»Vidim skupine nejasnih števil, ki so skrite tam v temi, za majhno svetlobo, ki jo daje sveča razuma. Šepetata si; zaroto kdo ve kaj. Morda nas ne marajo preveč, ker smo v svoje misli ujeli njihove mlajše brate. Ali pa morda preprosto živijo enomestno življenje, zunaj našega razumevanja.
Douglas Ray

Prej ali slej vsakogar muči vprašanje, kaj je največje število. Na otrokovo vprašanje obstaja milijon odgovorov. kaj sledi trilijon. In še dlje? Pravzaprav je odgovor na vprašanje, katera so največja števila, preprost. Vse, kar morate storiti, je, da največjemu številu dodate eno in to ne bo več največje. Ta postopek se lahko nadaljuje neomejeno dolgo.

Toda če postavite vprašanje: kaj je največje število, ki obstaja, in kako je njegovo pravo ime?

Zdaj bomo izvedeli vse ...

Obstajata dva sistema za poimenovanje številk - ameriški in angleški.

Ameriški sistem je zgrajen povsem preprosto. Vsa imena velikih števil so sestavljena takole: na začetku je latinska redna številka, na koncu pa se ji doda pripona -milijon. Izjema je ime »milijon«, ki je ime števila tisoč (lat. mille) in povečevalno pripono -illion (glej tabelo). Tako dobimo številke trilijon, kvadrilijon, kvintilion, sekstilijon, septilijon, oktilion, nonilijon in decilijon. Ameriški sistem uporabljajo v ZDA, Kanadi, Franciji in Rusiji. Število ničel v številu, zapisanem v ameriškem sistemu, lahko ugotovite s preprosto formulo 3 x + 3 (kjer je x latinska številka).

Angleški sistem poimenovanja je najpogostejši na svetu. Uporabljajo ga na primer v Veliki Britaniji in Španiji ter v večini nekdanjih angleških in španskih kolonij. Imena števil v tem sistemu so zgrajena takole: takole: latinski številki se doda pripona -milijon, naslednja številka (1000-krat večja) je zgrajena po principu - ista latinska številka, vendar pripona - milijarde. To pomeni, da za trilijonom v angleškem sistemu sledi trilijon in šele nato kvadrilijon, ki mu sledi kvadrilijon itd. Tako sta kvadrilijon po angleškem in ameriškem sistemu popolnoma različni številki! Število ničel v številu, ki je napisano po angleškem sistemu in se konča s pripono -milijon, lahko ugotovite z uporabo formule 6 x + 3 (kjer je x latinska številka) in z uporabo formule 6 x + 6 za števila. ki se konča z - milijardo.

Iz angleškega sistema je v ruski jezik prešla le številka milijarda (10 9), ki bi jo bilo še vedno bolj pravilno imenovati, kot jo imenujejo Američani - milijarda, saj smo prevzeli ameriški sistem. Kdo pa pri nas dela kaj po pravilih! ;-) Mimogrede, včasih se beseda bilijon uporablja v ruščini (to se lahko prepričate sami, če poiščete Google ali Yandex) in očitno pomeni 1000 bilijonov, tj. kvadrilijon.

Poleg števil, zapisanih z latinskimi predponami po ameriškem ali angleškem sistemu, poznamo tudi tako imenovana nesistemska števila, t.j. številke, ki imajo svoja imena brez kakršnih koli latinskih predpon. Takšnih številk je več, vendar vam bom o njih povedal malo kasneje.

Vrnimo se k pisanju z latinskimi številkami. Zdi se, da lahko zapišejo številke do neskončnosti, vendar to ni povsem res. Zdaj bom pojasnil, zakaj. Poglejmo najprej, kako se imenujejo števila od 1 do 10 33:

In zdaj se postavlja vprašanje, kaj naprej. Kaj je za decilijonom? Načeloma je seveda mogoče s kombiniranjem predpon ustvariti takšne pošasti, kot so: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion in novemdecillion, vendar bodo to že sestavljena imena in nas je zanimalo številke naših lastnih imen. Zato lahko po tem sistemu poleg zgoraj navedenih še vedno dobite samo tri lastna imena - vigintillion (iz lat.viginti- dvajset), centilijon (iz lat.centum- sto) in milijon (iz lat.mille- tisoč). Rimljani niso imeli več kot tisoč lastnih imen za števila (vsa števila nad tisoč so bila sestavljena). Na primer, Rimljani so imenovali milijon (1.000.000)decies centena milia, to je "desetsto tisoč." In zdaj, pravzaprav, tabela:

Tako so po takem sistemu števila večja od 10 3003 , ki bi imela svoje, nezloženo ime, je nemogoče dobiti! Toda kljub temu so znane številke, večje od milijona - to so iste nesistemske številke. Končno spregovorimo o njih.


