Механические манометры . В них используются методы измерения давления, в которых силы измеряемого давления непосредственно сравниваются с весом столба жидкости, эталонного груза или с силами упругих чувствительных элементов. Механические манометры, сконструированные на основе первых двух методов, находят применение в стационарных условиях или используются как контрольные при проверке и тарировке других. При реализации третьего метода измерения давления в качестве упругих чувствительных элементов (УЧЭ) используются мембраны, мембранные коробки, сильфоны и трубчатые пружины. Их деформация зависит от значения измеряемого давления.

Рис. 12. Устройство мановакуумметра

В мановакуумметре (Рис. 12) в качестве УЧЭ применяются манометрический и барометрический сильфоны 9 и 6. Давление р к которое измеряется, подаётся в сильфон 9 . Сильфоном 6 измеряется давление р а , равное атмосферному. Под действием разности давлений происходит перемещение штока 8 , отклонение рычага 7 , перемещение тяги 2 , поворот сектора 1 , вращение трубки 5 и стрелки 4 относительно шкалы 3 .

При измерении давления механическими манометрами возникают методические, инструментальные и динамические погрешности.

Методическая погрешность появляется за счёт изменения абсолютного давления окружающей среды.

Инструментальные погрешности возникают из-за наличия трения, люфтов в опорах и шарнирах подвижных элементов, дисбаланса подвижной системы, а также от изменения температуры окружающей среды. Последнее вызывает изменения модуля упругости материала, из которого изготовлен УЧЭ, и геометрических размеров деталей передаточного механизма. Уменьшение этой погрешности достигается с помощью биметаллических температурных компенсаторов и подбором материалов, из которых изготавливаются УЧЭ.

Динамические погрешности обусловлены запаздыванием измерений, которые зависят от параметров трубопровода, соединяющего объект контроля с механическим манометром.

Электромеханические манометры. В этих манометрах силы измеряемого давления преобразуются в перемещение УЧЭ, которые воздействуют на параметры измерительных электрических схем (сопротивление R , индуктивность L или ёмкость С ). Преобразователь давления устанавливается непосредственно на объекте контроля, что позволяет отказаться от соединительных трубопроводов большой длины, избавиться от ряда погрешностей, упростить монтаж и эксплуатационное обслуживания.

Манометры типа ЭДМУ. Электрические дистанционные манометры унифицированного типа ЭДМУ (Рис. 13) имеют одинаковое устройство и элементы для всех диапазонов измеряемых давлений, за исключением УЧЭ и градуировки шкалы. Принципиальная электрическая схема приведена далее.


Рис. 13. Схема манометра типа ЭДМУ

Измеряемое давление р и подаётся в УЧЭ, который связан с щёткой Е 3 потенциометра В 1 через передаточный механизм. Значения сопротивлений R x и R y потенциометра преобразователя давления, меняющиеся в зависимости от давления р и , образуют два плеча мостовой схемы. Другими плечами мостовой схемы являются резисторы R 1 и R 2. Рамки логометра L 1, L 2и резистор R Д составляют измерительную диагональ моста. Общая точка соединения рамок подключена к полудиагонали, состоящей из резисторов R 3 и R 4. Они предназначены для компенсации температурных погрешностей, вызванных изменением сопротивления рамок логометра при колебаниях температуры окружающей среды. Рамки логометров имеют одинаковое число витков, но разные конструктивные размеры. Вследствие этого внутренняя рамка имеет меньшее сопротивление. Для обеспечения симметрии схемы в цепь внутренней рамки включено добавочное сопротивление R Д . При подключении к схеме напряжения питания в случае R x = R y мостовая схема симметрична. Ток, протекающий по полудиагонали через резисторы R 3 и R 4, разветвляется на два равных тока I 1 и I 2 рамок L L 2(Рис. 14). При нарушении равенства между R x и R y симметрия в схеме нарушается, вследствие чего нарушается и равенство токов. Токи I 1 и I 2 , протекая по рамкам логометра, создают магнитные поля, характеризующиеся векторами напряжённости:

H 1 = I 1 w H 2 = I 2 w,

где, w – число витков каждой из рамок.

Подвижный магнит, на оси которого крепиться стрелка, располагается по направлению вектора

H = H 1 + H 2 ,

где, H – вектор напряжённости результирующего магнитного поля.

Рис. 15. Кинематическая схема преобразователя давления

Измеряемое давление р и подаётся через штуцер 9 в полость преобразователя давления. Под действием р и происходит перемещение центра мембраны 8 , толкателя 6 ,качалки 5 , рычага 3 , и щёткодержателя 13. Пружина 4 возвращает рычаг в исходное положение при уменьшении давления р и .

Рис. 16. Конструкция логометра ЭДМУ

Конструкция логометра ЭДМУ (Рис. 16) состоит из подвижного магнита 2 и неподвижных рамок 3 и 10 . Магнит 2 и стрелка 5 крепиться к оси 9, концы которой вставлены в подпятники 6 . Медный корпус 1 магнитного успокоителя используется для демпфирования колебаний подвижной системы логометра.

Неподвижный магнит 4 возвращает стрелку прибора в нулевое положение при отключении напряжения питания.

Погрешности, вносимые в схему измерения датчиком давления, аналогичны погрешностям механических манометров. Погрешности, вносимые электрической схемой и указателем, возникают при изменении температуры окружающей среды, при действии на подвижную систему указателя сил трения, дисбаланса и люфтов, а также от магнитного гистерезиса в материале экрана и подвижного магнита. Общая суммарная погрешность (± 4) и наличие ненадёжного скользящего контракта являются недостатками манометров этого типа.

Манометры типа ЭМ являются приборами дифференциального типа, измеряющими разность двух давлений (Рис. 17). В качестве УЧЭ применяются гофрированные мембраны, деформация которых преобразуется в электрическую величину с помощью потенциометрического преобразователя. Указателем является четырёхрамочный логометр с подвижным магнитом.

Рис. 17. Схема манометра типа ЭМ

Крайние точки потенциометра соединены накоротко, поэтому он эквивалентен круговому потенциометру. Каждая секция потенциометра соединена с соответствующим отводом рамки логометра. Напряжение питания 27 В ± 10% подаётся на щётку потенциометрического преобразователя и точку объединяющую все рамки логометра. При перемещении щётки потенциометра под действием сил давления происходит перераспределение токов в рамках логометра. В них создаются магнитные поля, характеризующиеся векторами напряженности. Подвижный магнит четырёхрамочного логометра располагается по направлению вектора напряжённости Н суммарного магнитного поля. Сопротивления R 1 и R 2 служат для регулировки ширины и равномерности шкалы. Применение такой схемы даёт возможность получать при малом перемещении жёсткого центра мембраны и щётки потенциометра большие углы отклонения стрелки указателя (размах шкалы достигает 270 0). Это существенно повышает точность измерения давления при прочих равных условиях. Вследствие симметричности схемы прибора на показания указателя не влияют ни изменение напряжения питания, ни сопротивления рамок при колебаниях температуры окружающей среды. Суммарная погрешность прибора ± 3%. Основными недостатками манометра типа ЭМ являются наличие скользящего контакта и увеличенное число соединительных проводов, что снижает надёжность прибора, увеличивает его массу и усложняет монтаж на борту ЛА.

Манометры типа ДИМ . Недостатки потенциометрических преобразователей, связанные с износом потенциометрических преобразователей, связанные с износом потенциометра, нарушением контактов при вибрациях и колебаниях измеряемого давления, повышенных температурах, устранены в дистанционных индуктивных манометрах типа ДИМ (Рис. 18). Это обеспечивается применением дифференциального индуктивного преобразователя. Манометры этого типа применяются для измеряемого давления при повышенных температурах и значительных высокочастотных помех (до 700 Гц). Принципиальная электрическая схема манометра приведена ниже.


