q - удельная отопительная характеристика здания, ккал/мч °С принимается по справочнику в зависимости от наружного объема здания .

а – поправочный коэффициент, учитывающий климатические условия района, для г. Москва, а = 1,08.

V - наружный объем здания, м определяется по строительным данным.

t - средняя температура воздуха внутри помещения, °С принимается в зависимости от типа здания.

t - расчетная температура наружного воздуха для отопления , °С для г. Москва t= -28 °С.

Источник: http://vunivere.ru/work8363

Q yч составляется из тепловых нагрузок приборов, обслуживаемых протекающей по участку водой:

(3.1)

Для участка подающего теплопровода тепловая нагрузка выражает запас теплоты в протекающей горячей воде, предназначенной для последующей (на дальнейшем пути воды) теплопередачи в помещения. Для участка обратного теплопровода - потери теплоты протекающей охлажденной водой при теплопередаче в помещения (на предшествующем пути воды). Тепловая нагрузка участка предназначена для определения расхода воды на участке в процессе гидравлического расчета .

Расход воды на участке G уч при расчетной разности температуры воды в системе t г - t х с учетом дополнительной теплоподачи в помещения

где Q yч - тепловая нагрузка участка, найденная по формуле (3.1);

β 1 β 2 - поправочные коэффициенты, учитывающие дополнительную теплоподачу в помещения;

с - удельная массовая теплоемкость воды, равная 4,187 кДж/(кг°С).

Для получения расхода воды на участке в кг/ч тепловую нагрузку в Вт следует выразить в кДж/ч, т.е. умножить на (3600/1000)=3,6.

в целом равна сумме тепловых нагрузок всех отопительных приборов (теплопотерь помещений). По общей теплопотребности для отопления здания определяют расход воды в системе отопления .

Гидравлический расчет связан с тепловым расчетом отопительных приборов и труб. Требуется многократное повторение расчетов для выявления действительных расхода и температуры воды, необходимой площади приборов. При расчете вручную сначала выполняют гидравлический расчет системы , принимая средние значения коэффициента местного сопротивления (КМС) приборов, затем - тепловой расчет труб и приборов.

Если в системе применяют конвекторы, в конструкцию которых входят трубы Dy15 и Dy20, то для более точного расчета предварительно определяют длину этих труб, а после гидравлического расчета с учетом потерь давления в трубах приборов, уточнив расход и температуру воды, вносят поправки в размеры приборов.

Источник: http://teplodoma.com.ua/1/gidravliheskiy_rashet/str_19.html

В данном разделе Вы сможете максимально подробно ознакомиться с вопросами связанными с расчетом тепловых потерь и тепловых нагрузок здания.

Строительство отапливаемых зданий без проведения расчета тепловых потерь запрещено!*)

И хотя большинство до сих пор строят на авось, по совету соседа или кума. Правильно и четенько начинать еще на этапе разработки рабочего проекта на строительство. Как это делается?

Архитектор (или сам застройщик) предоставляет нам список "доступных" или "приоритетных" материалов для обустройства стен, кровли, основания, какие планируются окна, двери.

Уже на этапе проектирования дома или здания, а так же для подбора систем отопления, вентиляции, кондиционирования необходимо знать тепловые потери здания.

Расчет теплопотерь на вентиляцию мы часто используем в своей практике для расчета экономической целесообразности модернизации и автоматизации системы вентиляции / кондиционирования, т.к. расчет тепловых потерь на вентиляцию дает ясное представление о выгодах и сроке окупаемости вложенных в энергосберегающие мероприятия (автоматизация, использование рекуперации, утепления воздуховодов, частотных регуляторов) средств.

Расчет тепловых потерь здания

Это основа для грамотного подбора мощности отопительного оборудования (котла, бойлера) и отопительных приборов

Основные тепловые потери здания обычно приходятся на крышу, стены, окна и полы. Достаточно большая часть тепла покидает помещения через систему вентиляции.

Рис. 1 Теплопотери здания

Главные факторы влияющие на теплопотери в здании - разница температур в помещении и на улице (чем больше разница, тем больше телопотери) и теплоизоляционные свойства ограждающих конструкций (фундамент, стены, перекрытия, окна, кровля).