Najmanjša taka številka je miriada (je celo v Dahlovem slovarju), kar pomeni sto stotin, torej 10.000, vendar je ta beseda zastarela in se praktično ne uporablja, zanimivo pa je, da je beseda »miriade«. široko uporabljen, sploh ne pomeni določenega števila, temveč nešteto, nešteto množico česa. Menijo, da je beseda nešteto prišla v evropske jezike iz starega Egipta.

O izvoru te številke obstajajo različna mnenja. Nekateri menijo, da izvira iz Egipta, drugi pa, da se je rodil šele v stari Grčiji. Kakor koli že, nešteto je zaslovelo prav po zaslugi Grkov. Nešteto je bilo ime za 10.000, ni pa bilo imen za števila, večja od deset tisoč. Vendar pa je Arhimed v svojem zapisu "Psammit" (tj. Peščeni račun) pokazal, kako sistematično konstruirati in poimenovati poljubno velika števila. Natančneje, ko v makovo seme položi 10.000 (nešteto) zrn peska, ugotovi, da v vesolju (krogla s premerom nešteto premerov Zemlje) ne bi ustrezalo (v našem zapisu) več kot 10 63 zrna peska Zanimivo je, da sodobni izračuni števila atomov v vidnem vesolju vodijo do številke 10 67 (skupaj neštetokrat več). Arhimed je predlagal naslednja imena za številke:
1 miriada = 10 4 .
1 di-miriada = miriada miriad = 10 8 .
1 trimiriada = di-miriada di-miriada = 10 16 .
1 tetramiriad = trimiriade trimiriade = 10 32 .
itd.


Google(iz angleškega googol) je število deset na stoto potenco, to je ena, ki ji sledi sto ničel. O »googolu« je leta 1938 v članku »Nova imena v matematiki« v januarski številki revije Scripta Mathematica prvič pisal ameriški matematik Edward Kasner. Po njegovih besedah ​​je bil njegov devetletni nečak Milton Sirotta tisti, ki je predlagal, da bi veliko številko poimenovali "googol". Ta številka je postala splošno znana po zaslugi iskalnika, poimenovanega po njej. Google. Upoštevajte, da je »Google« blagovna znamka, googol pa številka.


Edvard Kasner.

Na internetu lahko pogosto zasledite, da se omenja - a to ni res ...

V znameniti budistični razpravi Jaina Sutra, ki sega v leto 100 pr. n. št., se pojavlja številka asankheya(iz Kitajske asenzi- nešteto), enako 10 140. Menijo, da je to število enako številu kozmičnih ciklov, potrebnih za dosego nirvane.


Googolplex(angleščina) googolplex) - številka, ki sta jo prav tako izumila Kasner in njegov nečak in pomeni ena z googolom ničel, to je 10 10100 . Takole sam Kasner opisuje to "odkritje":


Otroci govorijo modre besede vsaj tako pogosto kot znanstveniki. Ime "googol" si je izmislil otrok (devetletni nečak dr. Kasnerja), ki so ga prosili, naj si izmisli ime za zelo veliko število, in sicer 1 s sto ničlami ​​za njim. Bil je zelo prepričan to število ni bilo neskončno, zato je enako gotovo moralo imeti ime, hkrati pa je dal ime za še večje število: "Googolplex je veliko večji od googola." vendar je še vedno končna, kot je hitro poudaril izumitelj imena.

Matematika in domišljija(1940) Kasnerja in Jamesa R. Newmana.

Še večje število kot googolplex - Število Skewes (Skewesovo število) je leta 1933 predlagal Skewes (Skewes. J. London Math. Soc. 8, 277-283, 1933.) pri dokazovanju Riemannove hipoteze o praštevilih. To pomeni e do stopnje e do stopnje e na potenco 79, to je ee e 79 . Kasneje te Riele, H. J. J. "O znaku razlike p(x)-Li(x)." matematika Računalništvo. 48, 323-328, 1987) zmanjšal število Skuse na ee 27/4 , kar je približno enako 8,185·10 370. Jasno je, da je vrednost števila Skuse odvisna od števila e, potem ni celo število, zato ga ne bomo upoštevali, sicer bi se morali spomniti drugih nenaravnih števil - števila pi, števila e itd.

