Внимание!!!

У вас отключены JavaScript и Cookies!

Для полноценной работы сайта Вам необходимо включить их!

Активные магнитные подшипники

Активные магнитные подшипники (АМП)
(производство компании «S2M Société de Mécanique Magnétique SA», 2, rue des Champs, F-27950 St.Marcel, Франция)

Основные области применения активных магнитных подшипников - в составе турбомашин. Концепция отсутствия масла в компрессорах и турбодетандерах позволяет достичь высочайшей надежности также и за счет отсутствия износа узлов машины.

Активные магнитные подшипники (АМП) находят все большее применение во многих отраслях промышленности. Для улучшения динамических характеристик, увеличения надежности и КПД применяются бесконтактные активные магнитные подшипники.

Принцип действия магнитных подшипников основывается на эффекте левитации в магнитном поле. Вал в таких подшипниках в прямом смысле слова висит в мощном магнитном поле. Система датчиков постоянно отслеживает положение вала, и подает сигналы на позиционные магниты статора, корректируя силу притяжения с той или иной стороны.


1 . Общее описание системы АМП

Активный магнитный подвес состоит из 2-х отдельных частей:

Подшипник;

Электронная система управления

Магнитный подвес состоит из электромагнитов (силовых катушек 1 и 3), притягивающих ротор (2).

Компоненты АМП

1. Радиальный подшипник

Ротор радиального подшипника, оснащенный ферромагнитными пластинами, удерживается магнитными полями, создаваемыми электромагнитами, расположенными на статоре.

Ротор переводится в подвешенное состояниев центре, не соприкасаясь со статором. Положение ротора контролируется индуктивными датчиками. Они обнаруживают любое отклонение относительно номинального положения и подают сигналы, которые управляют током в электромагнитах для возвращения ротора в его номинальное положение.

4 катушки, размещенные по осям V и W , и смещенные под углом 45° от осей X и Y , удерживают ротор в центре статора. Нет контакта между ротором и статором. Радиальный зазор 0,5-1мм; осевой зазор 0,6-1,8 мм.

2. Упорный подшипник

Упорный подшипник работает по такому же принципу. Электромагниты в форме несъемного кольца располагаются по обеим сторонам смонтированного на валу упорного диска. Электромагниты закрепляются на статоре. Упорный диск насаживается на ротор (например, методом горячей посадки). Осевые датчики положения, как правило, расположены на концах вала.


3. Вспомогательные (страховочные)

подшипники

Вспомогательные подшипники используются для поддерживания ротора во время остановки машины и в случае отказа системы управления АМП. В нормальном рабочем режиме данные подшипники остаются в неподвижном состоянии. Расстояние между вспомогательными подшипниками и ротором, как правило, равно половине воздушного зазора, однако, при необходимости, оно может быть уменьшено. Вспомогательные подшипники это, главным образом, шариковые подшипники с твердой смазкой, но могут использоваться и другие типы подшипников, такие, как подшипники скольжения.

4. Электронная система управления


Электронная система управления контролирует положение ротора, модулируя ток, который проходит по электромагнитам в зависимости от значений сигнала датчиков положения.

5. Электронная система обработки сигналов

Сигнал, посылаемый датчиком положения, сравнивается с эталонным сигналом, который соответствует номинальному положению ротора. Если эталонный сигнал равен нулю, номинальное положение соответствует центру статора. При изменении эталонного сигнала можно переместить номинальное положение на половину воздушного зазора. Сигнал отклонения пропорционален разнице между номинальным положением и положением ротора в данный момент. Этот сигнал передается на процессор, который в свою очередь направляет корректирующий сигнал на усилитель мощности.

Отношение выходного сигнала к сигналу отклонения определяется передаточной функцией. Передаточная функция выбирается для поддержания ротора с максимальной точностью в его номинальном положении и для его быстрого и гладкого возвращения в данное положение в случае помех. Передаточная функция определяет жесткость и амортизацию магнитного подвеса.