Рис.2 Тепловизионная съемка тепловых потерь здания

Материалы ограждающих конструкций препятствуют проникновению тепла помещений наружу зимой и проникновению жары в помещения летом, потому как подбираемые материалы должны обладать определенными теплоизоляционными свойствами, которые обозначают величиной, называемой - сопротивление теплопередаче.

Полученная величина покажет, каков будет реальный перепад температур при прохождении определенного количества тепла через 1м² конкретной ограждающей конструкции, а также сколько тепла уйдет через 1м² при определенном перепаде температур.

#image.jpgКак делается расчет тепловых потерь

При расчете тепловых потерь здания в основном нас будет интересовать все наружные ограждающие конструкции и расположение внутренних перегородок.

Для расчета тепловых потерь по кровле также необходимо учитывать форму кровли и наличие воздушного зазора. Так же есть свои нюансы при тепловом расчете пола помещения.

Чтобы получить максимально точное значение тепловых потерь здания необходимо учесть абсолютно все ограждающие поверхности (фундамент, перекрытия, стены, кровля), составляющие их материалы и толщину каждого слоя, а так же положение здания относительно сторон света и климатические условия в данном регионе.

Чтобы заказать расчет тепловых потерь Вам необходимо заполнить наш опросной лист и мы в самое ближайшее время (не более 2-х рабочих дней) направим на указанный почтовый адрес наше коммерческое предложение.

Состав работ по расчету тепловых нагрузок здания

Основной состав документации по расчету тепловой нагрузки здания:

  • расчет тепловых потерь здания
  • расчет тепловых потерь на вентиляцию и инфильтрацию
  • разрешительная документация
  • сводная таблица тепловых нагрузок

Стоимость расчета тепловых нагрузок здания

Стоимость услуг по расчету тепловых нагрузок здания не имеет единой расценки, цена на расчет зависит от многих факторов:

  • отапливаемая площадь;
  • наличия проектной документации;
  • архитектурная сложность объекта;
  • состава ограждающих конструкций;
  • количества потребителей тепла;
  • разноплановость назначения помещений и т.п.

Узнать точную стоимость и заказать услугу по расчету тепловой нагрузки здания не сложно, для этого Вам достаточно отправить нам на электронную почту (форма) поэтажный план здания, заполнить небольшой опросной лист и через 1 рабочий день Вы получите на указанный Вами почтовый ящик наше коммерческое предложение.

#image.jpgПримеры стоимости расчета тепловых нагрузок

Тепловые расчеты для частного дома

Комплект документации:

- расчет тепловых потерь (покомнотно, поэтажно, инфильтрация, всего)

- расчет тепловой нагрузки на подогрев горячей воды (ГВС)

- расчет на подогрев воздуха с улицы для проветривания

Пакет тепловых документов обойдется в таком случае - 1600 грн.

К таким расчетам бонусом Вы получаете:

Реккомендации по утеплению и устранению мостиков холода

Подбор мощности основного оборудования

_____________________________________________________________________________________

Спортивный комплекс — отдельно стоящее 4-х этажное здание типовой постройки, общей площадью 2100м.кв. с большим спортзалом, подогреваемой приточной-вытяжной системой вентиляции, радиаторным отоплением, полным комплектом документации — 4200,00 грн.

_____________________________________________________________________________________

Магазин — встроенное в жилое здание помещение на 1-м этаже, общей площадью 240 м.кв. из них 65 м.кв. складские помещения, без подвала, радиаторное отопление, подогреваемая приточно-вытяжная вентиляция с рекуперацией — 2600,00 грн.

______________________________________________________________________________________

Сроки выполнения работ по расчету тепловых нагрузок

Срок выполнения работ по расчету тепловых нагрузок здания в основном зависит от следующих составляющих:

  • общая отапливаемая площадь помещений или здания
  • архитектурная сложность объекта
  • сложность или многослойность ограждающих конструкций
  • количество потребителей тепла: отопление, вентиляция, ГВС, другое
  • многофункциональность помещений (склад, офисы, торговый зал, жилое и т.п.)
  • организация узла коммерческого учета тепловой энергии
  • полноты наличия документации (проект отопления , вентиляции, исполнительные схемы по отоплению, вентиляции и т.п.)
  • разноплановость использования материалов ограждающих конструкций при строительстве
  • сложность системы вентиляции (рекуперация, АСУ, зонное регулирование температур)

В большинстве случаев для здания общей площадью не более 2000 м.кв. Срок расчета тепловых нагрузок здания составляет от 5 до 21 рабочих дней в зависимости от вышеперечисленных характеристик здания, предоставленной документации и инженерных систем.