Vendar je treba opozoriti, da obstaja drugo Skusejevo število, ki se v matematiki označuje kot Sk2, ki je celo večje od prvega Skusejevega števila (Sk1). Druga številka Skewes, je uvedel J. Skuse v istem članku za označevanje števila, za katerega Riemannova hipoteza ne drži. Sk2 je enako 1010 10103 , to je 1010 101000 .

Kot razumete, več kot je stopinj, težje je razumeti, katera številka je večja. Na primer, če pogledamo Skewesova števila, je brez posebnih izračunov skoraj nemogoče razumeti, katera od teh dveh številk je večja. Tako postane uporaba potenc za super velika števila neprijetna. Poleg tega lahko pridete do takšnih številk (in že so bile izumljene), ko stopinje stopinj preprosto ne ustrezajo strani. Da, to je na strani! Ne bodo sodile niti v knjigo velikosti celega vesolja! V tem primeru se postavlja vprašanje, kako jih zapisati. Težava je, kot razumete, rešljiva in matematiki so razvili več načel za pisanje takšnih številk. Res je, da je vsak matematik, ki se je spraševal o tem problemu, prišel do svojega načina pisanja, kar je privedlo do obstoja več, med seboj nepovezanih metod za zapisovanje števil - to so zapisi Knuta, Conwaya, Steinhousea itd.

Razmislite o zapisu Huga Stenhousea (H. Steinhaus. Matematični posnetki, 3. izd. 1983), kar je precej preprosto. Stein House je predlagal pisanje velikih števil v geometrijske oblike - trikotnik, kvadrat in krog:

Steinhouse je prišel do dveh novih supervelikih številk. Poimenoval je številko - Mega, številka pa je Megiston.

Matematik Leo Moser je izpopolnil Stenhouseov zapis, ki je bil omejen s tem, da so se pojavile težave in nevšečnosti, če je bilo treba zapisati števila, veliko večja od megistona, saj je bilo treba mnogo krogov risati enega v drugega. Moser je predlagal, da po kvadratih ne narišete krogov, ampak petkotnike, nato šestkotnike itd. Predlagal je tudi formalno notacijo za te poligone, tako da je bilo mogoče zapisovati številke brez risanja zapletenih slik. Moserjeva notacija izgleda takole:

Tako je po Moserjevem zapisu Steinhouseov mega zapisan kot 2, megiston pa kot 10. Poleg tega je Leo Moser predlagal, da se mnogokotnik s številom stranic, ki je enak mega, imenuje megagon. In predlagal je število "2 v Megagonu", to je 2. To število je postalo znano kot Moserjeva številka ali preprosto kot Moser

Vendar Moser ni največja številka. Največje število, ki je bilo kdaj uporabljeno v matematičnih dokazih, je meja, znana kot Grahamova številka(Grahamovo število), prvič uporabljeno leta 1977 pri dokazu ene ocene v Ramseyjevi teoriji. Povezano je z bikromatskimi hiperkockami in ga ni mogoče izraziti brez posebnega 64-nivojskega sistema posebnih matematičnih simbolov, ki ga je leta 1976 uvedel Knuth.

Na žalost števila, zapisanega v Knuthovem zapisu, ni mogoče pretvoriti v zapis z uporabo Moserjevega sistema. Zato bomo morali pojasniti tudi ta sistem. Načeloma tudi v tem ni nič zapletenega. Donald Knuth (da, da, to je isti Knuth, ki je napisal "Umetnost programiranja" in ustvaril urejevalnik TeX) je prišel do koncepta supermoči, ki ga je predlagal zapisati s puščicami, usmerjenimi navzgor:

Na splošno izgleda takole:

Mislim, da je vse jasno, zato se vrnimo k Grahamovi številki. Graham je predlagal tako imenovana G-števila:

Številka G63 se je začela imenovati Grahamova številka(pogosto je označen preprosto kot G). To število je največje znano število na svetu in je celo navedeno v Guinnessovi knjigi rekordov. No, Grahamovo število je večje od Moserjevega.

P.S. Da bi prinesel veliko korist vsemu človeštvu in postal znan skozi stoletja, sem se odločil, da bom sam izmislil in poimenoval največje število. Ta številka bo poklicana sponka in je enako številu G100. Zapomnite si ga in ko bodo vaši otroci vprašali, katero je največje število na svetu, jim povejte, da se imenuje to število sponka

Ali torej obstajajo števila, ki so večja od Grahamovega? Za začetek je seveda Grahamova številka. Kar zadeva pomembno število ... no, obstaja nekaj hudičevo zapletenih področij matematike (zlasti področja, znanega kot kombinatorika) in računalništva, kjer se pojavljajo števila, ki so celo večja od Grahamovega. Toda skoraj smo dosegli mejo tega, kar je mogoče racionalno in jasno razložiti.