6. Усилитель мощности

Данное устройство поставляет на электромагниты подшипников ток, необходимый для создания магнитного поля, которое воздействует на ротор. Мощность усилителей зависит от максимальной силы электромагнита, воздушного зазора и времени реакции системы автоматического управления (т.е. скорости, при которой эта сила должна быть изменена, когда она сталкивается с помехой). Физические размеры электронной системы не имеют прямой связи с весом ротора машины, они, скорее всего, связаны отношением показателя между величиной помехи и весом ротора. Следовательно, небольшая оболочка будет достаточной для большого механизма, оснащенного относительно тяжелым ротором, подвергаемым небольшим помехам. В то же время механизм, подверженный бóльшим помехам, должен быть оснащен большим электрошкафом.

2. Некоторые характеристики АМП

Воздушный зазор

Воздушный зазор - это пространство между ротором и статором. Величина зазора, обозначаемая е , зависит от диаметра D ротора или подшипника.

Как правило, обычно используют следующие значения:

D (мм)

е (мм)

< 100

0,3 - 0,6

100 - 1 000

0,6 - 1,0

Скорость вращения

Максимальная скорость вращения радиального магнитного подшипника зависит только от характеристики электромагнитных пластин ротора, а именно сопротивления пластин центробежной силе. При использовании стандартных пластин можно достичь значений окружной скорости до 200 м/с. Скорость вращения же осевого магнитного подшипника ограничена сопротивлением литой стали упорного диска. Окружная скорость в 350 м/с может быть достигнута при использовании стандартного оборудования.

Нагрузка АМП зависит от используемого ферромагнитного материала, диаметра ротора и продольной длины статора подвеса. Максимальная удельная нагрузка АМП, изготовленного из стандартного материала, составляет 0,9 Н/см². Эта максимальная нагрузка является меньшей по сравнению с соответствующими значениями классических подшипников, однако, высокая допускаемая окружная скорость позволяет увеличивать диаметр вала так, чтобы получить максимально большую поверхность контакта и, следовательно, такой же предел нагрузки, как и для классического подшипника без необходимости увеличения его длины.

Потребление энергии

Активные магнитные подшипники имеют очень незначительный расход энергии. Данный расход энергии происходит от потерь на гистерезис, вихревые токи (токи Фуко) в подшипнике (мощность, которая взята на валу) и теплопотерь в электронной оболочке. АМП потребляют в 10-100 раз меньше энергии, чем классические для механизмов сопоставимых размеров. Потребление энергии электронной системой управления, для которой необходим внешний источник тока, также является очень низким. Аккумуляторы используются для поддержания рабочего состояния подвеса в случае отказа сети - в этом случае они включаются автоматически.

Окружающие условия

АМП могут устанавливаться непосредственно в среде эксплуатации, полностью исключая необходимость соответствующих муфт и устройств, а также барьеров для термоизоляции. На сегодняшний день активные магнитные подшипники работают в самых разнообразных условиях: вакуум, воздух, гелий, углеводород, кислород, морская вода и гексафторид урания, а также при температурах от - 253 ° С до + 450 ° С.

3. Преимущества магнитных подшипников

  • Безконтактные / безжидкостные
    - отсутствие механического трения
    - отсутствие масла
    - повышение периферийной скорости
  • Повышение надежности
    - эксплуатационная надежность шкафа управления > 52 000 ч.
    - эксплуатационная надежность ЭМ подшипников > 200 000 ч.
    - почти полное отсутствие профилактического обслуживания
  • Меньшие размеры турбомашины
    - отсутствие системы смазки
    - меньшие размеры (P = K*L*D²*N)
    - меньший вес
  • Мониторинг
    - нагрузка подшипников
    - нагрузка турбомашины
  • Регулируемые параметры
    - активная система управления магнитными подшипниками
    - жесткость (меняется в зависимости от динамики ротора)
    - демпфирование (меняется в зависимости от динамики ротора)
  • Работа без уплотнений (компрессор и привод в едином корпусе)
    - подшипники в технологическом газе
    - широкий диапазон рабочих температур
    - оптимизация динамики ротора за счет его укорачивания

Неоспоримым преимуществом магнитных подшипников является полное отсутствие трущихся поверхностей, а, следовательно, износа, трения, а главное отсутствие вылета из рабочей зоны частиц, образующихся в процессе работы обычных подшипников.