Согласование расчета тепловых нагрузок в тепловых сетях

После выполнения всех работ по расчету тепловых нагрузок и сбора всех необходимых документов подходим к финишному, но непростому вопросу о согласовании расчета тепловых нагрузок в городских тепловых сетях. Процесс этот «классический» пример общения с государственной структурой, примечателен массой интересных новшеств, уточнений, взглядов, интересов абонента (клиента) или представителя подрядной организации (взявшей на себя обязательства по согласованию расчета тепловых нагрузок в теплосетях) с представителями городских тепловых сетей. В общем процесс часто непростой, но преодолимый.

Перечень предоставляемой документации для согласования примерно выглядит так:

  • Заявление (пишется непосредственно в тепловых сетях);
  • Расчет тепловых нагрузок (в полном объеме);
  • Лицензия, перечень лицензированных работ и услуг подрядной организации выполняющей расчеты;
  • Техпаспорт на здание или помещение;
  • Право устанавливающая документация на право собственности объектом и др.

Обычно за срок согласования расчета тепловых нагрузок принимается — 2 недели (14 рабочих дней) при условии сдачи документации в полном объеме и необходимом виде.

Услуги по расчету тепловых нагрузок здания и сопутствующих задач

При заключении или переоформлении договора о поставке тепла от городских тепловых сетей или оформления и устройства узла коммерческого учета тепла, тепловые сети ставят в известность владельца здания (помещений) о необходимости:
  • получить технические условия (ТУ);
  • предоставить расчет тепловой нагрузки здания на согласование;
  • проект на систему отопления;
  • проект на систему вентиляции;
  • и др.

Предлагаем свои услуги по проведению необходимых расчетов, проектированию систем отопления, вентиляции и последующих согласований в городских тепловых сетях и др. контролирующих органах.

Вы сможете заказать как отдельный документ, проект или расчет, так и оформление всех необходимых документов «под ключ » с любого этапа.

Обсудить тему и оставить отзывы: "РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ и НАГРУЗОК" на ФОРУМЕ #image.jpg

Будем рады продолжить сотрудничество с Вами, предложив:

Поставка оборудования и материалов по оптовым ценам

Проектные работы

Монтажные / инсталляционные / пусконаладочные работы

Дальнейшее обслуживание и оказание услуг по сниженным ценам (для постоянных клиентов)

Тема этой статьи — тепловая нагрузка. Мы выясним, что представляет собой этот параметр, от чего он зависит и как может рассчитываться. Кроме того, в статье будет приведен ряд справочных значений теплового сопротивления разных материалов, которые могут понадобиться для расчета.

Что это такое

Термин, в сущности, интуитивно-понятный. Под тепловой нагрузкой подразумевается то количество тепловой энергии, которое необходимо для поддержания в здании, квартире или отдельном помещении комфортной температуры.

Максимальная часовая нагрузка на отопление, таким образом – это, то количество тепла, которое может потребоваться для поддержания нормированных параметров в течение часа в наиболее неблагоприятных условиях.

Факторы

Итак, что влияет на потребность здания в тепле?

  • Материал и толщина стен. Понятно, что стена в 1 кирпич (25 сантиметров) и стена из газобетона под 15-сантиметровой пенопластовой шубой пропустят ОЧЕНЬ разное количество тепловой энергии.
  • Материал и структура кровли. Плоская крыша из железобетонных плит и утепленный чердак тоже будут весьма заметно различаться по теплопотерям.
  • Вентиляция — еще один важный фактор. Ее производительность, наличие или отсутствие системы рекуперации тепла влияют на то, сколько тепла теряется с отработанным воздухом.
  • Площадь остекления. Через окна и стеклянные фасады теряется заметно больше тепла, чем через сплошные стены.

Однако: тройные стеклопакеты и стекла с энергосберегающим напылением уменьшают разницу в несколько раз.

  • Уровень инсоляции в вашем регионе, степень поглощения солнечного тепла внешним покрытием и ориентация плоскостей здания относительно сторон света. Крайние случаи — дом, находящийся в течение всего дня в тени других строений и дом, ориентированный черной стеной и наклонной кровлей черного цвета с максимальной площадью на юг.

