Наша фирма разрабатывает проекты электрических плавильных печей для варки стекла различных марок, базальта, фритт, ... Изготавливаем все нестандартное оборудование для них (электроды, холодильники, загрузчики шихты и боя). Производим пуск печей, наладку и вывод на рабочие режимы. Представляем Вам некоторые варинты электрических печей:

Печь электрическая производительностью 24 т/сутки для варки тарного стекла

В августе 2012 г. в г. Токмок (Кыргызская Республика) на предприятии «Чуй-Гласс» по проекту ЗАО НПЦ «Стекло-Газ» пущена в эксплуатацию электрическая печь производительностью 24 т/ сутки для стеклотары

Варочный бассейн печи квадратной формы обогревается 12-ю молибденовыми донными электродами, расположенными в углах.

Электрическая стекловаренная печь выполнена со съемным сводом. Загрузка шихты и боя осуществляется специальным загрузчиком по всей поверхности варочной части. Печь имеет два питателя стекломассы, для косвенного обогрева которых используются карбидкремниевые нагреватели.

Расчетная мощность электрообогрева 1000 кВА, фактическая мощность 850-900 кВА..

Удельный съем с 1 м2 варочной площади 2500 кг.

Пуск печи осуществлялся специалистами ЗАО НПЦ «Стекло-Газ». Как показали пуско-наладочные работы производительность печи может варьироваться от 15 до 30 т/сутки без изменения качества стекла.

Печь электрическая для варки эмали производительностью 1,0 т/сутки

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА:

Производительность - 1 т/сутки;

Габаритные размеры:

длина - 2,8 м

ширина - 1 м

высота - 2,1 м

Удельный съем расплава - 1000 кг/кв.м в сутки;

Расход электроэнергии - 160 кВт;

Тип электродов - молибденовые;

Верхний обогрев - силитовые нагреватели

Печь для варки сортового бесцветного стекла

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА:

Производительность печи - 1,5 т/сутки;

Удельный съем стекломассы - 2143 кг/кв.м в сутки;

Площадь варочного бассейна - 0,7 кв.м;

Глубина варочного бассейна - 1 м;

Площадь выработочного бассейна - 0,72 кв.м;

Глубина выработочного бассейна - 0,4 м;

Способ выработки - ручной;

Расход жидкого топлива на отопление выработочного бассейна - 15 кг/час;

Расход на отопление варочного бассейна на период выводки - 80 кг/час;

Электроэнергия - 1ф, 380 В, 50 Гц;

Мощность системы электроподогрева варочного бассейна - 100 кВт;

Удельный расход жидкого топлива на 1кг стекломассы - 0,24 кг/кг;

Удельный расход электроэнергии на 1кг стекломассы - 1,6 кВт/кг;

КПД печи (общий) - 16%;

КПД варочного бассейна - 43,6%

Печь электрическая для варки хрусталя производительностью 3 т/сутки

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА:

Производительность печи - 3 т/сутки;

Габаритные размеры:

Длина - 5 м

Ширина - 3,4 м

Высота - 4,2 м

Удельный съем стекломассы - 2220 кг/кв.м в сутки;

Энергопотребление - электроэнергия, 1ф, 380 В, 50 Гц;

Расход электроэнергии - 150 кВт;

Количество оксидно-оловянных электродов - 28;

Расход газа на отпление выработочного бассейна - 14,5 куб.м/час

Печь электрическая для варки боросиликатного стекла

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА:

Габаритные размеры:

Длина - 4,25 м

Ширина - 2,7 м

Высота - 3 м

Удельный съем стекломассы - 1500 кг/кв.м в сутки;

Энергопотребление - электроэнергия, 1ф, 380 В. 50 Гц;

Расход электроэнергии - 540 кВт;

Количество молибденовых электродов

пластины - 12

стержни - 6

Максимальная температура варки - 1600 град.С;

Температура выработки - 1400 град.С;

Расход охлаждающей воды - 7 куб.м/час;

Жесткость охлаждающей воды - до 2,5 мг-экв/л

Печь электрическая для варки хрусталя производительностью 6 т/сутки

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА:

Производительность печи - 6 т/сутки;

Габаритные размеры:

Длина - 6 м

Ширина - 4,2 м

Высота - 5,3 м

Удельный съем стекломассы - 2560 кг/кв.м в сутки;

Энергопотребление - электроэнергия, 1ф, 380 В, 50 Гц;

Расход электроэнергии - 326 кВт;

Количество оксидно-оловянных электродов - 44 шт.;

Расход газа на отопление выработочного бассейна - 54 куб.м/час

Печь электрическая для варки тарного стекла производительностью 25 т/сутки

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА:

Производительность печи - 25 т/сутки;

Габаритные размеры:

Длина - 9,3 м

Ширина - 4 м

Высота - 4,5 м

Удельный съем стекломассы - 2500 кг/кв.м в сутки;

Энергопотребление - электроэнергия, 1ф, 380 В, 50 Гц;

Расход электроэнергии - 1200 кВт;

Тип электродов - молибденовые

Стекловаренная печь периодического действия для ручной выработки стекломассы

Печь предназначена для варки боросиликатных, свинецсодержащих, цветных и бесцветных натрий-кальций-силикатных стекол. С целью получения однородной стекломассы в конструкции печи предусмотрены электроды. Кроме того, печь оснащена регулируемым сливом расплава, что позволяет менять состав стекол без замены или промывки горшка. При варке боросиликатного расплава слив используется в качестве дренажа для удаления вязких придонных слоев, снижающих качество вырабатываемых изделий.

Конструктивно печь состоит из бассейна, выполненного из бакорового огнеупора в форме многогранника, систем отопления, автоматизации и контроля, электрообогрева, воздухоподачи на горение топлива, регулируемого слива расплава.

Производительность печи - 500 - 1500 кг/сутки;

Габаритные размеры:

Диаметр - 2120 мм;

Высота - 2800 мм

Печь электрическая для варки базальта производительностью 70 кг/час

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА:

Производительность печи - 70 кг/час;

Габаритные размеры:

Длина - 2,75 м

Ширина - 1,3 м

Высота - 1,25 м

Удельный съем стекломассы - 2240 кг/кв.м в сутки;

Энергопотребление - электроэнергия, 1ф, 380 В, 50 Гц;

Расход элетроэнергии - 150 кВт;

Количество молибденовых электродов - 6 шт.;

Количество ланатермовых нагревателей - 30 шт.