Obstajajo številke, ki so tako neverjetno, neverjetno velike, da bi bilo potrebno celotno vesolje, da bi jih sploh zapisali. Toda tukaj je tisto, kar je res noro ... nekatere od teh neznansko velikih številk so ključnega pomena za razumevanje sveta.

Ko rečem "največje število v vesolju", res mislim največje pomembenštevilo, največje možno število, ki je na nek način uporabno. Za ta naslov je veliko kandidatov, a takoj vas opozorim: resnično obstaja tveganje, da vam bo poskušanje vsega tega razvozlati glavo. In poleg tega se s preveč matematike ne boste prav zabavali.

Googol in googolplex

Edvard Kasner

Lahko bi začeli z dvema verjetno največjima številoma, za kateri ste kdaj slišali, in to sta dejansko dve največji števili, ki imata splošno sprejeti definiciji v angleškem jeziku. (Obstaja dokaj natančna nomenklatura, ki se uporablja za označevanje tako velikih števil, kot bi želeli, vendar teh dveh števil dandanes ne boste našli v slovarjih.) Googol, odkar je postal svetovno znan (čeprav z napakami, opomba. v resnici je googol ) v obliki Googla, ki se je rodil leta 1920 kot način, kako otroke navdušiti za velika števila.

V ta namen je Edward Kasner (na sliki) peljal svoja dva nečaka, Miltona in Edwina Sirotta, na sprehod skozi New Jersey Palisades. Povabil jih je, naj pripravijo kakršne koli zamisli, nato pa je devetletni Milton predlagal "googol". Od kod mu ta beseda, ni znano, a Kasner se je tako odločil ali število, v katerem za enoto sledi sto ničel, se bo odslej imenovalo googol.

Toda mladi Milton se ni ustavil pri tem; predlagal je še večjo številko, googolplex. To je število, po Miltonu, v katerem je na prvem mestu 1, nato pa toliko ničel, kot bi jih lahko napisal, preden bi se naveličal. Čeprav je ideja fascinantna, se je Kasner odločil, da je potrebna bolj formalna definicija. Kot je razložil v svoji knjigi Mathematics and the Imagination iz leta 1940, Miltonova definicija pušča odprto tvegano možnost, da bi naključni norček postal boljši matematik od Alberta Einsteina preprosto zato, ker ima več vzdržljivosti.

Zato se je Kasner odločil, da bo googolplex ali 1 in nato googol ničel. V nasprotnem primeru in v zapisu, podobnem tistemu, ki ga bomo obravnavali za druga števila, bomo rekli, da je googolplex . Da bi pokazal, kako fascinantno je to, je Carl Sagan nekoč ugotovil, da je fizično nemogoče zapisati vse ničle googolplexa, ker preprosto ni dovolj prostora v vesolju. Če celotno prostornino opazljivega vesolja napolnimo z majhnimi prašnimi delci, velikimi približno 1,5 mikrona, bo število različnih načinov, na katere lahko te delce razporedimo, približno enako enemu googolplexu.

Jezikovno gledano sta googol in googolplex verjetno dve največji pomembni številki (vsaj v angleškem jeziku), vendar, kot bomo zdaj ugotovili, obstaja neskončno veliko načinov za opredelitev "pomena".

Realni svet

Če govorimo o največjem pomembnem številu, obstaja razumen argument, da to res pomeni, da moramo najti največje število z vrednostjo, ki dejansko obstaja na svetu. Začnemo lahko s trenutno človeško populacijo, ki je trenutno okoli 6920 milijonov. Svetovni BDP je bil leta 2010 ocenjen na približno 61.960 milijard dolarjev, vendar sta ti številki nepomembni v primerjavi s približno 100 bilijoni celic, ki sestavljajo človeško telo. Seveda se nobeno od teh števil ne more primerjati s skupnim številom delcev v vesolju, ki se na splošno šteje za približno , in to število je tako veliko, da naš jezik nima besede zanj.