Активные магнитные подшипники отличает высокая грузоподъемность и механическая прочность. Их можно использовать при высоких скоростях вращения, а также в безвоздушном пространстве и при различных температурах.

Материалы предоставлены компанией “S2M”, Франция ( www.s2m.fr).

Ниже рассмотрена конструкция магнитного подвеса Николаева, который утверждал, что можно обеспечить левитацию постоянного магнита без упора. Показан опыт с проверкой работы данной схемы.

Сами неодимовые магниты продаются в этом китайском магазине .

Магнитная левитация без затрат энергии – фантастика или реальность? Можно ли сделать простейший магнитный подшипник? И что же на самом деле показал Николаев в начале 90-х? Давайте рассмотрим эти вопросы. Каждый, кто когда-либо держал в руках пару магнитов, наверняка задавался вопросом: “Почему не получается заставить один магнит парить над другим без посторонней поддержки? Обладая таким уникальным , как постоянное магнитное поле, они отталкиваются одноименными полюсами совершенно без затрат энергии. Это великолепная основа для технического творчества! Но не все так просто.

Еще в 19 веке британский ученый Earnshaw доказал, что используя только постоянные магниты, невозможно устойчиво удерживать левитирующий объект в гравитационном поле. Частичная левитация или, иначе говоря, псевдолевитация, возможна лишь при механической поддержке.

Как сделать магнитный подвес?

Простейший магнитный подвес можно сделать за пару минут. Понадобятся 4 магнита в основании,чтобы сделать опорную базу, и пара магнитов, закрепленных на самом левитирующим объекте, в качестве которого можно взять, например, фломастер. Тем самым мы получили парящую конструкцию с неустойчивым равновесием по обе стороны оси фломастера. Стабилизировать положение поможет обычный механический упор.

Простейший магнитный подвес с упором

Эту конструкцию можно настроить таким образом, чтобы основной вес левитирующего объекта ложился на опорные магниты, а боковая сила упора была настолько мала, что механическое трение там практически стремится к нулю.

Теперь было бы логично попытаться заменить механический упор на магнитный, чтобы добиться абсолютной магнитной левитации. Но, к сожалению, сделать это не получается. Возможно, дело в примитивности конструкции.

Альтернативная конструкция.

Рассмотрим более надежную систему такого подвеса. В качестве статора используются кольцевые магниты, сквозь которые проходит ось вращения подшипника. Оказывается, в определенной точке кольцевые магниты обладают свойством стабилизировать другие магниты вдоль своей оси намагниченности. А в остальном имеем то же самое. Нет устойчивого равновесия вдоль оси вращения. Это и приходится устранять регулируемым упором.

Рассмотрим конструкцию более жесткую.

Возможно здесь удастся стабилизировать ось при помощи упорного магнита. Но и здесь так и не удалось добиться стабилизации. Возможно, упорные магниты нужно размещать с обеих сторон от оси вращения подшипника. В интернете давно обсуждается видео с магнитным подшипником Николаева. Качество изображения не позволяет детально рассмотреть эту конструкцию и складывается впечатление что ему удалось добиться устойчивой левитации исключительно при помощи постоянных магнитов. При этом схема устройства идентична показанной выше. Добавлены лишь второй магнитный упор.

Проверка конструкции Геннадия Николаева.

Сначала посмотрите полное видео, на котором показан магнитный подвес Николаева. Этот ролик заставил сотни энтузиастов в России и за рубежом попытаться сделать конструкцию, которая смогла бы создать левитацию без упора. Но, к сожалению, в настоящее время не создана действующая конструкция такого подвеса. Это заставляет усомниться в модели Николаева.