Рис. 18. Схема манометра типа ДИМ

В качестве УЧЭ применяются либо гофрированные мембраны, либо мембранные коробки. Жёсткий подвижный центр УЧЭ соединён с якорем индуктивного преобразователя. Катушки индуктивного преобразователя L 1 и L 2 совместно с резисторами R 1 и R 2 образуют мостовую схему, которая работает на переменном токе 36В 400 Гц. В диагональ мостовой схеме включены рамки логометрического указателя. При измерении давления деформация УЧЭ передаётся на якорь, который изменяет воздушный зазор в магнитных цепях катушек L L 2. Это вызывает изменения индуктивности катушек и ведёт к перераспределению токов в рамках логометра. Так как логометр работает на постоянном токе, то в качестве выпрямителей в измерительную схему введены диоды Д 1 и Д 2. Максимальные погрешности манометров типа ДИМ составляет ± 4%, размах шкалы указателя 120 0 .

Сигнализаторы давления . Они предназначены для выдачи информации о наличии в системах силовых установок номинальных или критических режимов. УЧЭ 1 сигнализатора давления управляют работой контактов 4,5, коммутирующих электрическую цепь (Рис. 19).

Рис. 19. Схема сигнализатора давления

Сигнализатор давления 2 размыкает электрическую цепь с помощью упоров 3 и 6 при уменьшении разности давления Δр = р 2 – р 1 .

Измеритель отношения давлений типа ИОД . Он предназначен для контроля тяги двигателя по отношению давлений

π =р 2 / р 1

где, р 1 – полное давление на входе в двигатель;

р 2 – давление за турбиной двигателя.

Схема прибора (Рис. 20) состоит их датчика отношения давления (ДОД) и указателя отношения давлений (УОД). Она является измерительной схемой компенсационного типа в отличие от измерительных схем прямого преобразования. ДОД состоит: из рабочего сильфона17, в полость которого подаётся давление р 2 , анероид 1, реагирующего на изменение давления р 1 , подаваемого в корпус датчика; контактной системы 15, служащей для управления электродвигателем 13, через усилитель 16, потенциометра 2, фиксирующего отклонение рычага 18.


Рис. 20. Схема измерителя отношения давлений типа ИОД

УОД состоит: из усилителя 8; двигателя 10; механизма обратной связи, в который входят редуктор и потенциометр 12; механизма указателя, включающего ходовой механизм, шкалу 4, механизм ленты 3 и возвратную пружину 7. Лампы Л1 и Л2 освещают шкала указателя.

При изменении режима работы двигателя, следовательно, и изменении отношения давления подвижный контакт контактной системы 15, расположенной на рычаге 18, замкнётся с верхним или нижним неподвижным контактном, и электродвигатель 13 начнёт поворачивать анероид, изменяя угол его наклона к рычагу 18. При достижении равновесия приведённых сил сильфона и анероида происходит размыкание контактов и двигатель отключается. При этом с потенциометра 2 снимаются сигналы, пропорциональные отношению давлений. Он включён в мостовую измерительную схему указателя, содержащую потенциометр обратной связи 12 и подгоночные сопротивления 11. При разбалансе моста в диагонали возникает напряжение, которое усиливается усилителем 8 и поступает на электродвигатель 10 указателя, который уравновешивает мостовую схему с помощью потенциометрической обратной связи 12 и перемещает механизм указателя с показывающей лентой 3. При этом на шкале 4 указывается величина измеряемого отношения давлений. В случае отклонения питания или выхода из строя элементов прибора лента возвращается за нижнюю отметку шкалы возвратной пружиной 7. Подгоночные резисторы 11 позволяет произвести регулировку размаха чётно-белой границы ленты по шкале указателя. Вращением кремальеры 6 перемещается гайка со стрелкой 5 вдоль шкалы для отметки заранее установленного значения отношения давлений в точке контроля.

Термостружкосигнализаторы . Для своевременного предупреждения экипажа о появлении ненормальностей в работе подшипниковых узлов средней и задней опор ротора двигателя в нижней части камеры сгорания установлен корпус с масляными фильтрами и термостружкосигнализаторами (ТСС).

Система (Рис. 21) состоит из следующих основных элементов:

а) двух термостружкосигнализаторов 1, один из которых установлен в магистрали откачки масла от заднего подшипника ротора компрессора, другой – в магистрали откачки масла от подшипника ротора турбины;

б) сигнальной лампочки, расположенной на приборной доске в кабине экипажа.

В корпусе маслофильта имеются два канала, один из которых соединён с полостью заднего подшипника компрессора, другой – с полостью подшипника турбины.

В каждом канале установлен маслофильтр 10 и ТСС 1, которые своими фланцами совместно крепятся к корпусу маслофильтров 11 двумя болтами.


Рис. 21. Конструкция маслофильтра

Корпус маслофильтров 11 своим верхним фланцем крепиться четырьмя болтами к фланцу, имеющему на нижнем ребре жёсткости корпуса камеры сгорания. Между фланцами устанавливается паронитовая прокладка.

На корпусе маслофильтров 11, кроме того, установлено два штуцера для соединения каналов корпуса трубопроводами с масляным агрегатом.

Каждый ТСС состоит из датчика, сигнализирующего о стальной стружке в откачиваемом масле, и датчика предельной температуры воздушно - масляной смеси.

Датчик наличия стальной стружки состоит из магнитного накопителя стружки, представляющего собой два постоянных магнита 4 и 6, установленных с воздушным зазором друг против друга разными полюсами. Магниты соединены проводами 2 и 3 с контактами штепсельного разъёма термостружкосигнализатора. На корпусе ТСС установлен штепсельный разъём для подключения его к электрическим цепям двигателя и самолёта.

Датчик предельной температуры расположен в верхней части корпуса 5 и состоит из корпуса 8, вставки 9 из легкоплавкого сплава и контактов, одним из которых является верхняя часть магнита 6 , а другим – кольцо 7.

Вставка 9 помещается внутри конуса 8 и поддерживается тремя равноотстоящими выступами.Кольцо 7 соединено проводом 2 с магнитом 4.

Принцип работы как датчика наличия стружки, так и термодатчика основан на замыкании минусовой цепи сигнальной лампочки системы термостружкосигнализации при появлении стружки или повышении температуры откачиваемой воздушно – масляной смеси выше допустимой величины.

При появлении металлической стружки в одной из указанных выше магистралей откачки масла между магнитами образуется замкнутая сеть, так как зазор между магнитами заполняется стружкой.

В результате этого на приборной доске в кабине экипажа загорается лампочка наличия стружки в двигателе.

В случае повышения температуры воздушно - масляной смеси в магистрали откачки из полости заднего подшипника компрессора выше 180 0 С и магистрали откачки из полости подшипника турбины выше 202 0 С легкоплавкие вставки расплавляются и соединяют поверхность магнитов 6 и колец 7 .Образуется замкнутая электрическая цепь, которая включает лампочку в кабине пилота, сигнализирующую о наличии стружки в масле.

Вывод: приборы контроля за работой силовых установок самолётов предназначены для контроля за тягой и тепловым режимом авиационных двигателей, состоянием смазки, запасом и расходом топлива, работой отдельных систем и агрегатов. К ним относятся приборы для измерения скорости вращения, температуры, давления, количества топлива в баках и расхода топлива. К этой же группе приборов относятся сигнализаторы заданных давлений в топливной системе и указатели положений конуса воздухозаборника, противопомпажных створок и рычага топлива, позволяющие проверить состояние соответствующих систем.

Двигатели самолётов, топливные и масляные баки, баллоны воздушных систем и другие объекты, за работой которых необходимо наблюдать во время полёта, располагается на расстоянии нескольких метров и даже десятков метров от кабины, где сосредоточено управление самолётов. Поэтому все приборы, контроля за работой силовых установок должны быть дистанционными.