Печь рекуперативная с дополнительным электроподогревом для плавки базальта производительностью 650 кг/час

Данная печь была спроектирована нами и пущена в Казани в 2007 году. Былb установлены четыре донных электрода в варочном бассейне для ускорения плавки базальта. Способ подвода топлива выбран верхний с использованием уникальных в своем роде плоскопламенных горелочных устройств ГПП-5. Загрузчики сырья в печь - вибрационные для точного поддержания уровня расплава в печи. Для подогрева до 300 град.С воздуха, идущего на горение используется воздухоподогреватель. Расплав из данной печи использовался для получения базальтовой изоляции в виде матов.

Габариты печи:

Длина вместе с фидером - 8 м;

Ширина - 3 м;

Высота печи - 2,5 м.

Удельный съем расплава - 1500 кг/кв.м в сутки;

Расход электроэнергии - 250 кВт.

Изобретение относится к стекольной промышленности, в частности к способам варки стекла.

Известен способ варки стекла в ванных стекловаренных печах (Авторское свидетельство СССР №755757, кл. C03B 5/00) путем загрузки шихты в стекловаренную печь и прохождения в бассейне печи на поверхности слоя расплавленной стекломассы всех этапов стекловарения (силикатообразования и стеклообразования, осветления и гомогенизации, студки) при соотношении объемов вырабатываемой стекломассы к расплавленной стекломассе 1:(4÷5).

Недостатками этого способа варки стекла являются:

Высокие энергозатраты на поддержание необходимой температуры не участвующего в выработке расплава, расположенного под проваривающейся шихтой,

Наличие мощных конвекционных потоков стекломассы, приводящих к переносу значительных количеств теплоты из варочной части печи в студочную,

Большая длительность процессов стеклообразования, гомогенизации и осветления расплава,

Значительные габариты стекловаренных печей, необходимые для реализации этого метода,

Проведение процессов варки стекла при высоких температурах, в ряде случаев превышающих предельные температуры службы современных огнеупорных материалов,

Недостатками данного устройства для варки стекла являются:

Наличие в бассейне печи избыточного количества стекломассы не участвующего в выработочном потоке;

Конвекционные потоки стекломассы, образующиеся в бассейне печи и переносящие существенную долю тепла из зоны гомогенизации и осветления в зону студки, что приводит к потерям и дополнительным расходам тепла;

Интенсивный износ огнеупоров вследствие воздействия высокой температуры газового факела.

Известен способ варки стекла (Авторское свидетельство СССР №481551, кл. C03B 5/00) путем организации на наклонном лотке плавления шихты, стеклообразования, перегрева стекломассы в прямом потоке до вязкости 2,5-3,5 м·сек/м 2 , усреднения при принудительном перемешивании, осветления и охлаждения расплава, причем стекловарение осуществляется в тонком слое.

Техническая трудность организации перемешивания стекломассы в тонком слое;

Повышенная летучесть компонентов шихты и расплава при воздействии высоких температур;

Интенсивная высокотемпературная коррозия огнеупорной кладки печи.

Наиболее близким к заявленному является способ варки стекла (Евразийский патент №004516, кл. C03B 5/00) путем приготовления тонкоизмельченной смеси шихты и обратного боя, компактирования смеси, загрузки в стекловаренную печь и варки на наклонном лотке в непрерывном прямом монооднородном потоке с последовательным прохождением всех этапов стекловарения при пониженных на 100-200°C температурах.

Недостатками данного способа варки стекла являются:

Недостаточное осветление стекломассы ввиду высокой вязкости расплава при пониженной температуре варки;

Интенсивный износ огнеупоров вследствие воздействия высокой температуры газового факела,

Повышенная летучесть компонентов шихты и расплава при воздействии высоких температур газового факела, а также их унос отходящими газами;

Задачей заявленного способа варки стекла является получение промышленных стекол высокой однородности.

Поставленную задачу решают следующим образом.

Сырьевые материалы подвергают совместному тонкому измельчению и компактированию. Варку полученной шихты осуществляют на наклонном лотке в прямом монооднородном потоке при последовательном прохождении шихтой всех стадий варки по мере ее продвижения по длине печи. Причем на каждой стадии варки, посредством полного или частичного разделения атмосферы печи и стекломассы, поддерживают свои температурные условия:

первую стадию - силикатообразование, проводят в условиях градиентного нагрева (по длине зоны печи) от 200-600 до 700-1400°C, с максимальной скоростью нагрева от 5 до 20°C в минуту,

вторую стадию - стеклообразование, проводят при температуре 800-1500°C,

третью стадию - осветления и гомогенизации, проводят при температуре 800-1600°C, при необходимости прибегают к принудительному осветлению расплава посредством создания разряжения до 50 Па, за счет откачки газа из атмосферы печи,

четвертую стадию - студку, проводят при температуре 800-1500°C.

Варку стекла осуществляют с помощью электронагрева, не допуская контакта стекломассы или атмосферы печи с нагревательными элементами, для чего нагревательные элементы располагают внутри футеровки печи.

Тонкое измельчение шихты, с одной стороны, приводит к увеличению ее химической активности (за счет возрастания доли поверхностных нескомпенсированных связей и количества структурных дефектов у ее компонентов). С другой стороны, при совместном измельчении достигается высокая степень смешения компонентов шихты, что обеспечивает перенесение существенной доли процесса гомогенизации из печи на стадию подготовки шихты. В результате после операции тонкого измельчения стекольная шихта обладает гомогенностью на микроуровне, повышенной химической активностью и варочной способностью.

Операция компактирования необходима для исключения расслоения, пыления и потерь шихты при ее транспортировке и загрузке в стекловаренную печь. Кроме того, уплотнение шихты в процессе компактирования способствует более тесному контакту ее компонентов, что интенсифицирует их взаимодействие.

