подтвержден экспериментально.

Допустим, одна из вакуумных флуктуаций действует возле горизонта черной дыры. Возможно, одна из частиц падает внутрь, а вторая убегает. Сбежавшая забирает с собою часть энергии дыры и может попасть на глаза наблюдателю. Ему покажется, что темный объект просто выпустил частицу. Но процесс повторяется, и мы видим непрерывный поток излучения из черной дыры.

Мы уже говорили, что Кириллу кажется, будто вам нужна бесконечность, чтобы перешагнуть через линию горизонта. Кроме того, упоминалось, что черные дыры испаряются через конечный временной промежуток. То есть, когда вы достигнете горизонта, дыра исчезнет?

Нет. Когда мы описывали наблюдения Кирилла, мы не говорили о процессе испарения. Но, если этот процесс присутствует, то все меняется. Ваш друг увидит, как вы перелетите через горизонт именно в момент испарения. Почему?

Над Кириллом властвует оптическая иллюзия. Излучаемому свету в горизонте событий нужно много времени, чтобы добраться к другу. Если дыра длится вечно, то свет может идти бесконечно долго, и Кирилл не дождется перехода. Но, если дыра испарилась, то свет уже ничто не остановит, и он доберется к парню в момент взрыва излучения. Но вам уже все равно, ведь вы давно погибли в сингулярности.

В формулах общей теории относительности есть интересная особенность – симметричность во времени. Например, в любом уравнении вы можете представить, что время течет назад и получите другое, но все же правильно, решение. Если применить этот принцип к черным дырам, то рождается белая дыра.

Черная дыра – определенная область, из которой ничто не может выбраться. Но второй вариант, это белая дыра, в которую ничто не может упасть. Фактически, она все отталкивает. Хотя, с математической точки зрения, все выглядит гладко, но это не доказывает их существование в природе. Скорее всего, их нет, как и способа это выяснить.

До этого момента мы говорили о классике черных дыр. Они не вращаются и лишены электрического заряда. А вот в противоположном варианте начинается самое интересное. Например, вы можете попасть внутрь, но избежать сингулярности. Более того, ее «внутренность» способна контактировать с белой дырой. То есть, вы попадете в своеобразный туннель, где черная дыра – вход, а белая – выход. Подобную комбинацию называют червоточиной.

Интересно, что белая дыра может находиться в любом месте, даже в другой Вселенной. Если уметь управлять такими червоточинами, то мы обеспечим быструю транспортировку в любую область пространства. А еще круче – возможность путешествий во времени.

Но не пакуйте рюкзак, пока не узнаете несколько моментов. К сожалению, велика вероятность, что таких формирований нет. Мы уже говорили, что белые дыры – вывод из математических формул, а не реальный и подтвержденный объект. Да и все наблюдаемые черные дыры создают падение материи и не формируют червоточин. И конечная остановка – сингулярность.