Авиационные двигатели работают в напряжённом тепловом режиме, близком к предельному. Поэтому к термометрам, применяемым для контроля за тепловым режимом двигателя и обслуживающих систем. Предъявляется требование повышенной точности измерения. Так, при максимальных значениях измеряемых температур погрешность измерения температуры газов ТРД не должна превышать ± (0,5-1)%. Точность измерения температуры в системах охлаждения авиационных двигателей всех типов оценивается допустимой погрешностью ± (3-5)%.

Давление топлива в газотурбинных двигателях должно измеряться с погрешностью не более ± 1.5 % в диапазоне 0-10 кГ/см 2 и ±4 % в диапазоне 10-100 кГ/см 2 . Погрешность измерения давления масла не должна превышать ± 4%.

Заключение

Точное измерение фактического запаса топлива на самолёте и мгновенного или суммарного его расхода необходимо для обеспечения безопасности полёта и выдерживания оптимального режима работы двигателя. Погрешность измерения количества топлива при положении самолёта в линии полёта не должна превышать 2-3% фактического запаса топлива не должна быть более ± 2,5%.

Сигнализаторы заданных давлений должны срабатывать с погрешностью, не превышающей ± 5% номинальных значений давления срабатывания.

Вопросы на самостоятельную подготовку

1.Контролируемые параметры силовых установок, агрегатов и систем ЛА.

2.Принцип работы термометра типа ТЭУ.

3. Принцип работы термодатчика.

4. Принцип работы ТНВ.

5. Принцип работы термоэлектрических термометров.

6. Принцип действия магнитоэлектрического гальванометра

7. Приборы контроля состояния масляных систем двигателя.

Литература

1. В.Д. Константинов, И.Г. Уфимцев, Н.В. Козлов "Авиационное оборудование самолётов" стр. 119-148.

2. Ю. П. Доброленский "Авиационное оборудование" стр. 82-88.

3. А.С. Тыртычко, Н.Н. Точилов, М.М. Ногас, В.М. Блувштейн "Авиационное оборудование вертолётов" стр. 254-282.

4. В.В. Глухов, И.М. Синдеев, М.М. Шемаханов "Авиационное и радиоэлектронное оборудование ЛА." стр. 46-76.

5. Конспект лекций.


Похожая информация.


АВИАЦИОННЫЕ БОРТОВЫЕ ПРИБОРЫ
приборное оборудование, помогающее летчику вести самолет. В зависимости от назначения авиационные бортовые приборы делятся на пилотажно-навигационные, приборы контроля работы авиадвигателей и сигнализационные устройства. Навигационные системы и автоматы освобождают пилота от необходимости непрерывно следить за показаниями приборов. В группу пилотажно-навигационных приборов входят указатели скорости, высотомеры, вариометры, авиагоризонты, компасы и указатели положений самолета. К приборам, контролирующим работу авиадвигателей, относятся тахометры, манометры, термометры, топливомеры и т.п. В современных бортовых приборах все больше информации выносится на общий индикатор. Комбинированный (многофункциональный) индикатор дает возможность пилоту одним взглядом охватывать все объединенные в нем индикаторы. Успехи электроники и компьютерной техники позволили достичь большей интеграции в конструкции приборной доски кабины экипажа и в авиационной электронике. Полностью интегрированные цифровые системы управления полетом и ЭЛТ-индикаторы дают пилоту лучшее представление о пространственном положении и местоположении самолета, чем это было возможно ранее.

ПАНЕЛЬ УПРАВЛЕНИЯ современного авиалайнера более просторна и менее загромождена, чем на авиалайнерах прежних моделей. Органы управления расположены непосредственно "под рукой" и "под ногой" пилота.


Новый тип комбинированной индикации - проекционный - дает пилоту возможность проецировать показания приборов на лобовое стекло самолета, тем самым совмещая их с панорамой внешнего вида. Такая система индикации применяется не только на военных, но и на некоторых гражданских самолетах.

ПИЛОТАЖНО-НАВИГАЦИОННЫЕ ПРИБОРЫ


Совокупность пилотажно-навигационных приборов дает характеристику состояния самолета и необходимых воздействий на управляющие органы. К таким приборам относятся указатели высоты, горизонтального положения, воздушной скорости, вертикальной скорости и высотомер. Для большей простоты пользования приборы сгруппированы Т-образно. Ниже мы кратко остановимся на каждом из основных приборов.
Указатель пространственного положения. Указатель пространственного положения представляет собой гироскопический прибор, который дает пилоту картину внешнего мира в качестве опорной системы координат. На указателе пространственного положения имеется линия искусственного горизонта. Символ самолета меняет положение относительно этой линии в зависимости от того, как сам самолет меняет положение относительно реального горизонта. В командном авиагоризонте обычный указатель пространственного положения объединен с командно-пилотажным прибором. Командный авиагоризонт показывает пространственное положение самолета, углы тангажа и крена, путевую скорость, отклонение скорости (истинной от "опорной" воздушной, которая задается вручную или вычисляется компьютером управления полетом) и представляет некоторую навигационную информацию. В современных самолетах командный авиагоризонт является частью системы пилотажно-навигационных приборов, которая состоит из двух пар цветных электронно-лучевых трубок - по две ЭЛТ для каждого пилота. Одна ЭЛТ представляет собой командный авиагоризонт, а другая - плановый навигационный прибор (см. ниже). На экраны ЭЛТ выводится информация о пространственном положении и местоположении самолета во всех фазах полета.



Плановый навигационный прибор. Плановый навигационный прибор (ПНП) показывает курс, отклонение от заданного курса, пеленг радионавигационной станции и расстояние до этой станции. ПНП представляет собой комбинированный индикатор, в котором объединены функции четырех индикаторов - курсоуказателя, радиомагнитного индикатора, индикаторов пеленга и дальности. Электронный ПНП с встроенным индикатором карты дает цветное изображение карты с индикацией истинного местоположения самолета относительно аэропортов и наземных радионавигационных средств. Индикация направления полета, вычисления поворота и желательного пути полета предоставляют возможность судить о соотношении между истинным местоположением самолета и желаемым. Это позволяет пилоту быстро и точно корректировать путь полета. Пилот может также выводить на карту данные о преобладающих погодных условиях.

Указатель воздушной скорости. При движении самолета в атмосфере встречный поток воздуха создает скоростной напор в трубке Пито, закрепленной на фюзеляже или на крыле. Воздушная скорость измеряется путем сравнения скоростного (динамического) напора со статическим давлением. Под действием разности динамического и статического давлений прогибается упругая мембрана, с которой связана стрелка, показывающая по шкале воздушную скорость в километрах в час. Указатель воздушной скорости показывает также эволютивную скорость, число Маха и максимальную эксплуатационную скорость. На центральной панели расположен резервный пневмоуказатель воздушной скорости.
Вариометр. Вариометр необходим для поддержания постоянной скорости подъема или снижения. Как и высотомер, вариометр представляет собой, в сущности, барометр. Он указывает скорость изменения высоты, измеряя статическое давление. Имеются также электронные вариометры. Вертикальная скорость указывается в метрах в минуту.
Высотомер. Высотомер определяет высоту над уровнем моря по зависимости атмосферного давления от высоты. Это, в сущности, барометр, проградуированный не в единицах давления, а в метрах. Данные высотомера могут представляться разными способами - с помощью стрелок, комбинаций счетчиков, барабанов и стрелок, посредством электронных приборов, получающих сигналы датчиков давления воздуха. См. также БАРОМЕТР .