Постепенное нагревание шихты в первой зоне печи обеспечивает последовательное прохождение всех химических реакций между ее компонентами, в том числе тех реакций, в ходе которых имеет место выделение газообразных веществ. Необходимо, чтобы реакции с выделением газов проходили при температурах ниже температур активного образования расплава. Нагрев шихты должен производиться со скоростью подъема температуры, не вызывающей вспенивания брикета, другими словами, не приводящей к задерживанию в спеке избыточного количества газа, затрудняющего осветление. Так как тонкоизмельченные частицы тугоплавких компонентов (кварца, глинозема и т.д.) обладают повышенной растворимостью, этап стеклообразования проводят при температуре на 100-200°C ниже, чем в случае шихты традиционной гранулометрии. При высокой вязкости расплава осветление осуществляют принудительно под разрежением. В процессе варки желательно избегать турбулентного движения стекломассы, так как в противном случае существует вероятность возникновения различных неоднородностей.

Пример конкретного осуществление способа.

Компоненты стекольной шихты состава: 61,75 масс.% SiO 2 , 20,75 масс.% Na-СО 3 , 17,5 масс.% CaCO 3 , подают в планетарную мельницу, где их увлажняют до 50 масс.% воды и подвергают совместному помолу в течение времени, необходимого для того, чтобы не менее 50% компонентов шихты имели размер, не превышающий 10 мкм. Мельница должна иметь футеровку и мелющие тела на основе SiO 2 . Данный способ измельчения шихты предполагает проведение корректировки шихты с учетом намола материала футеровки и мелющих тел. Полученную шликерную массу разливают по металлическим поддонам и подвергают сушке в туннельной печи при температуре 250°C, в ходе которой происходит ее самокомпактирование в брикеты. Высушенные брикеты по транспортеру подают в загрузочное устройство и далее в первую зону наклонного лотка стекловаренной печи. Причем на вышеуказанном лотке проводят весь процесс стекловарения. Подвод тепла, необходимого для процесса варки, производят посредством электронагрева, не допуская контакта стекломассы или атмосферы печи с нагревательными элементами. Для этого нагревательные элементы располагают внутри футеровки печи. Скорость подъема температуры при продвижении брикетов по первой зоне наклонного лотка (максимальная скорость нагрева материала) составляет 10°C в минуту, что не вызывает вспенивания брикетов. В начале зоны поддерживают температуру 250°C, в конце - 900°C. Далее спеченная остеклованная шихта входит в зону стеклообразования, которая отделена от зоны силикатообразования по атмосфере печи экраном. В зоне стеклообразования поддерживают температуру 1200°C. Время пребывания шихты в зоне стеклообразования составляет 0,5 часа, что достаточно для растворения всех оставшихся кристаллических включений. Полученная стекломасса поступает в зону осветления и гомогенизации, которая отделена от зон стеклообразования и студки по атмосфере печи и половине глубины слоя стекломассы выдвижными заслонками.

В зоне осветления поддерживают температуру 1450°C и создают разрежение 1000 Па. Время пребывания шихты в зоне осветления составляет 0,5 ч. Далее осветленная гомогенная стекломасса переходит в зону студки, в которой поддерживают температуру 1250°C.

1. Способ варки стекла, включающий приготовление тонкоизмельченной шихты, ее компактирование и варку на наклонном лотке, включающую процессы силикатообразования, стеклообразования, осветления, гомогенизации, отличающийся тем, что варочное пространство разделяют на 4 зоны, в каждой из которых поддерживают свой температурный режим, причем в первой зоне в условиях градиентного нагрева по длине зоны печи от 200-600 до 700-1400°C, со скоростью нагрева от 1 до 20°С в минуту, проводят процесс силикатообразования, во второй зоне при температуре 800-1500°C проводят процесс стеклообразования, в третьей зоне при температуре 800-1600°C проводят процесс осветления и гомогенизации, в четвертой зоне при температуре 800-1500°C проводят процесс студки.

2. Способ по п.1, отличающийся тем, что процесс осветления проводят под разрежением при остаточном давлении от 50000 до 50 Па.

3. Способ по п.1, отличающийся тем, что в процессе варки поддерживают ламинарный режим движения стекломассы.

4. Способ по п.1, отличающийся тем, что варку стекла осуществляют с помощью электронагрева.

5. Способ по п.4, отличающийся тем, что исключают контакт стекломассы и атмосферы печи с нагревательными элементами.

Похожие патенты:

Изобретение относится к области электротехники, в частности к конструкциям водоохлаждаемых тиглей с индукционным нагревом, которые могут быть использованы для получения расплавов минералов, минералоподобных материалов, керамических материалов, стекол и других стеклоподобных материалов с высокими температурами плавления, а также для включения в стекло- и или керамикоподобные материалы совместимых с ними радиоактивных и нерадиоактивных отходов.

Изобретение относится к электрической стекловаренной печи сопротивления для составов, способных остекловываться, например стекла, эмали или керамики, с варочным бассейном, поворачивающимся вокруг вертикальной оси, и стационарной верхней печью.

Изобретение относится к способам варки бесцветного стекла. Техническим результатом является сокращение внутризаводских отходов стекла. Периодическое окрашивание бесцветной стекломассы, сваренной из смеси стеклобоя и шихты, содержащей 0,00005-0,00008% обесцвечивателя на основе оксида кобальта, осуществляют путем ее перемешивания в канале питателя производительностью 60 тонн стекломассы в сутки с легкоплавкой фриттой, содержащей краситель на основе оксида кобальта в количестве 0,001-0,0025% на тонну стекломассы. Образующийся за 3 часа прямого и 9 часов обратного перекрашиваний стеклобой с переходной окраской усредняют до среднего содержания оксида кобальта в нем в количестве 0,00025-0,000625% на тонну стеклобоя. А образующийся в ходе установившегося процесса производства окрашенный стеклобой со стабильным содержанием оксида кобальта в количестве 0,001-0,0025% на тонну стеклобоя дозируют в количестве 2% от общей массы смеси шихты и стеклобоя и добавляют его к 10% привозного бесцветного стеклобоя. При этом количество загружаемого в печь возвратного бесцветного стеклобоя уменьшают до 8% и снижают содержание обесцвечивателя в шихте до 0,0-0,00006%. По окончании окрашенного стеклобоя со стабильным содержанием красителя усредненный стеклобой с пониженным содержанием красителя в количестве 2% добавляют к 8% привозного бесцветного стеклобоя, восстанавливая количество возвратного бесцветного стеклобоя до 10% и снижая содержание обесцвечивателя в шихте до 0,0000375-0,000075%. Исходное количество привозного бесцветного стеклобоя, равное 10%, а также исходное содержание обесцвечивателя в шихте в количестве 0,00005-0,00008% восстанавливают по окончании запасов окрашенного стеклобоя. 1 ил.