ЧЕРНАЯ ДЫРА
область в пространстве, возникшая в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть. Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют "горизонтом событий". Поскольку до сих пор имеются лишь косвенные указания на существование черных дыр на расстояниях в тысячи световых лет от Земли, наше дальнейшее изложение основывается главным образом на теоретических результатах. Черные дыры, предсказанные общей теорией относительности (теорией гравитации, предложенной Эйнштейном в 1915) и другими, более современными теориями тяготения, были математически обоснованы Р.Оппенгеймером и Х. Снайдером в 1939. Но свойства пространства и времени в окрестности этих объектов оказались столь необычными, что астрономы и физики в течение 25 лет не относились к ним серьезно. Однако астрономические открытия в середине 1960-х годов заставили взглянуть на черные дыры как на возможную физическую реальность. Их открытие и изучение может принципиально изменить наши представления о пространстве и времени.
Образование черных дыр. Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет "битву с гравитацией": ее гравитационный коллапс будет остановлен давлением "вырожденного" вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой. У сферической черной дыры массы M горизонт событий образует сферу с окружностью по экватору в 2p раз большей "гравитационного радиуса" черной дыры RG = 2GM/c2, где c - скорость света, а G - постоянная тяготения. Черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Если астроном будет наблюдать звезду в момент ее превращения в черную дыру, то сначала он увидит, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть, пока не потухнет совсем. Это происходит потому, что в борьбе с гигантской силой тяжести свет теряет энергию и ему требуется все больше времени, чтобы достичь наблюдателя. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь наблюдателя (и при этом фотоны полностью потеряют свою энергию). Следовательно, астроном никогда не дождется этого момента и тем более не увидит того, что происходит со звездой под горизонтом событий. Но теоретически этот процесс исследовать можно. Расчет идеализированного сферического коллапса показывает, что за короткое время звезда сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, общий математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако все это верно лишь в том случае, если общая теория относительности применима вплоть до очень маленьких пространственных масштабов, в чем мы пока не уверены. В микромире действуют квантовые законы, а квантовая теория гравитации пока не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы. Современная теория звездной эволюции и наши знания о звездном населении Галактики указывают, что среди 100 млрд. ее звезд должно быть порядка 100 млн. черных дыр, образовавшихся при коллапсе самых массивных звезд. К тому же черные дыры очень большой массы могут находиться в ядрах крупных галактик, в том числе и нашей. Как уже отмечалось, в нашу эпоху черной дырой может стать лишь масса, более чем втрое превышающая солнечную. Однако сразу после Большого взрыва, с которого ок. 15 млрд. лет назад началось расширение Вселенной, могли рождаться черные дыры любой массы. Самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. Но "первичные черные дыры" с массой более 1015 г могли сохраниться до наших дней. Все расчеты коллапса звезд делаются в предположении слабого отклонения от сферической симметрии и показывают, что горизонт событий формируется всегда. Однако при сильном отклонении от сферической симметрии коллапс звезды может привести к образованию области с бесконечно сильной гравитацией, но не окруженной горизонтом событий; ее называют "голой сингулярностью". Это уже не черная дыра в том смысле, как мы обсуждали выше. Физические законы вблизи голой сингулярности могут иметь весьма неожиданный вид. В настоящее время голая сингулярность рассматривается как маловероятный объект, тогда как в существование черных дыр верит большинство астрофизиков.
Свойства черных дыр. Для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой. В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с неоднородностью исходной звезды, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, имела ли она форму сигары или блина и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса. Единственность указанных выше типов стационарных черных дыр была доказана в рамках общей теории относительности В. Израэлем, Б. Картером, С. Хокингом и Д. Робинсоном. Согласно общей теории относительности, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно назвать "интервалом времени". Замечательно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки - что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория. Любое тело, падающее на черную дыру, задолго до пересечения горизонта событий будет разорвано на части мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра. Черная дыра всегда готова поглотить вещество или излучение, увеличив этим свою массу. Ее взаимодействие с окружающим миром определяется простым принципом Хокинга: площадь горизонта событий черной дыры никогда не уменьшается, если не учитывать квантового рождения частиц. Дж. Бекенстейн в 1973 предположил, что черные дыры подчиняются тем же физическим законам, что и физические тела, испускающие и поглощающие излучение (модель "абсолютно черного тела"). Под влиянием этой идеи Хокинг в 1974 показал, что черные дыры могут испускать вещество и излучение, но заметно это будет лишь в том случае, если масса самой черной дыры относительно невелика. Такие черные дыры могли рождаться сразу после Большого взрыва, с которого началось расширение Вселенной. Массы этих первичных черных дыр должны быть не более 1015 г (как у небольшого астероида), а размер 10-15 м (как у протона или нейтрона). Мощное гравитационное поле вблизи черной дыры рождает пары частица-античастица; одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Черная дыра с массой 1015 г должно вести себя как тело с температурой 1011 К. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.
Поиск черных дыр. Расчеты в рамках общей теории относительности Эйнштейна указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире; открытие настоящей черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе безнадежно труден: мы не сможем заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них. Сверхмассивные черные дыры могут находиться в центрах галактик, непрерывно пожирая там звезды. Сконцентрировавшись вокруг черной дыры, звезды должны образовать центральные пики яркости в ядрах галактик; их поиски сейчас активно ведутся. Другой метод поиска состоит в измерении скорости движения звезд и газа вокруг центрального объекта в галактике. Если известно их расстояние от центрального объекта, то можно вычислить его массу и среднюю плотность. Если она существенно превосходит плотность, возможную для звездных скоплений, то полагают, что это черная дыра. Этим способом в 1996 Дж.Моран с коллегами определили, что в центре галактики NGC 4258, вероятно, находится черная дыра с массой 40 млн. солнечных. Наиболее перспективным является поиск черной дыры в двойных системах, где она в паре с нормальной звездой может обращаться вокруг общего центра масс. По периодическому доплеровскому смещению линий в спектре звезды можно понять, что она обращается в паре с неким телом и даже оценить массу последнего. Если эта масса превышает 3 массы Солнца, а заметить излучение самого тела не удается, то очень возможно, что это черная дыра. В компактной двойной системе черная дыра может захватывать газ с поверхности нормальной звезды. Двигаясь по орбите вокруг черной дыры, этот газ образует диск и, приближаясь по спирали к черной дыре, сильно нагревается и становится источником мощного рентгеновского излучения. Быстрые флуктуации этого излучения должны указывать, что газ стремительно движется по орбите небольшого радиуса вокруг крохотного массивного объекта. С 1970-х годов обнаружено несколько рентгеновских источников в двойных системах с явными признаками присутствия черных дыр. Самой перспективной считается рентгеновская двойная V 404 Лебедя, масса невидимого компонента которой оценивается не менее чем в 6 масс Солнца. Другие замечательные кандидаты в черные дыры находятся в двойных рентгеновских системах Лебедь X-1, LMCX-3, V 616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. За исключением LMCX-3, расположенной в Большом Магеллановом Облаке, все они находятся в нашей Галактике на расстояниях порядка 8000 св. лет от Земли.
См. также
КОСМОЛОГИЯ ;
ТЯГОТЕНИЕ ;
ГРАВИТАЦИОННЫЙ КОЛЛАПС ;
ОТНОСИТЕЛЬНОСТЬ ;
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ .
ЛИТЕРАТУРА
Черепащук А.М. Массы черных дыр в двойных системах. Успехи физических наук, т. 166, с. 809, 1996