НАВИГАЦИОННЫЕ СИСТЕМЫ И АВТОМАТЫ


На самолетах устанавливаются различные навигационные автоматы и системы, помогающие пилоту вести самолет по заданному маршруту и выполнять предпосадочное маневрирование. Некоторые такие системы полностью автономны; другие требуют радиосвязи с наземными средствами навигации.
Электронные навигационные системы. Существует ряд различных электронных систем воздушной навигации. Всенаправленные радиомаяки - это наземные радиопередатчики с радиусом действия до 150 км. Они обычно определяют воздушные трассы, обеспечивают наведение при заходе на посадку и служат ориентирами при заходе на посадку по приборам. Направление на всенаправленный радиомаяк определяет автоматический бортовой радиопеленгатор, выходная информация которого отображается стрелкой указателя пеленга. Основным международным средством радионавигации являются всенаправленные азимутальные радиомаяки УКВ-диапазона VOR; их радиус действия достигает 250 км. Такие радиомаяки используются для определения воздушной трассы и для предпосадочного маневрирования. Информация VOR отображается на ПНП и на индикаторах с вращающейся стрелкой. Дальномерное оборудование (DME) определяет дальность прямой видимости в пределах около 370 км от наземного радиомаяка. Информация представляется в цифровой форме. Для совместной работы с маяками VOR вместо ответчика DME обычно устанавливают наземное оборудование системы TACAN. Составная система VORTAC обеспечивает возможность определения азимута с помощью всенаправленного маяка VOR и дальности с помощью дальномерного канала TACAN. Система посадки по приборам - это система радиомаяков, обеспечивающая точное наведение самолета при окончательном заходе на посадочную полосу. Курсовые посадочные радиомаяки (радиус действия около 2 км) выводят самолет на среднюю линию посадочной полосы; глиссадные радиомаяки дают радиолуч, направленный под углом около 3° к посадочной полосе. Посадочный курс и угол глиссады представляются на командном авиагоризонте и ПНП. Индексы, расположенные сбоку и внизу на командном авиагоризонте, показывают отклонения от угла глиссады и средней линии посадочной полосы. Система управления полетом представляет информацию системы посадки по приборам посредством перекрестья на командном авиагоризонте. СВЧ-система обеспечения посадки - это точная система наведения при посадке, имеющая радиус действия не менее 37 км. Она может обеспечивать заход по ломаной траектории, по прямоугольной "коробочке" или по прямой (с курса), а также с увеличенным углом глиссады, заданным пилотом. Информация представляется так же, как и для системы посадки по приборам.
См. также АЭРОПОРТ ; ВОЗДУШНЫМ ДВИЖЕНИЕМ УПРАВЛЕНИЕ . "Омега" и "Лоран" - радионавигационные системы, которые, используя сеть наземных радиомаяков, обеспечивают глобальную рабочую зону. Обе системы допускают полеты по любому маршруту, выбранному пилотом. "Лоран" применяется также при заходе на посадку без использования средств точного захода. Командный авиагоризонт, ПНП и другие приборы показывают местоположение самолета, маршрут и путевую скорость, а также курс, расстояние и расчетное время прибытия для выбранных путевых точек.
Инерциальные системы. Инерциальная навигационная система и инерциальная система отсчета являются полностью автономными. Но обе системы могут использовать внешние средства навигации для коррекции местоположения. Первая из них определяет и регистрирует изменения направления и скорости с помощью гироскопов и акселерометров. С момента взлета самолета датчики реагируют на его движения, и их сигналы преобразуются в информацию о местоположении. Во второй вместо механических гироскопов используются кольцевые лазерные. Кольцевой лазерный гироскоп представляет собой треугольный кольцевой лазерный резонатор с лазерным лучом, разделенным на два луча, которые распространяются по замкнутой траектории в противоположных направлениях. Угловое смещение приводит к возникновению разности их частот, которая измеряется и регистрируется. (Система реагирует на изменения ускорения силы тяжести и на вращение Земли.) Навигационные данные поступают на ПНП, а данные положения в пространстве - на командный авиагоризонт. Кроме того, данные передаются на систему FMS (см. ниже). См. также ГИРОСКОП ; ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ . Система обработки и индикации пилотажных данных (FMS). Система FMS обеспечивает непрерывное представление траектории полета. Она вычисляет воздушные скорости, высоту, точки подъема и снижения, соответствующие наиболее экономному потреблению топлива. При этом система использует планы полета, хранящиеся в ее памяти, но позволяет также пилоту изменять их и вводить новые посредством компьютерного дисплея (FMC/CDU). Система FMS вырабатывает и выводит на дисплей летные, навигационные и режимные данные; она выдает также команды для автопилота и командного пилотажного прибора. В дополнение ко всему она обеспечивает непрерывную автоматическую навигацию с момента взлета до момента приземления. Данные системы FMS представляются на ПНП, командном авиагоризонте и компьютерном дисплее FMC/CDU.

ПРИБОРЫ КОНТРОЛЯ РАБОТЫ АВИАДВИГАТЕЛЕЙ


Индикаторы работы авиадвигателей сгруппированы в центре приборной доски. С их помощью пилот контролирует работу двигателей, а также (в режиме ручного управления полетом) изменяет их рабочие параметры. Для контроля и управления гидравлической, электрической, топливной системами и системой поддержания нормальных рабочих условий необходимы многочисленные индикаторы и органы управления. Индикаторы и органы управления, размещаемые либо на панели бортинженера, либо на навесной панели, часто располагают на мнемосхеме, соответствующей расположению исполнительных органов. Индикаторы мнемосхем показывают положение шасси, закрылков и предкрылков. Может указываться также положение элеронов, стабилизаторов и интерцепторов.

СИГНАЛИЗАЦИОННЫЕ УСТРОЙСТВА


В случае нарушений в работе двигателей или систем, неправильного задания конфигурации или рабочего режима самолета вырабатываются предупредительные, уведомительные или рекомендательные сообщения для экипажа. Для этого предусмотрены визуальные, звуковые и тактильные средства сигнализации. Современные бортовые системы позволяют уменьшить число раздражающих тревожных сигналов. Приоритетность последних определяется по степени неотложности. На электронных дисплеях высвечиваются текстовые сообщения в порядке и с выделением, соответствующими степени их важности. Предупредительные сообщения требуют немедленных корректирующих действий. Уведомительные - требуют лишь немедленного ознакомления, а корректирующих действий - в последующем. Рекомендательные сообщения содержат информацию, важную для экипажа. Предупредительные и уведомительные сообщения делаются обычно и в визуальной, и в звуковой форме. Системы предупредительной сигнализации предупреждают экипаж о нарушении нормальных условий эксплуатации самолета. Например, система предупреждения об угрозе срыва предупреждает экипаж о такой угрозе вибрацией обеих штурвальных колонок. Система предупреждения опасного сближения с землей дает речевые предупредительные сообщения. Система предупреждения о сдвиге ветра дает световой сигнал и речевое сообщение, когда на маршруте самолета встречается изменение скорости или направления ветра, способное вызвать резкое уменьшение воздушной скорости. Кроме того, на командном авиагоризонте высвечивается шкала тангажа, что позволяет пилоту быстрее определить оптимальный угол подъема для восстановления траектории.

ОСНОВНЫЕ ТЕНДЕНЦИИ


"Режим S" - предполагаемый канал обмена данными для службы управления воздушным движением - позволяет авиадиспетчерам передавать пилотам сообщения, выводимые на лобовое стекло самолета. Сигнализационная система предупреждения воздушных столкновений (TCAS) - это бортовая система, выдающая экипажу информацию о необходимых маневрах. Система TCAS информирует экипаж о других самолетах, появляющихся поблизости. Затем она выдает сообщение предупредительного приоритета с указанием маневров, необходимых для того, чтобы избежать столкновения. Глобальная система местоопределения (GPS) - военная спутниковая система навигации, рабочая зона которой охватывает весь земной шар, - теперь доступна и гражданским пользователям. К концу тысячелетия системы "Лоран", "Омега", VOR/DME и VORTAC практически полностью вытеснены спутниковыми системами. Монитор состояния (статуса) полета (FSM) - усовершенствованная комбинация существующих систем уведомления и предупреждения -помогает экипажу в нештатных летных ситуациях и при отказах систем. Монитор FSM собирает данные всех бортовых систем и выдает экипажу текстовые предписания для выполнения в аварийных ситуациях. Кроме того, он контролирует и оценивает эффективность принятых мер коррекции.