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам. Стекло содержит следующие компоненты, мас.%: P2O5 58,00-70,00; K2O 8,50-18,50; Al2O3 7,10-8,90; ВаО 9,80-11,50; B2O3 3,70-5,20; SiO2 1,80-2,30; SnO2 1,10-1,25 Au 0,005-0,02 (сверх 100%). При подготовке шихты проводят синтез золя наночастиц золота Au из золотохлористоводородной кислоты HAuCl4⋅4H2O, глутатиона, тетрагидробората натрия NaBH4 и этилового спирта С2Н5ОН. Полученный золь в количестве 0,005-0,02 мас. % перемешивают с оксидом кремния SiO2 в количестве 1,80-2,30 мас.%, оксидом олова SnO2 в количестве 1,80-2,30 мас.%. Выпаривают смесь в муфельной печи, перетирают смесь в агатовой ступке, перемешивают смесь с карбонатом калия K2CO3, гидроксидом алюминия Al(OH)3, карбонатом бария, борной кислотой Н3ВО3 в кварцевом сосуде, добавляют эту смесь в ортофосфорную кислоту Н3РО4. Варку стекла проводят в одну стадию при температуре 1380-1420°C, далее проводят термообработку полученного стекла в муфельной печи в течение 3-4 ч при температуре 300-350°C. 2 н.п. ф-лы, 1 пр.

Изобретение относится к стекольной промышленности, в частности к способам варки стекла. Сырьевые материалы подвергают совместному тонкому измельчению и компактированию. Варку полученной шихты осуществляют на наклонном лотке при последовательном прохождении шихтой всех стадий варки по мере ее продвижения по длине печи, причем на каждой стадии варки, поддерживают свои температурные условия. Первую стадию - силикатообразование, проводят в условиях градиентного нагрева от 200-600 до 700-1400°C, с максимальной скоростью нагрева от 5 до 20°C в минуту, вторую стадию - стеклообразование, проводят при температуре 800-1500°C, третью стадию - осветления и гомогенизации, проводят при температуре 800-1600°C, четвертую стадию - студку, проводят при температуре 800-1500°C. Технический результат изобретения - обеспечение высокой гомогенности состава стекла на микроуровне. 4 з.п. ф-лы, 1 пр.


К атегория:

Шлифование и полирование стекла

Варка стекла и стекловаренные печи

Стадии варки. Варка стекла - это протекающий при высоких температурах процесс превращения сыпучей шихты в расплав стекломассы, который при охлаждении становится готовым стеклом; процесс протекает в стекловаренных печах. Условно процесс варки разделяют на пять стадий: силикатообразова-ние, стеклообразование, осветление, усреднение или гомогенизация состава, охлаждение.

Силикатообразование - начальная стадия варки, во время которой в результате физических и химических процессов, в твердом состоянии образуются сложные силикатные соединения. Протекает эта стадия при температурах 800…1000 °С.

Сырьевые материалы (компоненты шихты) при прохождении этой стадии претерпевают ряд превращений: влага испаряется; гидраты, соли, низшие оксиды разлагаются и теряют летучие соединения; кремнезем меняет свое кристаллическое строение. Кроме того, на этой стадии выделяется большое количество углекислого газа С02. Этот газ в виде пузырей поднимается на поверхность вязкого расплава, где пузыри лопаются, поэтому поверхность такого расплава выглядит как бы кипящей (отсюда и происхождение термина - варка стекла). На этой стадии образуется неоднородная частично остеклованная масса, пронизанная большим числом пузырей и содержащая множество непроваренных зерен песка.

Стеклообразование - вторая стадия варки, во время которой происходит физический процесс растворения зерен избыточного песка в расплаве силикатов и стеклобоя. На этой стадии заканчиваются все химические реакции. В результате взаимодействия между гидратами, карбонатами, сульфатами окончательно формируются сложные силикаты; зерна кварца полностью растворяются и переходят в расплав. Температура 500…1400 °С на этой стадии недостаточна для плавления кварцевого песка, поэтому он не плавится, а растворяется; стекломасса становится относительно однородной и прозрачной без непроваренных частиц шихты.

В результате подъема температуры увеличивается подвижность атомов и молекул, составляющих стекломассу, что ведет к ускорению взаимного растворения кремнезема и силикатов. Благодаря этому выравнивается концентрация растворов силикатов на различных участках. Все эти превращения сопровождаются выделением большого количества газообразных продуктов. Вязкость расплава еще достаточно высока, поэтому газообразные продукты не успевают улетучиваться, и стекломасса бывает насыщена большим количеством пузырей.

В результате на второй стадии образуется неоднородная стекловидная масса, пронизанная большим количеством мелких газовых пузырьков, но уже не содержащая включений непроваренных зерен песка.

Осветление - третья стадия варки стекла. Она характеризуется тем, что происходит удаление газовых включений в виде видимых пузырей и в результате между стекломассой (жидкой фазой) и газами, растворенными в ней (газовая фаза), устанавливается равновесие. Из всех стадий процесса варки осветление и следующая за ней стадия усреднение (гомогенизация) - наиболее ответственные и сложные. Качество стекломассы зависит от того, насколько полно и интенсивно проходят эти стадии.