Для проверки была сделана точно такая-же конструкция. Кроме всех дополнений были поставлены такие же, как у Николаева, ферритовые магниты. Они слабее неодимовых и не выталкивают с такой огромной силой. Но проверка в серии экспериментов принесла только разочарование. К сожалению, и эта схема оказалась нестабильной.

Заключение.

Проблема в том что кольцевые магниты, какими бы сильными они не были, не в состоянии удержать ось подшипников в равновесии при том усилии со стороны боковых упорных магнитов, которое нужно для ее боковой стабилизации. Ось просто соскальзывают в сторону при малейшем движении. Другими словами, сила, с которой кольцевые магниты стабилизируют ось внутри себя, всегда будет меньше силы, необходимой для стабилизации оси в боковом направлении.

Так что же все-таки показал Николаев? Если более внимательно посмотреть это видео, то возникает подозрение, что при плохом качестве видео просто не видно игольчатый упор. Случайно ли Николаев не старается демонстрировать самое интересное? Не отвергается сама возможность абсолютной левитация на постоянных магнитах, закон сохранения энергии здесь не нарушается. Возможно, еще не создали такую форму магнита, которая создаст необходимую потенциальную яму, надежно удерживающую связку других магнитов в устойчивом равновесии.

Далее схема магнитного подвеса


Чертеж магнитного подвеса на постоянных магнитах

насмотревшись видео отдельных товарищей, типа таких

решил и я отметится в этой теме. на мой взгляд видео довольно безграмотное, так что вполне можно по-свистеть из партера.

перебрав в голове кучу схем, посмотрев принцип подвеса в центральной части в видео Белецкого, поняв как работает игрушка "левитрнон", пришел к простой схеме. понятно, что опорных шипа должно быть два на одной оси, сам шип выполнен из стали, а кольца жестко на оси зафиксированны. вместо цельных колец вполне можно уложить не очень большие магниты в форме призмы или цилиндра расположенные по окружности. принцип такойже как в известной игрушке "ливитрон". только вместо героскопического момента, который не дает волчку опрокинутся мы используем "распор" между жестко закрепленными на оси подставками.

ниже видео с игрушкой "ливитрон"

а здесь схема которую предлагаю я. по сути это и есть игрушка на видео выше, но как я уже говорил, ей необходимо что-то что не довало бы опорному шипу опрокинутся. в видео выше используется гироскопический момент, я использую две подставки и распор между ними.

попробуем обосновать работу это конструкции, как я её вижу:

магниты отатлкиваются, значит слабое место - нужно стабилизировать эти шипы по оси. здесь я использовал такую идею: магнит пытается вытолкнуть шип в зону с наименьшей напряженностью поля, т.к. шип имеет противоположную кольцу намагниченость и сам магнит кольцевой, где в достаточно большой области, расположенной вдоль оси, напряженность меньше чем на переферии. т.е. распределение напряженности магнитного поля по-форме напомянает стакан - в стенке напряженность максимальна, а на оси минимальна.

шип должен стабилизироваться по оси, с одновременным выталкиванием из кольцевого магнита в зону с наименьшей напряженностью поля. т.е. если таких шипа два на одной оси и кольцевые магниты жестко зафиксированны - ось должна "зависнуть".

получается, что находится в зоне с меньшей напряженностью поля наиболее энергетически выгодно.

порывшись еще в интернете нашел похожую конструкцию:

здесь тоже формируется зона с меньшей напряженностью, находится она тоже по оси между магнитами, так же используется угол. в общем идеалогия очень похожая, однако если говрить о компактном подшипнике - вариант выше выглядит лучше, однако требует магнитов специальной формы. т.е. разница между схемами в том, что я выдавливаю в зону с меньшей напряженностью опорную часть, а в схеме выше само формирование такой зоны обеспечивает положение на оси.
для наглядности сравнения я перерисовал свою схему:

по сути они зеркальны. вообще идея не нова - все они крутятся вокруг одного и того же, у меня даже есть подозрения, что автор ролика выше просто не искакал предполагаемых решений

здесь практически один в один, если конические упоры сделать не цельным, а составными - магнитопровод + кольцевой магнит, то получится моя схема. я бы даже сказал начальная неоптимизированная идея - рисунок ниже. только рисунок выше работает на "притяжение" ротора, а я изначально планировал "отталкивание"


для особо одаренных хочу заметить, данный подвес не нарушает теоремы (запрет) Ирншоу. дело в том что речь идет здесь не о чисто магнитном подвесе, без жесткой фиксации центров на оси т.е. одна ось жестко зафиксирована, ничего работать не будет. т.е. речь идет о выборе точки опоры и не более того.