  • Дельта температур между помещением и улицей определяет тепловой поток через ограждающие конструкции при постоянном сопротивлении теплопередаче. При +5 и -30 на улице дом будет терять разное количество тепла. Уменьшит, разумеется, потребность в тепловой энергии и снижение температуры внутри здания.
  • Наконец, в проект часто приходится закладывать перспективы дальнейшего строительства . Скажем, если текущая тепловая нагрузка равна 15 киловаттам, но в ближайшем будущем планируется пристроить к дому утепленную веранду — логично приобрести с запасом по тепловой мощности.

Распределение

В случае водяного отопления пиковая тепловая мощность источника тепла должна быть равна сумме тепловой мощности всех отопительных приборов в доме. Разумеется, разводка тоже не должна становиться узким местом.

Распределение отопительных приборов по помещениям определяется несколькими факторами:

  1. Площадью комнаты и высотой ее потолка;
  2. Расположением внутри здания. Угловые и торцевые помещения теряют больше тепла, чем те, которые расположены в середине дома.
  3. Удаленностью от источника тепла. В индивидуальном строительстве этот параметр означает удаленность от котла, в системе центрального отопления многоквартирного дома — тем, подключена батарея к стояку подачи или обратки и тем, на каком этаже вы живете.

Уточнение: в домах с нижним розливом стояки соединяются попарно. На подающем — температура убывает при подъеме с первого этажа к последнему, на обратном, соответственно, наоборот.

Как распределятся температуры в случае верхнего розлива — догадаться тоже нетрудно.

  1. Желаемой температурой в помещении. Помимо фильтрации тепла через внешние стены, внутри здания при неравномерном распределении температур тоже будет заметна миграция тепловой энергии через перегородки.
  1. Для жилых комнат в середине здания — 20 градусов;
  2. Для жилых комнат в углу или торце дома — 22 градуса. Более высокая температура, среди прочего, препятствует промерзанию стен.
  3. Для кухни — 18 градусов. В ней, как правило, есть большое количество собственных источников тепла — от холодильника до электроплиты.
  4. Для ванной комнаты и совмещенного санузла нормой являются 25С.

В случае воздушного отопления тепловой поток, поступающий в отдельную комнату, определяется пропускной способностью воздушного рукава. Как правило, простейший метод регулировки — ручная подстройка положений регулируемых вентиляционных решеток с контролем температур по термометру.

Наконец, в случае, если речь идет о системе обогрева с распределенными источниками тепла (электрические или газовые конвектора, электрические теплые полы, инфракрасные обогреватели и кондиционеры) необходимый температурный режим просто задается на термостате. Все, что требуется от вас — обеспечить пиковую тепловую мощность приборов на уровне пика теплопотерь помещения.

Методики расчета

Уважаемый читатель, у вас хорошее воображение? Давайте представим себе дом. Пусть это будет сруб из 20-сантиметрового бруса с чердаком и деревянным полом.

Мысленно дорисуем и конкретизируем возникшую в голове картинку: размеры жилой части здания будут равны 10*10*3 метра; в стенах мы прорубим 8 окон и 2 двери — на передний и внутренний дворы. А теперь поместим наш дом… скажем, в город Кондопога в Карелии, где температура в пик морозов может опуститься до -30 градусов.

Определение тепловой нагрузки на отопление может быть выполнено несколькими способами с разной сложностью и достоверностью результатов. Давайте воспользуемся тремя наиболее простыми.

Способ 1

Действующие СНиП предлагают нам простейший способ расчета. На 10 м2 берется один киловатт тепловой мощности. Полученное значение умножается на региональный коэффициент:

Инструкция по расчету с использованием этого метода неимоверно проста:

  1. Площадь дома равна 10*10=100 м2.
  2. Базовое значение тепловой нагрузки равно 100/10=10 КВт.
  3. Умножаем на региональный коэффициент 1,3 и получаем 13 киловатт тепловой мощности, необходимых для поддержания комфорта в доме.

Однако: если уж пользоваться столь простой методикой, лучше сделать запас как минимум в 20% для компенсации погрешностей и экстремальных холодов. Собственно, будет показательным сравнить 13 КВт со значениями, полученными другими способами.