ЛИТЕРАТУРА


Духон Ю.И. и др. Справочник по связи и радиотехническому обеспечению полетов. М., 1979 Боднер В.А. Приборы первичной информации. М., 1981 Воробьев В.Г. Авиационные приборы и измерительные системы. М., 1981

Энциклопедия Кольера. - Открытое общество . 2000 .

  • Словарь военных терминов
  • - (бортовые СОК) технические средства, предназначеные для регистрации и сохранения полетной информации, характеризующей условия полёта, действия экипажа и функционирование бортового оборудования. СОК используются для: анализа причин и… … Википедия

    Совокупность методов и средств для определения действительных и желаемых положения и движения летательного аппарата, рассматриваемого как материальная точка. Термин навигация чаще применяется к длительным маршрутам (суда, самолеты, межпланетные… … Энциклопедия Кольера

    Совокупность прикладных знаний, позволяющих авиационным инженерам на занятий в области аэродинамики, проблем прочности, двигателестроения и динамики полета летательных аппаратов (т.е. теории) создать новый летательный аппарат или улучшить… … Энциклопедия Кольера - метод измерения ускорения судна или летательного аппарата и определения его скорости, положения и расстояния, пройденного им от исходной точки, при помощи автономной системы. Системы инерциальной навигации (наведения) вырабатывают навигационную… … Энциклопедия Кольера

    Устройство для автоматического управления самолетом (удержания на заданном курсе); применяется в длительных перелетах, позволяет летчику отдохнуть. Приборы того же принципа действия, но отличающиеся конструктивно, используются для управления… … Энциклопедия Кольера

    Совокупность предприятий, занятых конструированием, производством и испытаниями самолетов, ракет, космических аппаратов и кораблей, а также их двигателей и бортового оборудования (электрической и электронной аппаратуры и др.). Эти предприятия… … Энциклопедия Кольера

« ПРИБОРЫ КОНТРОЛЯ ДВИГАТЕЛЯ ЗА РАБОТОЙ ДВИГАТЕЛЯ, ОТДЕЛЬНЫХ СИСТЕМ И АГРЕГАТОВ СИГНАЛИЗАТОР УРОВНЯ ТОПЛИВА...»

АВИАЦИОННОЕ И РАДИОЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ САМОЛЕТА

ПРИБОРЫ КОНТРОЛЯ ДВИГАТЕЛЯ ЗА РАБОТОЙ ДВИГАТЕЛЯ,

ОТДЕЛЬНЫХ СИСТЕМ И АГРЕГАТОВ

СИГНАЛИЗАТОР УРОВНЯ ТОПЛИВА СУТ4-2

Сигнализатор уровня топлива СУТ4-2 предназначен для:

Дискретного измерения запаса топлива в двух баках объекта с выдачей информации на 9 уровнях на световое табло индикатора:

Выдачи дублирующих сигналов аварийного остатка топлива в каждом баке во вторую кабину.

В состав сигнализатора входят:

Два датчика сигнализатора уровня ДСУ1-2

Один индикатор в уровня топлива ИУТЗ-1.

Принцип действия сигнализатора основан на преобразовании неэлектрической величины (меняющегося уровня топлива) в электрическую (соответственно меняющиеся комбинации фаз выходных напряжений).

Для преобразования не электрической величины в электрическую служит поплавковый взаимоиндуктивный датчик. Индикатор ИУТЗ-1 предназначен для преобразования сигналов, поступающих с датчиков и выдачи информации на световое табло. На лицевой панели индикатора расположены кнопка контроля функционирования сигнализатора „К" и переключатель яркости светового табло „Д-Н".

ТАХОМЕТР ИТЭ-1 Тахометр предназначен для дистанционного измерения скорости вращения вала двигателя, выраженной в процентах от числа максимальных оборотов в минуту.



Принцип действия прибора основан на преобразовании скорости вращения вала двигателя в ЭДС с частотой, пропорциональной скорости вращения вала.

В комплект тахометра входят указатели ИТЭ-1 датчик ДТЭ-6. Указатели устанавливаются на приборных досках, датчика на двигателе.

Рис. 1 Комплект дистанционного магнито-индукционного тахометра ИТЭ-1: а - указатель ИТЭб - датчик-генератор ДТЭ-1 Рис. 2 Электрическая схема тахометра ИТЭ-1 1-ротор датчика-генератора; 2-статорная обмотка генератора; 3-ротор электродвигателя указателя; 4-статорная обмотка электродвигателя указателя; 5 - гистерезисный диск; 6 - диск указателя; 7 - магнит чувствительного элемента; 8-пружина-волосок; 9- зубчатая передача; 10-шкала прибора; 11- оси стрелок; 12 - стрелка

Основные данные:

АВИАЦИОННОЕ И РАДИОЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ САМОЛЕТА

Диапазон измерения

Погрешность при +20°С

Температурный интервал работы

ТРЕХСТРЕЛОЧНЫЙ МОТОРНЫЙ ИНДИКАТОР ЭМИ-ЗК

Трехстрелочный моторный индикатор служит для дистанционного контроля работы двигателя самолёта и представляет собой комбинированный прибор, измеряющий давление топлива и масла и температуру масла.

В комплект прибора входят указатель УКЗ-1, приемник давления топлива П-1Б, приемник давления масла ПМ-15Б и приемник температуры масла П-1.

Указатель установлен на приборной доске.

–  –  –

ТЕРМОЭЛЕКТРИЧЕСКИЙ ТЕРМОМЕТР ТЦТ-13

Термоэлектрический термометр служит для дистанционного измерения температуры под свечой цилиндра авиадвигателя.

Принцип действия термометра основан на явлении возникновения термоэлектродвижущей силы в спае двух различных металлов при нагреве спая.

В комплект термометра входит один измеритель ТЦТ-1 и одна термопара Т-3.

Измеритель установлен на приборной доске, термопара под свечой головки цилиндра двигателя.

Основные данные Диапазон измерения

Погрешность измерения

Температурные условия

ЭЛЕКТРИЧЕСКИЙ ТЕРМОМЕТР ТУЭ-48 Универсальный электрический термометр предназначен для дистанционного измерения температуры всасываемой смеси.

В комплект термометра входят приемник П-1 и указатель. Принцип действия электрического термометра основан на том, что при изменении температуры измеряемой среды изменяется сопротивление чувствительного элемента приемника.

Приемник температуры устанавливается на входе в карбюратор, указатель - на приборной доске.

Основные данные.

АВИАЦИОННОЕ И РАДИОЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ САМОЛЕТА

Температурный режим:

для указателя

для приемника

Диапазон измерений температуры

Рабочий диапазон

Напряжение питания

–  –  –

СДВОЕННЫЙ МАНОМЕТР СЖАТОГО ВОЗДУХА 2М-80

Манометр предназначен для измерения давления сжатого воздуха в основной и аварийной воздушной системе.

Принцип действия манометра основан на функциональной зависимости между измеряемым давлением и упругими деформациями чувствительного элемента - трубчатой пружины.

Манометр имеет две шкалы и соответственно две стрелки, показывающие давление в основной и аварийной системах.

Основные данные.

Диапазон измерения

Погрешность при +20°С

Температурный режим работы

ФИДЕР ЗАПУСКА ДВИГАТЕЛЯ

При включении автомата защиты „Зажигание" Э25 напряжение подается к кнопкам „Запуск" 31 и 32 и к выключателю „Разжижение масла" Ml.

При нажатии на кнопку 31 в первой кабине или на кнопку 32 во второй кабине напряжение подается на реле 310, при срабатывании которого 27 В подается на электроклапан ЭК-48 (33) и пусковую катушку КП4716 (34).