на всамом деле, если посмотреть видео Белецкого, то там видно, что примерно такая конфигурация полей уже используется где не поподя, не хватает только финального штриха. конический магнитопровод распределяет "отталкивание" по двум осям, третью же ось Ирншоу велел зафиксировать иначе, я не стал спорить и жестко её зафиксировал механически. почему Белецкий не попробывал такой вариант я не знаю. фактически ему нужно два "ливитрона" - подставки зафиксировать на оси, а на волчки соединить медной трубкой.

еще можно заметить, что можно использовать наконечники из любого дастаточно сильного диамегнетика в место магнита полярности противоположной магнитному опорному кольцу. т.е. заменить связку магнит+конический магнитопровод, просто на конус из диамагнетика. фиксация на оси будет более надежной, но диамагнетики не отличаются сильным взаимодействием и нужны большие напряженности поля и большой "объем" этого поля, чтобы применять это хоть как-то. за счет того что поле аксильно равномерное относительно оси вращения, изменения магнитного поля происходить при вращении не будет т.е. подобный подшипник не создаёт противодействия вращению.

по логике вещей такой принцип должен быть применим и для подвески плазмы - пропатченная "магнитная бутылка" (пробкотрон), что же поживем - увидем.

почему я так уверен в результате? ну потому что его не может не быть:) единственно что возможно придется сделать магнитопроводы в форме конуса и чашки для более "жесткой" конфигурации поля.
ну и такжк можно найти видео с подобным подвесом:



здесь автор не использует каких-либо магнитопроводов и использует упор на иглу, как в общем-то и нужно, понимая теорему Ирншоу. но ведь кольца уже жестко закреплены на оси, значит можно распереть ось между ними, чего лего добится используя конические магнитопроводы на магнитах на оси. т.е. пока не пробили "дно" "магнитного стакана" магнитопровод все труднее впихнуть в кольцо т.к. магнитная проницаемость воздуха меньше чем магнитопровода - уменьшение воздушной прослойки приведет к возрастанию напряженности поля. т.е. одна ось жестко закреплена механически - тогда опор на иглу будет не нужен. т.е. см. самый первый рисунок.

P.S.
вот чего нашел. из сери дурная голова рукам покая не дает - автор тот еще белецкий - накручено там мама не горюй - конфигурация поля довольно сложная, более того не однородная по оси вращения т.е. при вращении буде изменение пока магнитной индукции в оси со всеми вытикающими... обратите внимание на шарик в кольцевом магните, с другой же стороны в кольцевом магните цилиндр. т.е. человек тупо испохабил принцип подвеса описанный здесь.

ну или пропаичил подвес на фотографии т.е. перцы на фото используют опор на иглу, а он в место иглы повесил шарик - ай шайтан - сработало - кто бы мог подумать (помню мне доказывали что я не правильно понимаю теорему Ирншоу), однако ума повесить два шарика и использовать всего два кольца видимо не хватает. т.е. количество магнитов в устройстве на видео можно легко сократить до 4-х, а возможно до 3-х т.е. конфигурацию с цилиндром в одном кольце и шариком в другом можно считать экспериментально доказаной работающей см. рисунок изначальной идеи. там я использовал два симитричных упора и цилинд + конус, хотя считаю что конус что часть сферы от полюса до диаметра работают одинакого.

стало быть сам упор выглядит так - это магнитопровод (т.е железный, никелевый и т.п.)в него просто

закладывается магнит-кольцо. ответнаая часть такая же, только наоборот:) и работают два упора в распоре- товарищ Ирншоу запретил рабоать по одному упору.