Способ 2

Понятно, что при первом методе расчета погрешности будут огромными:

  • Высота потолков в разных строениях сильно различается. С учетом того, что греть нам приходится не площадь, а некий объем, причем при конвекционном отоплении теплый воздух собирается под потолком — фактор важный.
  • Окна и двери пропускают больше тепла, чем стены.
  • Наконец, будет явной ошибкой стричь под одну гребенку городскую квартиру (причем независимо от ее расположения внутри здания) и частный дом, у которого внизу, вверху и за стенами не теплые квартиры соседей, а улица.

Что же, скорректируем метод.

  • За базовое значение возьмем 40 ватт на кубометр объема помещения.
  • На каждую дверь, ведущую на улицу, добавим к базовому значению 200 ватт. На каждое окно — 100.
  • Для угловых и торцевых квартир в многоквартирном доме введем коэффициент 1,2 — 1,3 в зависимости от толщины и материала стен. Его же используем для крайних этажей в случае, если подвал и чердак плохо утеплены. Для частного дома значение умножим и вовсе на 1,5.
  • Наконец, применим те же региональные коэффициенты, что и в предыдущем случае.

Как там поживает наш домик в Карелии?

  1. Объем равен 10*10*3=300 м2.
  2. Базовое значение тепловой мощности равно 300*40=12000 ватт.
  3. Восемь окон и две двери. 12000+(8*100)+(2*200)=13200 ватт.
  4. Частный дом. 13200*1,5=19800. Мы начинаем смутно подозревать, что при подборе мощности котла по первой методике пришлось бы померзнуть.
  5. А ведь еще остался региональный коэффициент! 19800*1,3=25740. Итого — нам нужен 28-киловаттный котел. Разница с первым значением, полученным простым способом — двукратная.

Однако: на практике такая мощность потребуется лишь в несколько дней пика морозов. Зачастую разумным решением будет ограничить мощность основного источника тепла меньшим значением и купить резервный нагреватель (к примеру, электрокотел или несколько газовых конвекторов).

Способ 3

Не обольщайтесь: описанный способ тоже весьма несовершенен. Мы весьма условно учли тепловое сопротивление стен и потолка; дельта температур между внутренним и внешним воздухом тоже учтена лишь в региональном коэффициенте, то есть весьма приблизительно. Цена упрощения расчетов — большая погрешность.

Вспомним: для поддержания внутри здания постоянной температуры нам нужно обеспечить количество тепловой энергии, равное всем потерям через ограждающие конструкции и вентиляцию. Увы, и здесь нам придется несколько упростить себе расчеты, пожертвовав достоверностью данных. Иначе полученные формулы должны будут учитывать слишком много факторов, которые трудно измерить и систематизировать.

Упрощенная формула выглядит так: Q=DT/R, где Q — количество тепла, которое теряет 1 м2 ограждающей конструкции; DT — дельта температур между внутренней и внешней температурами, а R — сопротивление теплопередаче.

Заметьте: мы говорим о потерях тепла через стены, пол и потолок. В среднем еще около 40% тепла теряется через вентиляцию. Ради упрощения расчетов мы подсчитаем теплопотери через ограждающие конструкции, а потом просто умножим их на 1,4.

Дельту температур измерить легко, но где брать данные о термическом сопротивлении?

Увы — только из справочников. Приведем таблицу для некоторых популярных решений.

  • Стена в три кирпича (79 сантиметров) обладает сопротивлением теплопередаче в 0,592 м2*С/Вт.
  • Стена в 2,5 кирпича — 0,502.
  • Стена в два кирпича — 0,405.
  • Стена в кирпич (25 сантиметров) — 0,187.
  • Бревенчатый сруб с диаметром бревна 25 сантиметров — 0,550.
  • То же, но из бревен диаметром 20 см — 0,440.
  • Сруб из 20-сантиметрового бруса — 0,806.
  • Сруб из брус толщиной 10 см — 0,353.
  • Каркасная стена толщиной 20 сантиметров с утеплением минеральной ватой — 0,703.
  • Стена из пено- или газобетона при толщине 20 сантиметров — 0,476.
  • То же, но с толщиной, увеличенной до 30 см — 0,709.
  • Штукатурка толщиной 3 сантиметра — 0,035.
  • Потолочное или чердачное перекрытие — 1,43.
  • Деревянный пол — 1,85.
  • Двойная дверь из дерева — 0,21.

А теперь вернемся к нашему дому. Какими параметрами мы располагаем?