Ток, проходя по первичной обмотке пусковой катушки, создает магнитное поле. Вследствие этого, сердечник окажется намагниченным и при достижении определенной напряженности магнитного поля якорь вибратора, преодолевая сопротивление пружины, притянется к сердечнику. В результате этого контакты вибратора разомкнутся, ток прекратится, магнитный поток исчезнет и пружина вибратора возвратит якорь в первоначальное положение (при этом контакты вибратора опять замкнутся).

Цепь первичной обмотки окажется вновь замкнутой, и описанный выше процесс повторится.

В момент размыкания контактов магнитное поле первичной обмотки исчезает мгновенно. В следствие быстрого изменения магнитного потока во вторичной обмотке индуцируется большая

АВИАЦИОННОЕ И РАДИОЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ САМОЛЕТА

электродвижущая сила. Ток от вторичной обмотки пусковой катушки поступает на электрод бегунка левого магнето (клемма "П") и через электроды распределителя на свечи цилиндров.

Управление системой зажигания, т.е. включение и выключение магнето, из первой кабины производится переключателем 37, при этом во второй кабине переключатель 38 должен быть в положении „1+2", а выключатель „Зажигание", Э11 - в положении „1 каб". Управление системой зажигания из второй кабины осуществляется переключателем 38, выключатель „Зажигание" 311 в этом случае должен быть в положении „ 2 каб".

Переключатель магнето ПМ-1 имеет четыре положения. При положении "0" оба магнето выключены, т.к. первичные обмотки трансформатор магнето соединены с корпусом самолета.

При положении "1" работает левое магнето 35, а правое 312 выключено, т.к. первичная обмотка его трансформатора соединена с корпусом самолёта.

При положении "2" работает только правое магнето, при положении „1+2" работает оба магнето.

ФИДЕР ПРИБОРОВ КОНТРОЛЯ РАБОТЫ ДВИГАТЕЛЯ

При включении автомата защиты „ПРИБ. ДВИГ", Э24 напряжение подается на термометр ТУЭ-48, показывающий температуру воздуха на входе в карбюратор на трехстрелочные указатели У КЗ-1, М5 и М9 и на индикатор ИУТЗ-1 из комплекта сигнализатора уровня топлива СУТ4-2.

ЦЕПЬ СИГНАЛИЗАЦИИ НАЛИЧИЯ СТРУЖКИ В ДВИГАТЕЛЕ

При появлении стружки в двигателе срабатывает сигнализатор - фильтр М25 и замыкает минусовую

Похожие работы:

«ОПУБЛИКОВАНО: Мазниченко И.В., Поздняков Э.Н. Их не забыты имена (об открытии памятного знака воинам-танкистам 47-й о.т.б. в с. Красная Поляна Шебекинского района Белгородской обл.) // Пам"яткознавчi погляди молодих вчених XXI ст. Збiрка наукових статей з пам"яткоохоронноi роботи. Вип. III. Харкiв, 2013; Шебекинский краевед...»

« дорогой.2.Лето уж кончается, И школа впереди.Пред Богом мы скл...»

«О руководстве пользователя В руководстве пользователя приведена информация о настройке многофункционального устройства и установке поставляемого с ним программного обеспечения. Кроме того, представлены инструкции...»

«статьи Безвизовое передвижение: показатель всемирной интеграции Б. Уайт Брендан Уайт – Ph.D., политический географ и картограф, специализирующийся на военной, транспортной и приграничной географии. Опубликовал около 250 научных работ, включая монографии и статьи, посвященные анклавам на приграничной территории Индии...»

«чением времени происходит сближение графиков u(t) близко к указанному то независимо от начального значения скорости падения, с течением времени. Они стремятся к наклонной прямолинейной асимптоте. Для моделирования движе...»

« Российской Федерации по взаимодействию с институтами гражданского общества на тему Инициативы гражданского общества в реализации положений Послания Президента Российской Федерации 24 марта...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования "Нижневартовский государственный университет" Гуманитарный факультет Рабочая программа...»

«М. Ю. Муллаева М. Н. Пьяница Фастфуд http://www.litres.ru/pages/biblio_book/?art=6181077 М. Муллаева, М. Пьяница. Фастфуд: Научная книга; 2013 Аннотация В этой книге вы найдете множество рецептов вкусных и оригинальных блюд, приготовление которых не отнимет у вас много времен...» 2017 www.сайт - «Бесплатная электронная библиотека - онлайн материалы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам , мы в течении 1-2 рабочих дней удалим его.

Типы двигателей. На различных типах самолетов применяются различные типы двигателей. Так, например, на легких и средних самолетах ставят бензиновые двигатели внутреннего сгорания, различающиеся по способу охлаждения (воздушное или водяное) и по способу карбюрации (с поплавковым или беспоплавковым карбюратором); на тяжелых самолетах дальнего действия используются двигатели, работающие на тяжелом топливе, дизели, дающие большую экономию топлива при дальних полетах.

Для каждого из этих двигателей существует комплект приборов, обеспечивающих рациональное управление данным двигателем и контроль его работы (фиг. 11).

В связи с тем что остановка двигателя в воздухе вызывает вынужденную посадку самолета, наиболее ответственную роль играют приборы, контролирующие работу двигателя в целом и показывающие состояние работы отдельных его агрегатов. Пользуясь этими приборами, летчик имеет также возможность правильно отрегулировать режим работы двигателя для сохранения его прочности и продления срока службы.

Кроме того, приборы позволяют полностью использовать мощность двигателя для получения максимальных скоростей полета и маневренности в воздушном бою. Наконец при помощи приборов можно установить наиболее экономичный режим работы двигателя, дающий экономию топлива в полете.

В настоящее время в связи с распространением реактивных двигателей открылась новая область работы для конструктора авиационных приборов. Построенные на совершенно иных принципах, чем двигатели внутреннего сгорания, реактивные двигатели требуют применения новых конструкций авиационных приборов.

Бензиновый двигатель. Работа этого двигателя основана на использовании тепловой энергии, выделяемой бензином при сгорании в цилиндре двигателя. Энергия сжигаемого бензина преобразуется в механическую работу при повоздухе создает силу тяги, обеспечивающую продвижение самолета.

Для нормальной работы двигателя в течение всего времени полета необходим бесперебойный приток топлива к двигателю. Подача топлива к цилиндрам двигателя осуществляется группой агрегатов, объединенных в систему питания двигателя. Запас топлива находится в бензобаках, помещенных обычно внутри плоскостей (крыльев самолета).

Бензиномер указывает количество горючего в баках; показания этого прибора особенно важны летчику в длительном полете.

Для сгорания бензина в цилиндрах двигателя необходим кислород. Поэтому бензин должен поступать в цилиндры не в жидком виде, а в распыленном состоянии вместе с воздухом, в виде так называемой горючей смеси. Горючая смесь приготовляется в карбюраторе. Постоянный приток бензина к карбюратору обеспечивается бензиновой помпой, непрерывно перекачивающей бензин из баков в карбюратор под определенным постоянным давлением, которое поддерживается при помощи редукционного клапана. У бензиновых двигателей с поплавковыми карбюраторами это давление должно быть в пределах 0,2-0,35 ат, а при наличии беспоплавкового карбюратора 0,5-1 ат. При уменьшенном давлении приток горючего в карбюратор будет недостаточным, что вызовет перебои в работе двигателя.

Фиг. 11. Приборы, контролирующие работу авиационного двигателя.

Манометр бензина измеряет давление, под которым бензин поступает в карбюратор. Показания бензиномера и манометра бензина характеризуют состояние системы бензопитания двигателя и бесперебойность подачи горючего.

Состав горючей смеси, приготовляемой в карбюраторе (т. е. соотношение содержания бензина и воздуха), может быть различным. Для определения состава смеси служит газоанализатор, указывающий так называемый коэфициент избытка воздуха α. Малый коэфициент α. указывает на то, что количество воздуха в смеси недостаточно для полного сгорания бензина; такая смесь называется «богатой». Высокий коэфициент α указывает на излишек воздуха, и в этом случае смесь называется «бедной». Для каждого режима работы двигателя необходим свой состав смеси.