В расплаве стекломассы находятся газы, образовавшиеся в результате разложения и взаимодействия компонентов шихты; газы, механически внесенные вместе с шихтой; летучие вещества, специально введенные в шихту; газы, попадающие в расплав из атмосферы. Наибольшее количество газов заносится в стек- ‘ ломассу с сырьевыми материалами. При осветлении удаляются только видимые пузыри. Часть газов остается в стекломассе, растворяясь в ней. Они невидимы глазом, а поэтому не искажают оптических характеристик стекла. Чтобы эти невидимые газообразные включения не могли перейти в видимые пузыри и тем самым испортить стекло, в процессе осветления устанавливают равновесие между газами, растворенными в стекломассе и заключенными в пузырях, создавая в печи определенные условия.

Осветление происходит следующим образом: крупные пузы-ри поднимаются к поверхности и лопаются. По законам физики внутри крупных пузырей давление ниже, чем внутри более мелких. Поднимаясь более легко к поверхности, крупные пузыри по пути всасывают содержимое более мелких пузырей, в результате стекломасса осветляется. Совсем мелкие пузырьки растворяются в расплаве.

Углекислота, парциальное давление которой невысоко, стремясь выровнять свое давление, переходит в образовавшиеся от разложения осветлителя пузырьки. Они укрупняются, подъемная сила их увеличивается, вследствие чего они поднимаются к поверхности и лопаются. Газ, содержащийся в них, переходит в атмосферу печи. В свою очередь, газы, образующиеся при разложении осветлителя, переходят в мелкие пузырьки углекислого газа, укрупняют их, чем способствуют их подъему и тем самым осветлению стекломассы.

Усреднение (гомогенизация) состава - четвертая стадия процесса стекловарения - характеризуется тем, что к ее концу стекломасса освобождается от пузырей, свилей и становится однородной. Несмотря на то, что в печь поступает однородная, хорошо перемешанная шихта, физические и химические процессы протекают в шихте между ее компонентами неоднородно, поэтому и состав стекломассы в различных участках печи оказывается неоднородным. При повышенных температурах составляющие части стекломассы находятся в непрерывном естественном движении, поэтому локальные порции стекломассы различного состава вытягиваются в направлении движения, образуя переплетенные жгуты, нити, которые называются свилями. Если такое стекло резко охладить, то из-за различия в показателях преломления граница раздела между участками с разным химическим составом становится видимой невооруженным глазом. Свиль, таким образом, является пороком стекла, ухудшающим эстетический вид изделия.

Гомогенизация осуществляется в основном за счет интенсивного движения (диффузии) веществ, составляющих стекломассу. Чем выше температура варки и, как следствие, ниже вязкость расплава стекла, тем лучше условия диффузии, и, наоборот, диффузия в вязкой среде, при пониженных температурах, протекает медленно и до конца варки не заканчивается. Поэтому при гомогенизации температура стекломассы играет решающую роль.

Значительно ускоряет гомогенизацию выделение пузырей. Поднимаясь к поверхности, они растягивают пограничные пленки стекла разного состава в тончайшие нити с сильно развитой Удельной поверхностью и облегчают взаимную диффузию стекломассы соседних участков. Таким образом, процесс усреднения стекла тесно переплетается с осветлением. При варке стекла в промышленных печах стадии осветления и гомогенизации протекают одновременно в одинаковых условиях, поэтому зону ос. ветления невозможно отделить от зоны гомогенизации.

Важное значение для получения однородной стекломассы имеет ее искусственное перемешивание. При варке хрустальных стекол используют керамические мешалки.

Для получения однородной массы при гомогенизации большое значение имеет однородность и тонкость помола шихты. Оказывает влияние на однородность стекломассы и бой стекла загружаемый с шихтой в печь. Обычно бой стекла несколько отличается по химическому составу от основного стекла, так как в процессе предыдущей варки он теряет часть летучих компонентов, обогащается растворенными газами и пр. Поэтому, бой стекла измельчают и равномерно распределяют в шихте.

После осветления и гомогенизации стекломасса по своему качеству полностью отвечает предъявляемым к ней требованиям, однако из-за высокой температуры расплава и низкой вязкости формировать его невозможно. Поэтому задача заключительной стадии стекловарения - подготовить стекломассу к формированию.

Охлаждение - пятая, заключительная стадия процесса стекловарения. Она характеризуется тем, что температуру стекломассы понижают для создания вязкости, позволяющей формовать из нее изделия. Температура стекломассы на этой стадии поддерживается около 1200 °С.

Стекломассу охлаждают плавно и постепенно - при резком охлаждении может нарушиться равновесие между жидкой и газовой фазой, что приведет к новому образованию газовых включений в виде мельчайших пузырьков (вторичной мошки). Освободить стекломассу от подобных газовых включений трудно из-за ее повышенной вязкости. Чтобы избежать появления пороков стекла на заключительной стадии, необходимо строго придерживаться установленного режима давления газовой атмосферы печи и понижения температуры.

Стекловаренные печи. Стекловаренная печь - это теплотехнический агрегат периодического или непрерывного действия, в котором варят стекло и готовят его к формованию. Печи обогревают либо газом, либо электричеством. По режиму работы печи бывают периодического (горшковые) или непрерывного (ванные) действия. В некоторых случаях применяют ванные печи периодического действия.

Работу печи характеризуют такие показатели, как производительность (съем стекломассы в единицу времени, т/сут; удельный съем, кг/м2 в сутки), коэффициент полезного действия и расход теплоты на одну варку или единицу количества стекла. Коэффициент полезного действия (КПД ) печей периодического действия невысок (): горшковых - 6…8, ванных - 10… 15, непрерывных ванных печей-17…28. Наиболее эффективны электрические печи - КПД 50-70 , однако более высо-

я стоимость электроэнергии по сравнению со стоимостью присного газа или жидкого топлива сдерживает широкое применение электрических печей.

Для варки стекол художественного назначения, отработки новых видов стекол, проведения экспериментальных работ и выработки высокохудожественных изделий используют гор ш ковы е печи, в которых одновременно варят в огнеупорных тиглях (горшках) стекломассу разных составов или цветов. Недостатки этих печей - низкий КПД , ручная засыпка горшков, необходимость замены лопнувших тиглей на ходу, повышенный расход топлива и т. д. В производстве сортовых изделий высокого качества из цветного и свинецсодержащего (хрустального) стекла применяют многогоршковые регенеративные печи с нижним подводом теплоты. Такие печи имеют до 16 горшков полезной вместимостью 300…500 кг и КПД до 8%.