  • Дельта температур в пик морозов будет равной 50 градусам (+20 внутри и -30 снаружи).
  • Теплопотери через квадратный метр пола составят 50/1,85 (сопротивление теплопередачи деревянного пола) =27,03 ватта. Через весь пол — 27,03*100=2703 ватта.
  • Посчитаем потери тепла через потолок: (50/1,43)*100=3497 ватт.
  • Площадь стен равна (10*3)*4=120 м2. Поскольку у нас стены выполнены из 20-санттиметрового бруса, параметр R равен 0,806. Потери тепла через стены равны (50/0,806)*120=7444 ватта.
  • Теперь сложим полученные значения: 2703+3497+7444=13644. Именно столько наш дом будет терять через потолок, пол и стены.

Заметьте: чтобы не высчитывать доли квадратных метров, мы пренебрегли разницей в теплопроводности стен и окон с дверьми.

  • Затем добавим 40% потерь на вентиляцию. 13644*1,4=19101. Согласно этому расчету нам должно хватить 20-киловаттного котла.

Выводы и решение проблем

Как видите, имеющиеся способы расчета тепловой нагрузки своими руками дают весьма существенные погрешности. К счастью, избыточная мощность котла не повредит:

  • Газовые котлы на уменьшенной мощности работают практически без падения КПД, а конденсационные так и вовсе выходят на наиболее экономичный режим при неполной нагрузке.
  • То же самое касается соляровых котлов.
  • Электрическое нагревательное оборудование любого типа всегда имеет КПД, равный 100 процентам (разумеется, это не относится к тепловым насосам). Вспомните физику: вся мощность, не потраченная на совершения механической работы (то есть перемещения массы против вектора гравитации) в конечном счете, расходуется на нагрев.

Единственный тип котлов, для которых работа на мощности меньше номинальной противопоказана — твердотопливные. Регулировка мощности в них осуществляется довольно примитивным способом — ограничением притока воздуха в топку.

Что в результате?

  1. При недостатке кислорода топливо сгорает не полностью. Образуется больше золы и сажи, которые загрязняют котел, дымоход и атмосферу.
  2. Следствие неполного сгорания — падение КПД котла. Логично: ведь часто топлива покидает котел до того, как сгорела.

Однако и здесь есть простой и изящный выход — включение в схему отопления теплоаккумулятора. Теплоизолированный бак емкостью до 3000 литров подключается между подающим и обратным трубопроводом, размыкая их; при этом формируется малый контур (между котлом и буферной емкостью) и большой (между емкостью и отопительными приборами).

Как работает такая схема?

  • После растопки котел работает на номинальной мощности. При этом за счет естественной или принудительной циркуляции его теплообменник отдает тепло буферной емкости. После того, как топливо прогорело, циркуляция в малом контуре останавливается.
  • Следующие несколько часов теплоноситель движется по большому контуру. Буферная емкость постепенно отдает накопленное тепло радиаторам или водяным теплым полам.

Заключение

Как обычно, некоторое количество дополнительной информации о том, как еще может быть рассчитана тепловая нагрузка, вы найдете в видео в конце статьи. Теплых зим!

Тепловой расчёт системы отопления большинству представляется легким и не требующим особого внимания занятием. Огромное количество людей считают, что те же радиаторы нужно выбирать исходя из только площади помещения: 100 Вт на 1 м.кв. Всё просто. Но это и есть самое большое заблуждение. Нельзя ограничиваться такой формулой. Значение имеет толщина стен, их высота, материал и многое другое. Конечно, нужно выделить час-другой, чтобы получить нужные цифры, но это по силам каждому желающему.

Исходные данные для проектирования системы отопления

Чтобы произвести расчет расхода тепла на отопление, нужен, во-первых, проект дома.

План дома позволяет получить практически все исходные данные, которые нужны для определения теплопотерь и нагрузки на отопительную систему

Во-вторых, понадобятся данные о расположении дома по отношению к сторонам света и районе строительства – климатические условия в каждом регионе свои, и то, что подходит для Сочи, не может быть применено к Анадырю.

В-третьих, собираем информацию о составе и высоте наружных стен и материалах, из которых изготовлены пол (от помещения до земли) и потолок (от комнат и наружу).

После сбора всех данных можно приступать к работе. Расчет тепла на отопление можно выполнить по формулам за один-два часа. Можно, конечно, воспользоваться специальной программой от компании Valtec.