При своем движении части двигателя преодолевают сопротивление трения, что влечег за собой износ частей и потерю мощности двигателя. Система смазки двигателя обеспечивает постоянную подачу масла ко всем трущимся деталям для уменьшения трения и износа материала. Для обеспечения достаточной и бесперебойной смазки масло подается под давлением, создаваемым масляной помпой. У современных авиационных двигателей это давление поддерживается постоянным в пределах 5-8 ат при помощи редукционного клапана. Давление в системе смазки показывает манометр масла.

Нормальная работа двигателя в значительной степени зависит также от температуры смазывающего масла. При низкой температуре (ниже 10-20° С) вязкость масла сильно возрастает, скорость течения его по трубопроводам уменьшается, и особенно затрудняется подача масла через каналы малого сечения для смазки подшипников двигателя.

Слишком высокая температура масла также плохо сказывается на работе двигателя. При высокой температуре вязкость масла уменьшается, оно приобретает текучесть и плохо удерживается в зазорах между трущимися частями; при чрезмерно высокой температуре масло горит и продукты его сгорания засоряют трущиеся поверхности. Таким образом необходимо поддерживать температуру смазывающего масла в определенных пределах, например, на входе в двигатель 55-70° С, на выходе из двигателя 90-110° С. Кратковременные повышения температуры масла в определенных пределах допустимы.

Температуру масла измеряют термометром масла. Изменение температуры масла в полете достигается двумя путями: либо изменением числа оборотов двигателя, либо изменением условия охлаждения маслорадиатора. Например, при слишком высокой температуре масла либо понижают число оборотов двигателя, либо открывают заслонки маслорадиатора, благодаря чему увеличивается его обдув и, следовательно, охлаждение.

При сгорании горючей смеси выделяется большое количество тепла, и цилиндры двигателя сильно нагреваются. При чрезмерно высокой температуре цилиндры начинают деформироваться, что может вызвать заедание поршней двигателя. Для того чтобы температура цилиндров и поршней поддерживалась в допустимых пределах, приходится применять искусственное охлаждение. В зависимости от способа отвода тепла авиационные двигатели делятся на двигатели с воздушным и жидкостным охлаждением.

При воздушном охлаждении цилиндры обдуваются потоком воздуха. Температура цилиндров на этих двигателях контролируется путем измерения температуры головок цилиндров специальными термометрами. Допустимый предел нагрева головок цилиндров двигателя 240-250° С.

При жидкостном охлаждении двигателя излишек тепла отводится еодой или специальной жидкостью, непрерывно омывающей наружные стенки цилиндров и отдающей тепло воздуху в радиаторе. В двигателях с жидкостным охлаждением о нагреве цилиндров судят косвенным образом - по температуре жидкости, выходящей из рубашек цилиндра. Эта температура также имеет допустимый предел, различный для разных двигателей, в зависимости от конструкции охлаждающей системы и от свойств охлаждающей жидкости.

При водяном охлаждении допустимая температура воды на рыходе равна примерно 85-90° С. Для повышения этого предела применяют специальные жидкости с температурой кипения выше 100° С, а также системы охлаждения, работающие при повышенном давлении. В этих случаях верхний предел температуры жидкости может быть повышен до 110-120° С. Температуру жидкости, выходящей из рубашек цилиндров, измеряют термометром воды.

Для двигателя опасен не только перегрев, но и излишнее охлаждение цилиндров, так как при этом уменьшается скорость сгорания горючей смеси. Двигатель теряет приемистость, т. е. скорость перехода на другой режим работы. Потеря приемистости особенно опасна при посадке, когда в некоторых случаях необходимо быстро увеличить обороты винта, чтобы не потерять скорости.

Минимально допустимая температура головок цилиндров для двигателей воздушного охлаждения около 120° С. Минимальная температура охлаждающей жидкости на выходе из двигателя так же, как и температура смазывающего масла, должна регулироваться строго в заданных пределах.

В полете температуру регулируют изменением режима работы двигателя или открытием створок радиатора, что изменяет условия охлаждения. На некоторых двигателях установлены автоматы, которые поддерживают заданную температуру цилиндров или жидкости, изменяя условия охлаждения. Однако применение автоматов не исключает применения термометров для контроля за исправностью действия автоматов.

Тяга винта, продвигающая самолет в воздухе, зависит от числа оборотов в минуту винта, а следовательно, от числа оборотов в минуту коленчатого вала. Скорость вращения вала двигателя показывает тахометр. На большинстве двигателей устанавливается автомат, который поддерживает постоянное число оборотов винта путем изменения угла установки его лопастей (шага винта). В этом случае тахометр показывает, насколько исправно работает автомат винта. На взлетном режиме для лучшего использования мощности двигателя обычно изменяют регулирование автомата винта, с тем чтобы увеличить число оборотов.

Для полного сгорания бензина нужно определенное количество кислорода. Кислород содержится в воздухе, засасываемом двигателем. Но на большой высоте воздух сильно разрежен и когда он засасывается в цилиндры, то нехватает кислорода для сгорания топлива. Из-за этого снижается мощность двигателя на высоте. Приходится снабжать высотные двигатели нагнетателем, сжимающим воздух и подающим его под нужным давлением в цилиндры.

Это давление называется давлением наддува и измеряется мановакуумметром. На ряде двигателей имеется автомат, поддерживающий постоянное давление наддува во всасывающем магистрали авиационного двигателя. На взлетном режиме давление наддува увеличивают на 100-200 мм рт. ст., что необходимо для повышения мощности, развиваемой двигателем.

Для сохранения необходимой приемистости двигателя бензин в карбюраторе должен испаряться с достаточной скоростью. Скорость испарения зависит ог температуры карбюратора, которая измеряется термометром карбюратора.

Двигатель тяжелого топлива. В последнее время на самолетах начали применять дизели - двигатели, питающиеся тяжелым топливом (керосин, нефть, газойль). Основным преимуществом дизеля перед бензиновым двигателем является меньший расход топлива.

Система питания дизеля сходна с системой питания бензинового двигателя, имеющего беспоплавковый карбюратор с непосредственным впрыском топлива. Топливо поступает из бака в топливную помпу, откуда подается под давлением 2-4 ат к топливному насосу. Насос нагнетает топливо под давлением 500-1000 ат в форсунки, впрыскивающие топливо в цилиндры двигателя. Топливо не зажигается электрической свечой, как в бензиновых двигателях, а воспламеняется само от нагрева воздуха. Воздух нагревается до необходимой температуры благодаря высокой степени сжатия его в цилиндрах двигателя.

Количество топлива в баках измеряется бснзиномером, как и в бензиновом двигателе. Для измерения давления, под которым топливо подается помпой в топливный насос, служит манометр топлива, сходный по конструкции с манометром бензина, но отличающийся диапазоном измерений. Манометры топлива, применяемые на дизелях, имеют диапазон измерения до 6 ат, а манометр для бензинового двигателя с поплавковым карбюратором - до 1 ат; на бензиновом двигателе с непосредственным впрыском применяют манометр с диапазоном измерения 1,5-3 ат.

Важное значение в работе дизеля имеет прибор, измеряющий мгновенный расход топлива, так называемый расходомер топлива.

Управление дизелем основано на ином принципе, чем управление бензиновым двигателем. В карбюраторном двигателе мощность изменяют путем изменения количества горючей смеси, подаваемой в цилиндры. Для этого открывают дроссельную заслонку, связанную с рукояткой управления (сектор газа). Изменение мощности дизеля достигается изменением количества подаваемого топлива посредством специального перепускного устройства в топливном насосе. Зубчатая рейка управления насосом связана с рукояткой топливного сектора, расположенного в кабине летчика.