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ЧЕРНАЯ ДЫРА" в других словарях:

    ЧЕРНАЯ ДЫРА, локализованный участок космического пространства, из которого не может вырваться ни вещество, ни излучение, иными словами, первая космическая скорость превосходит скорость света. Граница этого участка называется горизонтом событий.… … Научно-технический энциклопедический словарь

    Космич. объект, возникающий в результате сжатия тела гравитац. силами до размеров, меньших его гравитационного радиуса rg=2g/c2 (где М масса тела, G гравитац. постоянная, с численное значение скорости света). Предсказание о существовании во… … Физическая энциклопедия

    Сущ., кол во синонимов: 2 звезда (503) неизвестность (11) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Дата публикации: 27.09.2012

Большинство людей смутно или неправильно представляют себе, что такое чёрные дыры. Между тем, это настолько глобальные и мощные объекты Вселенной, по сравнению с которыми наша Планета и вся наша жизнь - ничто.

Сущность

Это космический объект, обладающий настолько огромной гравитацией, что поглощает всё, что попадёт в его пределы. По сути, чёрная дыра - это объект, который не выпускает даже свет и искривляет пространство-время. Даже время возле чёрных дыр течёт медленнее.

На самом деле, существование чёрных дыр - это только теория (и немного практики). У учёных есть предположения и практические наработки, но плотно изучить чёрные дыры пока не удалось. А потому чёрными дырами называют условно все объекты, подходящие под данное описание. Чёрные дыры мало изучены, а потому очень много вопросов остаются нерешёнными.

У любой чёрной дыры есть горизонт событий - та граница, после которой ничто уже не сможет выбраться. Более того, чем ближе объект находится к чёрной дыре, тем он медленнее движется.