Для расчёта теплопотерь отапливаемых помещений, нагрузки на систему отопления и теплоотдачи от отопительных приборов в программу достаточно внести только исходные данные. Огромное количество функций делают её незаменимым помощником и прораба, и частного застройщика

Она значительно всё упрощает и позволяет получить все данные по тепловым потерям и гидравлическому расчету системы отопления.

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

Мк=1,2* Тп , где:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах - всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления. При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах. В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:

  • До -10С – 0,7;
  • -10С – 0,8;
  • -15C - 0,90;
  • -20C - 1,00;
  • -25C - 1,10;
  • -30C - 1,20;
  • -35C - 1,30.

Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:

  • четыре стены – 1,33;%
  • три стены – 1,22;
  • две стены – 1,2;
  • одна стена – 1.

Хорошо, если к нему пристроен гараж, баня или что-то ещё. А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.

Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.

Что касается высоты стен, то значения будут такими:

  • 4,5 м – 1,2;
  • 4,0 м – 1,15;
  • 3,5 м – 1,1;
  • 3,0 м – 1,05;
  • 2,5 м – 1.

Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).

Итоговая формула для расчёта коэффициента тепловых потерь:

Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7 .

Коэффициент УДтп равен 100 Ватт/м2.

Разбор расчетов на конкретном примере

Дом, для которого будем определять нагрузку на систему отопления, имеет двойные стеклопакеты (К1 =1), пенобетонные стены с повышенной теплоизоляцией (К2= 1), три из которых выходят наружу (К5=1,22). Площадь окон составляет 23% от площади пола (К3=1,1), на улице около 15С мороза (К4=0,9). Чердак дома холодный (К6=1), высота помещений 3 метра (К7=1,05). Общая площадь составляет 135м2.

Пт = 135*100*1*1*1,1*0,9*1,22*1*1,05=17120,565 (Ватт) или Пт=17,1206 кВт

Мк=1,2*17,1206=20,54472 (кВт).

Расчёт нагрузки и теплопотерь можно выполнить самостоятельно и достаточно быстро. Нужно всего потратить пару часов на приведение в порядок исходных данных, а потом просто подставить значения в формулы. Цифры, которые вы в результате получите помогут определиться с выбором котла и радиаторов.

В домах, которые сдавались в эксплуатацию в последние годы, обычно данные правила выполнены, поэтому расчет отопительной мощности оборудования проходит на основе стандартных коэффициентов. Индивидуальный расчет может проводиться по инициативе собственника жилья или коммунальной структуру, занимающейся поставкой тепла. Это случается при стихийной замене радиаторов отопления, окон и других параметров.

В квартире, обслуживаемой коммунальным предприятием, расчет тепловой нагрузки может быть проведен только при передаче дома с целью отслеживания параметров СНИП в принимаемом на баланс помещении. В противном случае это делает владелец квартиры, чтобы рассчитать свои теплопотери в холодное время года и устранить недостатки утепления – использовать теплоизолирующую штукатурку, поклеить утеплитель, монтировать на потолках пенофол и установить металлопластиковые окна с пятикамерным профилем.

Расчет тепловых утечек для коммунальной службы с целью открытия спора, как правило, не дает результата. Причина в том, что существуют стандарты теплопотерь. Если дом введен в эксплуатацию, то требования выполнены. При этом приборы отопления соответствуют требованиями СНИП. Замена батарей и отбор большего количества тепла запрещен, так как радиаторы установлены по утвержденным строительным стандартам.

Частные дома отапливаются автономными системами, что при этом расчет нагрузки осуществляется для соблюдения требований СНИП, и коррекции отопительной мощности проводится в совокупности с работами по уменьшению теплопотерь.

Расчеты можно сделать вручную, используя несложную формулу или калькулятор на сайте. Программа помогает рассчитать необходимую мощность системы отопления и утечки тепла, характерные для зимнего периода. Расчеты осуществляются для определенного теплового пояса.

Основные принципы

Методика включает в себя целый ряд показателей, которые в совокупности позволяют оценить уровень утепления дома, соответствие стандартам СНИП, а также мощность котла отопления. Как это работает:

По объекту проводится индивидуальный или усредненный расчет. Основной смысл проведения подобного обследования состоит в том, что при хорошем утеплении и малых утечках тепла в зимний период можно использовать 3 кВт. В здании той же площади, но без утепления, при низких зимних температурах потребляемая мощность составит до 12 кВт. Таким образом, тепловую мощность и нагрузку оценивают не только по площади, но и по теплопотерям.