В дизеле подаваемое топливо должно точно дозироваться, а следовательно, необходим точный замер мгновенного расхода топлива. Естественно, что в дизеле не нужны газоанализатор и термометр карбюратора. Системы смазки и охлаждения дизеля соответствуют аналогичным схемам бензинового двигателя. Соответственно этому в дизеле применяются такие же контрольно-измерительные приборы: манометр масла, термометры воды и масла, термометр головок цилиндров.

В дизелях также применяется система наддува, поддерживающая их мощность на высоте. Вследствие отсутствия детонации топлива дизель допускает более высокое давление наддува, чем бензиновый двигатель. Мановакуумметры, применяемые в дизелях, имеют соответственно более высокий предел измерения.

удовольствия

P2002-Sierra RG представляет собой двухместный низкоплан с параллельным расположением кресел и убирающимися шасси. Выполненный со вкусом P2002 Sierra RG — самолет для получения удовольствия от управления и созерцания окружающего вас мира.

Краткие сведения

Макс. дальность

Готов к маршрутным полетам

Максимальная скорость

Места

Два места с параллельным расположением кресел
Дневные и ночные полеты по ПВП

Расход топлива

Всего лишь 4.5 галлона США в час при
использовании как автомобильного, так и авиационного топлива.

Экстерьер

Самолет P2002 Sierra RG обладает превосходными эксплуатационными и летными характеристиками, что подтверждается фактом многочисленных продаж сверхлегких самолетов P2002, легких спортивных и сверхлегких воздушных судов по всему миру, и утвержденных в 15 странах, за исключением Европейских государств. Простота в пилотировании и выполнении технического обслуживания позволяют данному воздушному судну быть отличным решением для проведения обучения в летных организациях. Он также является идеальным решением для выполнения задач по наблюдению с воздуха как развлекательного характера, так и для частного использования. Возможность использовать топливо 100LL AVGAS или неэтилированное автомобильное топливо (до 10% содержания этанола) делает этот самолет еще более универсальным и экономически выгодным в эксплуатации. В P2002 Sierra RG совмещаются самые передовые разработки самолетостроения компании Tecnam. Применение современного программного обеспечения для проектирования, структурного анализа, а также опыт в постройке воздушных судов с использованием всех типов материалов является результатом непрерывного развития процесса производства воздушных судов.
Благодаря трапецевидному низкорасположенному крылу и щелевым закрылкам, Р2002 Sierra RG является превосходным самолетом с идеальным сочетанием аэродинамических, эксплуатационных характеристик.

Детали интерьера

Самолёт оборудован креслами, регулируемыми в полете по уровню высоты при перемещении кресла вперед.
Багажный отсек, вместимостью на 44 фунта/20 кг, расположен за креслами с достаточным местом для размещения нескольких дорожных сумок. Все самолеты Tecnam оборудованы спаренными органами управления с изогнутой формой у основания для легкого доступа и покидания воздушного судна. Двойная система управления с наличием нажимной переговорной кнопки (PTT) и электрического триммера стабилизатора на ручке с индикатором триммера на панели управления является стандартной.
Интерьер достаточно просторный, эргономичный и комфортный. Двойная система РУДов позволяет осуществлять управление как левой, так и правой рукой.
Обогрев и предотвращение обмерзания входят в стандартную конфигурацию.
Вентиляционные отверстия расположены в дверях. Конструкцией всех самолетов Tecnam предусмотрен отличный передний обзор.
Самолет оборудован двойными стандартными педалями системы путевого управления и управляемым носовым колесом. Широкая приборная панель стандартного типа позволяет разместить широкий спектр оборудования.
Шасси вверх и вперед за удовольствием с Sierra RG!


Авионика

Стандартный пакет авионики GARMIN

GMA 340 Аудиопанель
GNC 255A Связное/навигационное оборудование
GTX 328 Ответчик
АРМ 406 Мгц
Антенны:
— Ответчика
— УКВ
— АРМ
— Маркерного радиомаяка
Динамики
Микрофон
Переговорная кнопка на ручке управления командира экипажа/второго пилота

Список стандартного оборудования

Указатели и приборы управления полетом

Магнитный компас
Указатель скорости (в узлах)
Высотомер (дюймы)
Вариометр
Указатель крена
Указатель положения закрылков
Система ПВД
Система статического давления
Указатель положения триммера стабилизатора
Три лампочки положения шасси
Индикатор транзитного / незафиксированного положения шасси

Приборы контроля работы двигателя

Тахометр
Счетчик моточасов
Указатель давления масла
Указатель температуры масла
Указатель температуры головки цилиндра
Указатель давления топлива
Вольтметр
Левый и правый топливомеры

Топливная система

Два встроенных топливных бака общей емкостью 100 литров
Механический топливный насос (с приводом от двигателя)
Клапан быстрого слива отстоя топлива
Дополнительные электрические топливные насосы

Органы управления полетом

Гидравлические тормоза
Стояночный тормоз
Электрические закрылки
Спаренные органы управления
Управляемая передняя стойка шасси
Триммер стабилизатора (электрический переключатель на ручке управления)
Органы управления двигателем:
— Два РУД
— Обогрев карбюратора
— Обогатитель
Шасси:
— Электрогидравлическая система уборки/выпуска шасси
— Переключатель положения шасси
— Звуковая сигнализация положения шасси
— Аварийный выпуск шасси
Система триммирования органов управления полетом:
— Управление триммером стабилизатора и указатель положения триммера
Топливный кран, положения Вкл/Выкл

— Стартер
— Топливный насос
— Левый и правый магнето двигателя

Электрическая система

Аккумулятор 12 Вольт 18 Ампер
Генераторы 12 Вольт, 20 Ампер
Выключатели:
— Посадочная фара
— Проблесковые огни
Панель АЗС

Документация к ВС

Ограниченная гарантия производителя (2 года)
Руководство пилота
Руководство по техническому обслуживанию

Интерьер

Кресла пилотов
— Регулируемое положение (вперед и назад)
Ремни безопасности и плечевые ремни безопасности (все кресла)
Ковровый настил на всю ширину
Багажные отсеки

Внешняя часть

Сдвижной фонарь с замком и ключом
Заднее окно
Швартовочные кольца
Убирающиеся шасси
Колеса основных стоек шасси 5,00 X 5, колесо передней стойки шасси 4,00 X 6
Сигнализация приближения к сваливанию

БАНО

БАНО и крыльевые проблесковые огни
Светодиодная рулежная фара

Комфортность кабины

Регулируемый вентилятор (в 2-х местах)

Силовая установка и воздушный винт

Один четырехцилиндровый двигатель Rotax 912 ULS2 мощностью 100 л.с.
Смешанная (жидкостная/воздушная) система охлаждения, встроенный редуктор
Двойная система зажигания
Левый и правый РУД
Трубчатая стальная моторама
Двухлопастной воздушный винт изменяемого шага Gt Propeller
Кок воздушного винта
Воздушный фильтр
Масляный фильтр
Масляный и водяной радиаторы

Комплекты

1003 Модификация категории до полной (Advanced):


Топливный кран ANDAIR
Радиооборудование Ica210 с установкой
Ответчик Gtx 327 с установкой
АРМ AK 450 с установкой

Парашют JUNKERS, рассчитанный на вес 600 кг

1004 Версия US-LSA, включает:

Противопожарная перегородка из нержавеющей стали
Указатель скорости (в узлах)
Топливный кран Andair
Переключатели на приборной панели:
_ Раздельный стартер
_ Авионика
Замок стартера
Панель АЗС
Тонировка всех окон
Швартовочные кольца
Противопожарная обмотка трубопровода масляной и топливной систем
Термостатический масляный клапан
Крепежная сеть багажного отсека
Светодиодная рулежная фара
Внешний источник питания
Расширенная гарантия на двигатель Rotax (Продление на 1 год)
Система обогрева с обогревателем стекла



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png