Образование

Существует несколько видов и способов образования чёрных дыр:
- образование чёрных дыр в результате образования Вселенной. Такие чёрные дыры появились сразу после Большого Взрыва.
- умирающие звёзды. Когда звезда теряет свою энергию и термоядерные реакции прекращаются - звезда начинает сжиматься. В зависимости от степени сжатия, выделяют нейтронные звёзды, белые карлики и, собственно, чёрные дыры.
- получение с помощью эксперимента. Например, в коллайдере можно создать квантовую чёрную дыру.

Версии

Многие учёные склонны к мнению, что чёрные дыры всю поглощённую материю выбрасывают в другом месте. Т.е. должны существовать «белые дыры», которые действуют по иному принципу. Если в чёрную дыру можно попасть, но нельзя выбраться, то в белую дыру, наоборот, не попасть. Главный аргумент учёных - это зафиксированные в космосе резкие и мощные выплески энергии.

Сторонники теории струн вообще создали свою модель чёрной дыры, которая не уничтожает информацию. Их теория называется «Fuzzball» - она позволяет ответить на вопросы, связанные с сингулярностью и исчезновением информации.

Что такое сингулярность и исчезновение информации? Сингулярность - это такая точка в пространстве, характеризующаяся бесконечным давлением и плотностью. Многих смущает факт сингулярности, ведь физики не могут работать с бесконечными числами. Многие уверены, что сингулярность в чёрной дыре есть, но её свойства описываются весьма поверхностно.

Если говорить простым языком, то все проблемы и недопонимание выходит из соотношения квантовой механики и гравитации. Пока учёные не могут создать теорию, объединяющую их. А потому и возникают проблемы с чёрной дырой. Ведь чёрная дыра вроде как уничтожает информацию, но при этом нарушаются основы квантовой механики. Хотя совсем недавно С.Хокинг, вроде бы, решил данный вопрос, заявив что информация в чёрных дырах всё-таки не уничтожается.

Стереотипы

Во-первых, чёрные дыры не могут существовать бесконечно долго. А всё благодаря испарению Хокинга. А потому не нужно думать, что чёрные дыры рано или поздно поглотят Вселенную.

Во-вторых, наше Солнце не станет чёрной дырой. Так как массы нашей звезды будет недостаточно. Наше солнце скорее превратится в белого карлика (и то не факт).

В-третьих, Большой Адронный Коллайдер не уничтожит нашу Землю, создав чёрную дыру. Даже если они специально создадут чёрную дыру и «выпустят» её, то из-за её малых размеров, она будет поглощать нашу планету очень и очень долго.

В-четвёртых, не нужно думать, что чёрная дыра - это «дыра» в космосе. Чёрная дыра - это сферический объект. Отсюда большинство мнений, что чёрные дыры ведут в параллельную Вселенную. Однако этот факт пока ещё не удалось доказать.

В-пятых, чёрная дыра не имеет цвета. Её обнаруживают либо по рентгеновскому излучению, либо на фоне других галактик и звёзд (эффект линзы).

Из-за того, что люди часто путают чёрные дыры с червоточинами (которые на самом деле существуют), то среди обычных людей данные понятия не различаются. Червоточина и вправду позволяет перемещаться в пространстве и времени, но пока только в теории.

Сложные вещи простым языком

Сложно описывать такой феномен как чёрная дыра простым языком. Если вы считаете себя технарём, разбирающимся в точных науках, то советую почитать труды учёных непосредственно. Если же вы хотите узнать об этом феномене больше, то почитайте труды Стивена Хокинга. Он многое сделал для науки, и особенно в сфере чёрных дыр. Именно в честь него названо испарение чёрных дыр. Он является сторонником педагогического подхода, а потому все его труды будут понятны даже обычному человек.

Книги:
- «Чёрные дыры и молодые Вселенные» 1993 года.
- «Мир в ореховой скорлупке 2001» года.
- «Кратчайшая история Вселенной 2005» года.