Lahko se malo poigramo s sistemi mer, tako da so številke vedno večje. Tako bo masa Sonca v tonah manjša kot v funtih. Odličen način za to je uporaba Planckovega sistema enot, ki so najmanjše možne mere, za katere še vedno veljajo zakoni fizike. Na primer, starost vesolja v Planckovem času je približno. Če se vrnemo k prvi Planckovi časovni enoti po velikem poku, bomo videli, da je bila takrat gostota vesolja . Dobivamo vse več, a do googola še nismo prišli.

Največje število s katero koli aplikacijo v resničnem svetu - ali v tem primeru aplikacija v resničnem svetu - je verjetno ena najnovejših ocen števila vesolj v multiverzumu. To število je tako veliko, da človeški možgani dobesedno ne bodo mogli zaznati vseh teh različnih vesolj, saj so možgani sposobni le približnih konfiguracij. Pravzaprav je to število verjetno največje število, ki ima kakršen koli praktičen smisel, razen če upoštevate idejo o multiverzumu kot celoti. Vendar pa se tam skrivajo še veliko večje številke. Toda da bi jih našli, moramo iti v področje čiste matematike in ni boljšega mesta za začetek kot praštevila.

Mersennova praštevila

Del težav je priti do dobre definicije, kaj je "pomembno" število. Eden od načinov je razmišljanje v smislu praštevil in sestavljenih števil. Praštevilo, kot se verjetno spomnite iz šolske matematike, je vsako naravno število (ne enako ena), ki je deljivo samo s samim seboj. Torej, in sta praštevili in in sta sestavljeni števili. To pomeni, da lahko vsako sestavljeno število na koncu predstavimo s svojimi prafaktorji. Na nek način je število pomembnejše od, na primer, , ker ga ni mogoče izraziti z zmnožkom manjših števil.

Očitno lahko gremo še malo dlje. , na primer, je pravzaprav samo , kar pomeni, da v hipotetičnem svetu, kjer je naše znanje o številih omejeno na , lahko matematik še vedno izrazi število . Toda naslednje število je praštevilo, kar pomeni, da je edini način, da ga izrazimo, neposredno vedeti za njegov obstoj. To pomeni, da največja znana praštevila igrajo pomembno vlogo, vendar, recimo, googol - ki je na koncu le zbirka števil in , pomnoženih skupaj - pravzaprav ne. In ker so praštevila v bistvu naključna, ni znanega načina za predvidevanje, da bo neverjetno veliko število dejansko praštevilo. Do danes je odkrivanje novih praštevil težak podvig.

Matematiki stare Grčije so imeli koncept praštevil vsaj že leta 500 pr. n. št. in 2000 let kasneje so ljudje še vedeli, katera števila so praštevila le do približno 750. Misleci iz Evklidovega časa so videli možnost poenostavitve, vendar ni bila dokler ga renesančni matematiki niso mogli zares uporabiti v praksi. Ta števila so znana kot Mersennova števila, poimenovana po francoskem znanstveniku Marinu Mersennu iz 17. stoletja. Ideja je povsem preprosta: Mersennovo število je poljubno število oblike . Torej, na primer, in to število je praštevilo, enako velja za.

Mersennovo praštevilo je veliko hitreje in lažje določiti kot katero koli drugo praštevilo, računalniki pa so jih zadnjih šest desetletij trdo iskali. Do leta 1952 je bilo največje znano praštevilo število – število s ciframi. Istega leta je računalnik izračunal, da je število pra, to število pa je sestavljeno iz števk, zaradi česar je veliko večje od googola.

Od takrat so računalniki na lovu in trenutno je Mersennovo število največje praštevilo, ki ga pozna človeštvo. Odkrili so ga leta 2008 in predstavlja številko s skoraj milijoni števk. To je največje znano število, ki ga ni mogoče izraziti z manjšimi številkami, in če želite pomoč pri iskanju še večjega Mersennovega števila, se lahko vi (in vaš računalnik) vedno pridružite iskanju na http://www.mersenne org /.

Število Skewes

Stanley Skewes

Ponovno poglejmo praštevila. Kot sem rekel, se obnašajo bistveno napačno, kar pomeni, da ni mogoče predvideti, kaj bo naslednje praštevilo. Matematiki so bili prisiljeni uporabiti nekaj precej fantastičnih meritev, da bi našli način za napovedovanje prihodnjih praštevil, tudi na nejasen način. Najuspešnejši od teh poskusov je verjetno funkcija štetja praštevil, ki jo je v poznem 18. stoletju izumil legendarni matematik Carl Friedrich Gauss.