Многие потребители подшипников считают магнитные подшипники своеобразным "черным ящиком", хотя в промышленности их применяют довольно долго. Обычно они используются при транспортировке или подготовке природного газа, в процессах его сжижения и так далее. Часто они используются плавучими газоперерабатывающими комплексами.

Магнитные подшипники функционируют за счет магнитной левитации. Они работают благодаря силам, образующимся за счет магнитного поля. При этом поверхности между собой не контактируют, поэтому отсутствует необходимость в смазке. Данный тип подшипников способен функционировать даже в довольно жестких условиях, а именно при криогенных температурах, экстремальных показателях давления, высоких скоростях и так далее. При этом магнитные подшипники показывают высокую надежность.

Ротор радиального подшипника, который оснащен ферромагнитными пластинами, с помощью магнитных полей, создаваемых, размещенными на статоре электромагнитами, удерживается в нужной позиции. Функционирование осевых подшипников основано на таких же принципах. При этом напротив электромагнитов на роторе, находится диск, который установлен перпендикулярно к оси вращения. Позицию ротора отслеживают индукционные датчики. Данные датчики быстро определяют все отклонения от номинальной позиции, в результате чего создают сигналы, управляющие токами в магнитах. Данные манипуляции позволяют удерживать ротор в нужном положении.

Преимущества магнитных подшипников неоспоримы : они не требуют смазки, не угрожают окружающей среде, потребляют мало энергии и благодаря отсутствию соприкасающихся и трущихся частей работают продолжительное время. Кроме того магнитные подшипники обладают низким уровнем вибраций. Сегодня существуют модели со встроенной системой мониторинга и контроля состояния. На данный момент магнитные подшипники в основном применяются в турбокомпрессорах и компрессорах для природного газа, водорода и воздуха, в криогенной технике, в рефрижераторных установках, в турбодетандерах, в вакуумной технике, в электрогенераторах, в контрольном и измерительном оборудовании, в высокоскоростных полировальных, фрезерных и шлифовальных станках.

Главный недостаток магнитных подшипников - зависимость от магнитных полей. Исчезновение поля может привести к катастрофической поломке системы, поэтому зачастую их используют со страховочными подшипниками. Обычно в качестве них используют подшипники качения, способные выдержать два или один отказ магнитных моделей, после этого требуется их незамедлительная замена. Также для магнитных подшипников применяют громоздкие и сложные системы управления, значительно затрудняющие эксплуатацию и ремонт подшипника. К примеру, для управления данными подшипниками зачастую устанавливают специальный шкаф управления. Данный шкаф является контроллером, взаимодействующим с магнитными подшипниками. С его помощью на электромагниты подается ток, регулирующий положение ротора, гарантирующий его бесконтактное вращение и поддерживающий его стабильное положение. Кроме того, во время эксплуатации магнитных подшипников может возникать проблема нагревания обмотки данной детали, которая происходит за счет прохождения тока. Поэтому с некоторыми магнитными подшипниками иногда устанавливают дополнительные охлаждающие системы.

Один из крупнейших производителей магнитных подшипников - компания S2M, которая участвовала в разработке полного жизненного цикла магнитных подшипников, а также двигателей с постоянными магнитами: начиная с разработки и заканчивая вводом в эксплуатацию, производством и практическими решениями. Компания S2M всегда старалась придерживаться инновационной политики, направленной на упрощение конструкции подшипников, необходимой для снижения затрат. Она старалась сделать магнитные модели более доступными для более широкого использования рынком промышленных потребителей. С фирмой S2M сотрудничали компании, изготавливающие различные компрессоры и вакуумные насосы в основном для нефтегазовой отрасли. В свое время сеть сервисов S2M раскинулась по всему миру. Ее офисы имелись в России, Китае, Канаде и Японии. В 2007 фирму S2M приобрела группа SKF за пятьдесят пять миллионов евро. Сегодня магнитные подшипники по их технологиям изготавливаются производственным подразделением A&MC Magnetic Systems.