Особенно хочу порекомендовать его научно-популярные фильмы, которые расскажут вам понятным языком не только о чёрных дырах, но и о Вселенной вообще:
- «Вселенная Стивена Хокинга» - сериал из 6 эпизодов.
- «Вглубь Вселенной со Стивеном Хокингом» - сериал из 3 эпизодов.
Все эти фильмы переведены на русский язык, их часто показываются на каналах Discovery.

Спасибо за внимание!


Последние советы раздела «Наука & Техника»:

Вам помог этот совет? Вы можете помочь проекту, пожертвовав на его развитие любую сумму по своему усмотрению. Например, 20 рублей. Или больше:)

Черная дыра является особенной областью в пространстве. Это некое скопление черной материи, способное втягивать в себя и поглощать другие объекты космоса. Явление черных дыр до сих пор не . Все имеющиеся данные - всего лишь теории и предположения ученых астрономов.

Название "черная дыра" ввел в употребление ученый ДЖ.А. Уилер в 1968 году в Принстонском университете.

Существует теория, что черные дыры в являются звездами, но необычными, наподобие нейтронных. Черная дыра - - , потому что имеет очень большую плотность свечения и не посылает абсолютно никакого излучения. Поэтому она невидима ни в инфракрасных, ни в рентгеновских, ни в радиолучах.

Эту ситуацию французский астроном П. Лаплас еще за 150 лет до черных дыр . Согласно его доводам, если имеет плотность, равную плотности Земли, и диаметр, превышающий диаметр Солнца в 250 раз, то она не дает лучам света распространяться по Вселенной в силу своего тяготения, поэтому и остается невидимой. Таким образом предполагается, что черные дыры являются самыми мощными излучающими объектами во Вселенной, но при этом они не имеют твердой поверхности.

Свойства черных дыр

Все предполагаемые свойства черных дыр основаны на теории относительности, выведенной в 20 веке А.Эйнштейном. Любой традиционный подход к изучению этого явления не дает никакого убедительного объяснения явлению черных дыр.

Главное свойство черной дыры - способность искривлять время и пространство. Любой движущийся объект, попавший в ее гравитационное поле, неизбежно будет втянут внутрь, т.к. при этом вокруг объекта возникает плотный гравитационный вихрь, некая воронка. При этом трансформируется и понятие времени. Ученые расчетным путем все же склоняются к выводу, что черные дыры - это не небесные тела в общепринятом понимании. Это действительно некие дыры, червоточины во времени и пространстве, способные изменять и уплотнять его.

Черная дыра - замкнутая область пространства, в которую сжато вещество и откуда ничто не может выйти, даже свет.

Согласно расчетам астрономов, при том мощном гравитационном поле, которое существует внутри черных дыр, ни один объект не сможет остаться невредимым. Его мгновенно разорвет на миллиарды кусочков еще до того, как он попадет внутрь. Однако при этом не исключается возможность обмена частицами и информацией с их помощью. А если черная дыра имеет массу, как минимум в миллиард раз превышающую массу Солнца (сверхмассивная), то теоретически возможно и передвижение объектов сквозь нее без быть разорванными гравитацией.

Конечно, это только теории, ведь исследования ученых еще слишком далеки от понимания того, какие процессы и возможности скрывают черные дыры. Вполне возможно, в будущем нечто подобное может осуществиться.

Черные дыры являются одними из самых удивительных и в то же время пугающих объектов нашей Вселенной. Возникают они в тот момент, когда в звездах, имеющих огромную массу, заканчивается ядерное топливо. Ядерные реакции прекращаются и светила начинают остывать. Тело звезды сжимается под действием гравитации и постепенно она начинает притягивать к себе более мелкие объекты, трансформируясь в черную дыру.

Первые исследования

Изучать черные дыры светила науки начали не так давно, несмотря на то что основные концепции их существования были разработаны еще в прошлом столетии. Само понятие «черной дыры» было введено в 1967 году Дж. Уиллером, хотя вывод о том, что эти объекты неизбежно возникают при коллапсе массивных звезд, был сделан еще в 30-х годах прошлого столетия. Все, что внутри черной дыры - астероиды, свет, поглощенные ею кометы, - когда-то приблизилось слишком близко к границам этого загадочного объекта и не сумело их покинуть.