Основные теплопотери частного дома:

  • окна – 10-55%;
  • стены – 20-25%;
  • дымоход – до 25%;
  • крыша и потолок – до 30%;
  • низкие полы – 7-10%;
  • температурный мост в углах – до 10%

Данные показатели могут варьироваться в лучшую и худшую сторону. Их оценивают в зависимости от типов установленных окон, толщины стен и материалов, степени утепления потолка. Например, в плохо утепленных зданиях теплопотери через стены могут достигать 45% процентов, в этом случае к системе отопления применимо выражение «топим улицу». Методика и
калькулятор помогут оценить номинальные и расчетные значения.

Специфика расчетов

Данную методику еще можно встретить под названием «теплотехнический расчет». Упрощенная формула имеет следующий вид:

Qt = V × ∆T × K / 860, где

V – объем помещения, м³;

∆T – максимальная разница в помещении и вне помещения, °С;

К – оценочный коэффициент тепловых потерь;

860 – коэффициент перехода в кВт/час.

Коэффициент тепловых потерь К зависит от строительной конструкции, толщины и теплопроводности стен. Для упрощенных расчетов можно использовать следующие параметры:

  • К = 3,0-4,0 – без теплоизоляции (неутепленное каркасное или металлическое строение);
  • К = 2,0-2,9 – малая теплоизоляция (кладка в один кирпич);
  • К = 1,0-1,9 – средняя теплоизоляция (кирпичная кладка в два кирпича);
  • К = 0,6-0,9 – хорошая теплоизоляция по стандарту.

Данные коэффициенты усредненные и не позволяют оценить теплопотери и тепловую нагрузку на помещение, поэтому рекомендуем воспользоваться онлайн-калькулятором.

Нет записей по теме.

При будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

Назначение здания: жилое или промышленное.

Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

Наличие комнат специального назначения (баня, сауна и пр.).

Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

Для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных - количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

Расход тепла, взятый по максимуму за один час работы системы отопления,

Максимальный поток тепла, исходящий от одного радиатора,

Общие затраты тепла в определенный период (чаще всего - сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях - в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Основные способы расчета

На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.

Три основных

  1. Для расчета берутся укрупненные показатели.
  2. За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет идущего на прогрев внутреннего объема воздуха.
  3. Рассчитываются и суммируются все входящие в систему отопления объекты.

Один примерный

Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула - Q от = q 0 * a * V H * (t ЕН - t НРО), где:

  • q 0 - удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a - поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • V H - объем, рассчитанный по внешним плоскостям.

Пример простого расчета

Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.

Предположим, что жилой дом находится в Архангельской области, а его площадь - 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.

Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 - 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

Высота потолков (стандартная - 2,7 м),

Тепловая мощность (на кв. м - 100 Вт),

Одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

Q т = 100 Вт/м 2 × S(помещения)м 2 × q 1 × q 2 × q 3 × q 4 × q 5 × q 6 × q 7 , где:

  • q 1 - тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q 2 - стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q 3 - соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% - 0.9, 10% = 0.8);
  • q 4 - уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
  • q 5 - число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q 6 - тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q 7 - высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

Примерный расчет

Условия таковы. Минимальная температура в холодное время года - -20 о С. Комната 25 кв. м с тройным стеклопакетом, двустворчатыми окнами, высотой потолков 3.0 м, стенами в два кирпича и неотапливаемым чердаком. Расчет будет следующий:

Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.

Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т 1 - Т 2) / 1000, где:

  • V - количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
  • Т 1 - число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название - энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
  • Т 2 - температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом - 15.
  • 1 000 - коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

Q от = α * q о * V * (t в - t н.р) * (1 + K н.р) * 0,000001, где


Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Все чаще, чтобы повысить эффективность работы отопительной системы, прибегают к строения.

Работы эти проводят в темное время суток. Для более точного результата нужно соблюдать разницу температур между помещением и улицей: она должна быть не менее в 15 о. Лампы дневного освещения и лампы накаливания выключаются. Желательно убрать ковры и мебель по максимуму, они сбивают прибор, давая некоторую погрешность.

Обследование проводится медленно, данные регистрируются тщательно. Схема проста.

Первый этап работ проходит внутри помещения. Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.

Второй этап - обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап - обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png