Компактные и экономичные модульные системы, оборудованные магнитными подшипниками, используются в промышленности все шире. По сравнению с привычными традиционными технологиями они обладают множеством преимуществ. Благодаря миниатюризованным инновационным системам «двигатель / подшипник» стала возможна интеграция таких систем в современную серийную продукцию. Они сегодня используются в высокотехнологичных отраслях (производство полупроводников). Последние изобретения и разработки в области магнитных подшипников четко направлены на максимальное конструкционное упрощение данного изделия. Это нужно для снижения затрат на подшипники, что сделает их более доступными для использования широким рынком промышленных потребителей, которые несомненно нуждаются в такой инновации.

В разнообразной современной электромеханической продукции и технических изделиях, магнитный подшипник является основным узлом, который определяет технические и экономические характеристики и увеличивает безотказный эксплуатационный период. По сравнению с традиционными подшипниками, в магнитных подшипниках полностью отсутствует сила трения между неподвижными и подвижными деталями. Наличие такого свойства позволяет реализовывать повышенные скорости в конструкциях магнитных систем. Магнитные подшипники изготавливаются из высокотемпературных сверхпроводящих материалов, которые рационально влияют на их свойства. К таким свойствам можно отнести существенное снижение затрат на модельные конструкции систем охлаждения и такой важный параметр, как длительное поддержание магнитного подшипника в рабочем состоянии.

Принцип работы магнитных подвесов

Принцип работы магнитных подвесов основан на применении свободной левитации , которая создается магнитными и электрическими полями. Вращающий вал с применением таких подвесов, без применения физического контакта, в прямом смысле подвешен в мощном магнитном поле. Относительные обороты его проходят без трения и износа, при этом достигается высочайшая надежность. Основополагающей составляющей магнитного подвеса является магнитная система. Ее основное предназначение – это создание магнитного поля необходимой формы, обеспечение требуемых тяговых характеристик в рабочей области при контрольном определенном смещении ротора и жесткости самого подшипника. Такие параметры магнитных подшипников находятся в прямой зависимости от конструкции магнитной системы, которую необходимо разрабатывать и рассчитывать исходя из ее массогабаритной составляющей – дорогостоящей системы криогенного охлаждения. На что способны электромагнитное поле магнитных подвесов наглядно можно увидеть на работе детской игрушки Левитрон . На практике магнитные и электрические подвесы существуют в девяти видах, отличающихся между собой принципом действия:

  • магнитные и гидродинамические подвесы;
  • подвесы, работающие на постоянных магнитах;
  • активные магнитные подшипники;
  • кондиционные подвесы;
  • LC- резонансные виды подвесов;
  • индукционные подшипники;
  • диамагнитные типы подвесов;
  • сверхпроводящие подшипники;
  • электростатические подвесы.

Если протестировать все эти типы подвесов по популярности, то в нынешних реалиях, заняли лидирующие позиции активные магнитные подшипники (АМП ). По виду они представляют собой мехатронную систему устройства, в которой стабильное состояние ротора, осуществляется присутствующими силами магнитного притяжения. Эти силы воздействуют на ротор с боку электромагнитов, электрический ток в которых настраивается системой автоматического управления на сигналах датчиков электронного блока управления. В таких блоках управления может применяться как традиционная аналоговая, так и более инновационная система цифровой обработки сигналов. Активные магнитные подшипники имеют великолепные динамические характеристики, надежность и высокий КПД. Уникальные возможности активных магнитных подшипников способствуют их повсеместному внедрению. АМП эффективно применяются, к примеру, в таком оборудовании:
- газотурбинные установки;
- скоростные роторные системы;
- электродвигатели;
- турбодетандеры;
- накопители инерционной энергии и т.д.
Пока активные магнитные подшипники требуют внешнего источника тока и дорогостоящей и сложной аппаратуры управления. На данный момент разработчики АМП проводят активные работы по созданию пассивного вида магнитных подшипников.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png