Горшки, как правило, бывают круглые, реже овальные; в поперечном вертикальном сечении в форме усеченного конуса, реже цилиндра. Размеры горшка подбирают в соответствии с размером вырабатываемого изделия.

Шихта в стекловаренном горшке получает теплоту главным образом за счет излучения от свода печи и частично за счет теплопроводности через стенки горшка. Поэтому для горшковых печей особое значение имеет высота свода печи: чем ниже свод, тем интенсивнее прогреваются горшки и находящаяся в нем шихта.

Отличительная особенность варки стекла в горшковых печах- периодичность всех технологических процессов, которые чередуются в строгой последовательности: разогрев печи после выработки изделий, засыпка шихты и стеклобоя, варка стекла, студка стекломассы и выработка стеклоизделий.

Перед тем как использовать горшки для варки, их обжигают и постепенно, плавно вываривают до температуры 1500… 1540 °С.

Шихту и бой стекла в соотношении 50: 50 загружают в прогретые горшки в несколько приемов: сначала бой, потом шихту, причем последующие порции подают после того, как оплавились порции, загруженные ранее. После провара последней порции температуру в печи поднимают до максимальной и проводят осветление и гомогенизацию, которые могут продолжаться до 6 ч. Для интенсификации этих процессов применяют бурление стекломассы, для чего при помощи металлического стержня в стекломассу вносят кусок замоченной древесины. Под действием высоких температур из дерева бурно выделяется влага и продукты горения, что приводит стекломассу в интенсивное движение, способствуя ее перемешиванию и осветлению от газовых пузырей. Этот же эффект достигается при бурлении сжатым в°здухом, который вводят в стекломассу под давлением. После т°го как закончена варка, стекломассу охлаждают до температур рабочей вязкости, а затем начинают выработку стеклоизделий.

Обычно цикл работы горшковой печи длится одни сутки ежедневно повторяясь в течение года, иногда более - до остановки печи на ремонт.

Рис. 1. Горшковая печь с нижним подводом пламени: 1 - нижняя часть стены (окружка), 2 - рабочие окна, 3 - свод, 4 - рабочая камера, 5 - под регенератор, 7 - отверстия для обслуживания горшков, 8 - стекловаренные горшки, 9 - горелочные отверстия (кади), 10 - отверстия для загрузки горшков

Рассмотрим устройство горшковой печи. Главный элемент печи - рабочая камера, в которой устанавливают необходимое для работы количество горшков. В верхней части боковых стен расположены рабочие окна. В окружке против каждого горшка есть отверстие через которое обслуживают горшки. Для загрузки от выемки горшков в окружке и над ней сделано отверстие, которое во время работы закрывают плитами. К Промежуточное положение между горшковыми и ванными ечами занимают секционные печи. Их применяют в основном при производстве художественных изделий. Так же, как и в горшковых, в секционных печах можно варить стекломассу нескольких составов или цветов - по числу секций, представляющих собой примыкающие один к другому «карманы», выполненные из огнеупорного кирпича и имеющие общее пламенное пространство.

Ванные печи непрерывного действия - более совершенные и производительные теплотехнические агрегаты, они наиболее распространены в стекольной промышленности. При варке стекла в ванных печах все стадии стекловарения протекают одновременно и непрерывно. Это позволяет максимально механизировать и автоматизировать весь процесс, начиная от засыпки шихты и кончая выработкой стеклоизделий.

Главная часть печи - бассейн (ванна), выложенный из огнеупорных брусьев, поэтому печи называются ванными. Варочная часть бассейна (ванны) обычно имеет прямоугольную конфигурацию в плане. С одного торца ванны через загрузочный карман непрерывно автоматически загружается в печь шихта, доставляемая в контейнерах. Уровнемеры регистрируют уровень зеркала стекломассы. Если он поднимается выше заданного предела, то загрузчик шихты автоматически отключается. По мере выработки уровень стекломассы понижается, срабатывает система автоматического включения загрузчика и в ванну поступает новая порция шихты. В производстве сортовой посуды преимущественно применяют ванные печи с протоком, который располагается ниже уровня дна варочной чести. Из протока отбирают лучше проваренную и более охлажденную стекломассу.

Различные стадии стекловарения протекают одновременно в разных зонах печи. Оптимальные температуры в зонах варки 1420 °С, осветления - 1430, выработки - 1260 °С.

При варке стекол в ванной печи постоянно поддерживают окислительный характер газовой среды, в варочной части над зеркалом стекломассы устанавливают нейтральное давление атмосферы, а в выработочной части - слабоположительное. Производительность печи 6… 12 т стекломассы в 1 сут, удельный съем стекла в зависимости от интенсивности выработки 450 кг/м2 в 1 сут. Печь может отапливаться как природным газом, так и жидким топливом.

Одним из недостатков печей, обогреваемых газом, в том, что Улетучивание оксидов свинца приводит к обеднению ими поверхностных слоев стекломассы и загрязнению окружающее среды. В электрических печах в качестве источников теплоту устанавливают пристенные блочные оксидно-оловянные элект. роды. Процесс стекловарения осуществляется в вертикальном потоке под слоем холодной шихты сверху вниз. Наличие над расплавленной стекломассой холодного слоя шихты уменьшает улетучивание оксидов свинца, способствует получению однород. ной стекломассы.

При работе такой печи нет потерь теплоты с отходящими дымовыми газами. Удельные затраты энергии для получения 1 кг стекла меньше, чем в пламенных ванных печах. Кроме того, электропечи с электродами на основе диоксида олова Sn02 не оказывают никакого красящего действия на стекломассу.

Цветные стекла можно варить одновременно с бесцветным. Для этого на одном участке одновременно располагают ванную печь для варки бесцветного стекла и возле нее печи-спутники для варки цветного.


Для выработки изделий из стекла с различными заданными свойствами служат стекловаренные печи разных типов, отличающиеся по конструкции, производительности и режиму работы.

Стекловаренная печь - основной агрегат стекольного производства. В ней протекают процессы тепловой обработки сырьевых материалов, получения стекломассы и выработки из нее изделий.