Границы черных дыр

Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.

Строение черных дыр

Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению - ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.

Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.

Основные категории

Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные, а также сверхмассивные. Их масса превосходит массу Солнца в несколько сотен тысяч раз. Звездные образуются после смерти больших небесных светил. Черные дыры обычной массы появляются после завершения жизненного цикла больших звезд. Оба вида черных дыр, несмотря на различное происхождение, имеют сходные свойства. Сверхмассивные черные дыры расположены в центрах галактик. Ученые предполагают, что они сформировались во времена образования галактик за счет слияния плотно прилежащих друг к другу звезд. Однако это только догадки, не подтвержденные фактами.

Что внутри черной дыры: догадки

Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины - переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.

Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи.

Связь с теорией относительности

Черные дыры являются одним из самых удивительных предсказаний А. Эйнштейна. Известно, что сила тяготения, которая создается на поверхности любой планеты, обратно пропорциональна квадрату ее радиуса и прямо пропорциональна ее массе. Для этого небесного тела можно определить понятие второй космической скорости, которая необходима, чтобы преодолеть эту силу тяготения. Для Земли она равна 11 км/сек. Если же масса небесного тела будет увеличиваться, а диаметр - наоборот, уменьшаться, то вторая космическая скорость со временем может превысить скорость света. И поскольку, согласно теории относительности, никакой объект не может двигаться быстрее скорости света, то образуется объект, не дающий ничему вырваться за его пределы.

В 1963 году учеными были обнаружены квазары - космические объекты, являющиеся гигантскими источниками радиоизлучения. Располагаются они очень далеко от нашей галактики - их удаленность составляет миллиарды световых лет от Земли. Чтобы объяснить чрезвычайно высокую активность квазаров, ученые ввели гипотезу о том, что внутри них располагаются черные дыры. Эта точка зрения сейчас является общепринятой в научных кругах. Исследования, которые проводились в течение последних 50 лет, не только подтвердили данную гипотезу, но и привели ученых к выводу о том, что черные дыры есть в центре каждой галактики. В центре нашей галактики также есть такой объект, его масса составляет 4 миллиона солнечных масс. Эта черная дыра носит название «Стрелец А», и поскольку она расположена ближе всего к нам, ее больше всего исследуют астрономы.

Излучение Хокинга

Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым - ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами - под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры - возле ее внешней границы, горизонта событий. Такое рождение является парным - появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.

В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.

Вопрос о сохранении информации

Одной из основных проблем, которая появилась после открытия излучения Хокинга, является проблема потери информации. Связана она с вопросом, кажущимся на первый взгляд очень простым: что произойдет, когда черная дыра испарится полностью? Обе теории - как квантовая физика, так и классическая - имеют дело с описанием состояния системы. Обладая информацией о начальном состоянии системы, при помощи теории можно описать, каким образом она будет меняться.

При этом в процессе эволюции информация о начальном состоянии не теряется - действует своего рода закон о сохранении информации. Но если черная дыра испарится полностью, то наблюдатель теряет информацию о той части физического мира, который когда-то попал в дыру. Стивен Хокинг считал, что информация о начальном состоянии системы каким-то образом восстанавливается после того, как черная дыра испарилась полностью. Но трудность состоит в том, что по определению из черной дыры передача информации невозможна - ничто не может покинуть горизонт событий.

Что будет, если попадешь в черную дыру?

Считается, что если бы каким-либо невероятным способом человек мог попасть на поверхность черной дыры, то она сразу стала бы его затягивать в направлении себя. В конечном счете человек бы растянулся настолько, что превратился бы в поток субатомных частиц, движущихся по направлению к точке сингулярности. Доказать эту гипотезу, конечо же, невозможно, ведь ученые вряд ли когда-нибудь смогут узнать, что происходит внутри черных дыр. Сейчас некоторые физики заявляют, что если бы человек попал в черную дыру, то у него появился бы клон. Первая из его версий сразу же была бы уничтожена потоком раскаленных частиц излучения Хокинга, а вторая бы прошла через горизонт событий без возможности вернуться назад.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png