Для варки стекла применяют стекловаренные печи периодического и непрерывного действия.

По устройству рабочей камеры стекловаренные печи разделяются на горшковые и ванные.

Горшковые печи - периодического действия, их применяют для варки высококачественных оптических, светотехнических, художественных и специальных стекол.

Ванные печи бывают непрерывного и периодического действия. Ванные печи непрерывного действия имеют ряд преимуществ перед горшковыми и ванными печами периодического действия: они более экономичны, производительны и удобны в обслуживании.

По способу обогрева стекловаренные печи подразделяют на пламенные, электрические и газоэлектрические (комбинированный газовый и электрический обогрев).

В пламенных печах источником тепловой энергии служит сжигаемое топливо. Шихта и стекломасса в этих печах получают тепло от сжигания жидкого или газообразного топлива. Коэффициент полезного действия пламенных печей 18-26%. так как топливо в них расходуется главным образом на нагревание огнеупорной кладки печи и компенсацию потерь тепла. Электрические печи по сравнению с пламенными имеют ряд преимуществ: меньшие размеры, большую производительность. Они экономичны, легко регулируются. При их эксплуатации нет теплопотерь с отходящими газами и лучше условия труда. Коэффициент полезного действия электрических печей достигает 50-60%.

По способу передачи тепла стекломассе электрические печи подразделяются на дуговые; печи сопротивления (прямого и косвенного) и индукционные. В дуговых печах тепло передается материалу излучением от вольтовой дуги. Наибольшее распространение получили печи прямого сопротивления, в которых нагревательным элементом служит непосредственно стекломасса. В этих печах тепло выделяется в самом материале, который служит сопротивлением в цепи.

Использование стекломассы в качестве нагревательного сопротивления основано на том, что стекло при повышенных температурах проводит электрический ток, причем электропроводность его с повышением температуры увеличивается. Проходя через стекломассу, электрическая энергия превращается в тепловую, происходит нагревание и варка стекла. Для питания электрических печей прямого нагрева используется однофазный или трехфазных ток, который подводят к стекломассе через молибденовые или графитовые электроды.

Электрические печи прямого сопротивления имеют различные конструкции, однако большинство из них представляет собой горизонтальные ванны прямоугольного сечения. Применяют эти печи для варки технических стекол, а при наличии дешевой электроэнергии и в производстве массовой продукции.

В печах косвенного сопротивления тепло передается материалу излучением или теплопроводностью от введенного в печь сопротивления.

В индукционных печах в материале, включенном во вторичную цепь, индуцируется ток.

Газоэлектрические печи имеют комбинированный нагрев: бассейн для плавления шихты обогревается газообразным топливом, а бассейн для осветления стекломассы - электрическим током. Отходящие из печей газы имеют температуру 1350-1450° С. Тепло их используют для подогрева воздуха и газа, поступивших для горения.

По способу использования тепла отходящих газов стекловаренные печи подразделяют на регенеративные и рекуперативные.

Регенеративные печи получили большее распространение из-за их простого устройства и удобства в эксплуатации.

Работа стекловаренных печей оценивается производительностью, расходом тепла на варку стекла и коэффициентом полезного действия (КПД) печи, который представляет собой отношение количества тепла, полезно затраченного на варку стекла, к общему расходу тепла на печь.

Производительность печи характеризуют двумя показателями: общей (суточной) и удельной производительностью. Общая производительность равна количеству тонн стекломассы (или годной продукции), снимаемой с печи в сутки. Удельная производительность измеряется отношением суточной производительности к площади бассейна печи и выражается в кг/м 2 /сут.

При варке стекла в ванных печах непрерывного действия все процессы превращения шихты в осветленную и гомогенизированную стекломассу протекают на поверхности расплава стекла, заполняющего бассейн печи. Конструкции и размеры современных ванных печей непрерывного действия весьма разнообразны и определяются составом и свойствами вырабатываемой стекломассы, способом формования изделий, масштабом производства.

Конструктивно ванную печь делят на отапливаемую (зоны варки и осветления) и не отапливаемую (зону студки и выработки) части. В отапливаемой части происходит провар шихты, осветление, гомогенизация и начальное охлаждение стекломассы.

В неотапливаемой части охлаждение стекломассы завершается, и к ней примыкают устройства для её выработки. По производительности ванные печи делят на малые (2-15т\сут), средние (до 100 т\сут) и крупные (100- 450 т\сут.). Малые стекловаренные печи имеют площадь отапливаемой части 10 – 50 м 2 , они применяются для механизированного производства крупных стеклоизделий, стеклянной тары. Крупные печи с площадью отапливаемой части от 90 до 300 м 2 предназначены для производства листового стекла.

Рис.7. Схема зон в ванной печи листового стекла с машинным каналом: отапливаемая часть – зоны варки (1 ) и осветления (2 ) и неотапливаемая часть – зоны студки (3 ) и выработки (4 )

Загрузка шихты и боя в печь осуществляется механическими загрузчиками стольного или роторного типа на поверхность расплавленной стекломассы через загрузочный карман. Шихта и бой образуют на поверхности стекломассы слегка погруженный в неё слой толщиной около 150-200 мм. Шихта нагревается снизу расплавом стекла и сверху за счёт излучения пламени. Поверхность шихты спекается, затем на ней образуется слой вспененного расплава, который стекает, обнажая свежую поверхность шихты. Процесс спекания, плавления и удаления расплава с поверхности шихты идёт до тех пор, пока последний слой шихты не превратиться в расплав, покрытой варочной пеной. Провариваясь, слой шихты распадается на изолированные участки, окружённые пеной, которые затем полностью растворяются, и остается одня пена. Часть ванной печи, покрытая слоем шихты, образует границу шихты; примыкающая к ней часть, покрытая пеной – границу пены. Эти две части вместе называют зоной варки, которая расположена между засыпочным концом ванной печи и квельпунктом (максимум на кривой изменения температур по длине печи). Следующая за квельпунктом часть печи называется зоной осветления; для этой зоны характерно выделение пузырьков газа, вследствие чего поверхность стекломассы бывает покрыта скоплениями пузырьков и кажется «рябой». К зоне осветления примыкает зона студки, поверхность которой должна быть зеркальной, так как выделение газов должно закончиться. Студка продолжается и в зоне выработки, где стекломасса остывает, приобретая вязкость, необходимую для выработки.

Для обеспечения стабильности работы печи следует добиваться устойчивости длины каждой из зон. Изменение границ зоны варки вызывает нарушение режима обогрева глубинных слоёв, что может привести к вовлечению в выработочной поток дефектной по термической и химической однородности стекломассы. Устойчивость протяжности зон по длине печи достигается за счёт четкого поддержания температурного максимума по стекломассе на границе зоны варки и зоны осветления; постоянство состава шихты и соотношения шихты и боя; стабилизации удельных съёмов стекломассы; стабильных теплового и газового режимов.

Стекломасса в ванной печи находятся в непрерывном движении, главной причиной которого является разность уровней, возникающая в условиях отбора стекломассы на выработочной конце печи. По этой причине в ванной печи постоянно существует выработочной поток, который питается за счёт свежих порций шихты, превращаемых в стекломассу. Кроме этого главного рабочего потока, вся стекломасса вовлекается в конвекционное движение из-за разности температур расплава по зонам бассейна печи. Особую роль в организации конвекционных потоков играет квельпункт, создавая термическую преграду на пути рабочего и тепловых потоков стекломассы. Тепловой барьер по линии температурного максимума образует в ванной печи границу раздела потоков стекломассы. От этой границы наиболее горячая стекломасса стекает к обоим концам печи, охлаждается, опускается вниз, и движется в придонной области обратно, создавая круговые потоки. Температурный градиент возникает также и в поперечном направлении, так как всегда существует разница температур у стен бассейна и в продольной осевой части печи. Поэтому кроме продольных тепловых потоков имеются и поперечные круговые потоки.

Продольные тепловые потоки имеют сыпочный и выработочный цикл. Сыпочный цикл образуется потоком охлаждающейся стекломассы у засыпочного конца печи, которая опускается вниз, течет в придонной области до линии квельпункта, где поднимается вверх и возвращается обратно к концу загрузки шихты.

Рис.8. Траектория движения продольных конвекционных потоков стекломассы в ванной печи листового стекла: А – сыпочный цикл; Б – выработочный цикл

Выработочный цикл образуется рабочим потоком стекломассы, который частично используется на формование, а часть, охлаждаясь, опускается в придонные слои и возвращается обратно, замыкая круг в области квельпункта. Мощность потоков зависит от разности температур на отдельных участках ванной печи, от количества вырабатываемой стекломассы, глубины бассейна и других причин. Скорости потоков зависят от конструкции печи и от места их циркуляции и составляют для выработочного цикла 8-15 м\ ч, для сыпачного цикла 5-7 м. ч и для поперечного (у стен) – порядка 1м\ч.

Правильно организованные потоки стекломассы способствуют более полному протеканию всех стадий стекловарения. Сыпочные потоки улучшают условия для провара, осветления и гомогенезации стекломассы. Потоки выработочного цикла способствуют поступлению температурно-однородной стекломассы на выработку. Вместе с тем потоки могут отрицательно влиять на качество стекломассы при изменении их направления и скорости, поэтому главное условие нормальной работы ванной печи – строгое саблюдение постоянства теплового режима, при этом потоки стекломассы сохраняют стабильность, их интенсивность и трассы остаются неизменными.

Для каждой печи в зависимости от её конструкции и вида стекла устанавливается определённый технологический режим варки стекла, который включает: тепловой режим по длине печи и температурный режим по длине печи вплоть до зоны формования.

Существующие способы интенсификации процесса стекловарения можно разделить на две группы: физико-химические и теплотехнические. К физико-химическим способам относятся: тонкое измельчение компонентов шихты, гранулирование шихты, применение ускорителей варки и осветителей, механическое перемешивание и бурление стекломассы. К теплотехническим способам относятся: повышение температуры в зоне варки, применение электроподогрева.

По источнику тепловой энергии различают пламенные, электрические и пламенно-электрические стекловаренные печи.

В пламенных печах обогрев осуществляется путём сжигания природного газа в пламенном пространстве печи. Максимальная температура газового пространства достигает 1650 0 С. Удельный расход теплоты составляет 10-14 МДж/кг стекломассы. Удельный съем стекломассы с площади варочного бассейна в зависимости от вида стекла достигает 900 – 3000 кг/(м 2 сут). Тепловой КПД пламенных печей 16- 25 %.

Обогрев электрических печей основан на свойствах расплавленной стекломассы проводить электрический ток, при температурах выше 1000 0 С и выделять теплоту по закону Джоуля-Ленца. Электрические печи для варки стекла по сравнению с пламенными имеют следующие преимущества: отсутствие потерь тепла с уходящими газами, уменьшение потерь из шихты и стекломассы летучих соединений, создание необходимой газовой среды над зеркалом стекломассы. Температура стекломассы достигает высоких значений (до 1600 0 С) по сравнению с пламенными печами(1450-1480 0 С). Производительность наиболее распространённых электрических печей находится в пределах 0,4-4,0 т/сут. Крупные наиболее современные печи имеют производительность 150 – 200 т/сут. Максимальные удельные съемы выше, чем в пламенных печах и составляют от 6000 до 10000 кг/(м 2 сут). Расход электроэнергии составляет 1-2 кВт/кг стекломассы. Тепловой КПД электрических печей 60 – 70 %. К недостаткам электрических печей следует отнести высокую стоимость электроэнергии и электродов. КПД пламенных печей может быть повышено до 45-50% при использовании дополнительного электроподогрева (ДЭП). Роль ДЭП – усиление теплового барьера печи (линия квельпункта) и подача теплоты к шихте снизу, что ускоряет процесс провара. Преимущества ДЭП: уменьшение температуры в подсводовом пространстве и увеличение кампании печи; стабилизация теплового режима и улучшение качества стекломассы. Введение ДЭП позволяет доводить удельные съемы до 3000-4000 кг/(м 2 сут) и повышает производительность печи на 10-60%.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png