Prihranil vam bom bolj zapleteno matematiko – tako ali tako nas čaka še veliko več – toda bistvo funkcije je naslednje: za katero koli celo število lahko ocenite, koliko praštevil je manjših od . Na primer, če , funkcija predvideva, da bi morala obstajati praštevila, če bi morala biti praštevila, manjša od , in če bi morala obstajati manjša praštevila, ki so praštevila.

Razporeditev praštevil je res nepravilna in je le približek dejanskega števila praštevil. Pravzaprav vemo, da obstajajo praštevila, manjša od , praštevila, manjša od , in praštevila, manjša od . To je seveda odlična ocena, vendar je vedno le ocena ... in natančneje ocena od zgoraj.

V vseh znanih primerih do , funkcija, ki najde število praštevil, nekoliko preceni dejansko število praštevil, manjših od . Matematiki so nekoč mislili, da bo tako vedno, ad infinitum, in da bo to zagotovo veljalo za nekatera nepredstavljivo ogromna števila, toda leta 1914 je John Edensor Littlewood dokazal, da bo za neko neznano, nepredstavljivo veliko število ta funkcija začela ustvarjati manj praštevil. , nato pa bo neskončno številokrat preklopil med zgornjo in spodnjo oceno.

Lov je potekal na štartni točki dirk, nato pa se je pojavil Stanley Skewes (glej fotografijo). Leta 1933 je dokazal, da je zgornja meja, ko funkcija, ki približuje število praštevil, najprej proizvede manjšo vrednost, število . Težko je zares razumeti, tudi v najbolj abstraktnem smislu, kaj to število dejansko predstavlja, in s tega vidika je bilo največje število, ki je bilo kdaj uporabljeno v resnem matematičnem dokazu. Matematiki so od takrat lahko zmanjšali zgornjo mejo na razmeroma majhno število, vendar prvotno število ostaja znano kot Skewesovo število.

Kako velika je torej številka, ki zasenči celo mogočni googolplex? V The Penguin Dictionary of Curious and Interesting Numbers David Wells pripoveduje o enem od načinov, kako je matematiku Hardyju uspelo konceptualizirati velikost števila Skuse:

»Hardy je mislil, da je to »največje število, ki je bilo kdaj uporabljeno za kakršen koli poseben namen v matematiki«, in predlagal, da če bi igrali partijo šaha z vsemi delci vesolja kot figurami, bi bila ena poteza sestavljena iz zamenjave dveh delcev in bi se igra ustavila, ko bi se isti položaj ponovil še tretjič, potem bi bilo število vseh možnih iger približno enako Skusejevemu številu.

Še zadnja stvar, preden gremo naprej: govorili smo o manjšem od obeh Skewesovih števil. Obstaja še eno Skusejevo število, ki ga je matematik odkril leta 1955. Prvo število izhaja iz dejstva, da je tako imenovana Riemannova hipoteza resnična - to je posebej težka hipoteza v matematiki, ki ostaja nedokazana, zelo uporabna, ko gre za praštevila. Če pa je Riemannova hipoteza napačna, je Skuse ugotovil, da se začetna točka skokov poveča na .

Problem velikosti

Preden pridemo do števila, zaradi katerega je celo Skewesovo število videti majhno, se moramo malo pogovoriti o obsegu, ker sicer ne moremo oceniti, kam bomo šli. Najprej vzemimo številko - to je majhna številka, tako majhna, da lahko ljudje dejansko intuitivno razumejo, kaj pomeni. Zelo malo je števil, ki ustrezajo temu opisu, saj števila, večja od šest, prenehajo biti ločena števila in postanejo "več", "mnogo" itd.

Zdaj pa vzemimo, tj. . Čeprav intuitivno, tako kot pri številki, dejansko ne moremo razumeti, kaj je, si je zelo enostavno predstavljati, kaj je. Zaenkrat gre dobro. Toda kaj se zgodi, če se preselimo v ? To je enako ali . Še zelo daleč smo od tega, da bi si lahko predstavljali to količino, kot vsako drugo zelo veliko - izgubimo sposobnost dojemanja posameznih delov nekje okoli milijona. (Resda bi trajalo blazno dolgo, da bi dejansko prešteli do milijon česar koli, a bistvo je, da smo še vedno sposobni zaznati to številko.)

Vendar, čeprav si ne moremo predstavljati, lahko vsaj na splošno razumemo, kaj je 7600 milijard, morda če jih primerjamo z nečim, kot je ameriški BDP. Premaknili smo se od intuicije k predstavitvi k preprostemu razumevanju, vendar imamo vsaj še vedno nekaj vrzeli v razumevanju tega, kaj število je. To se bo kmalu spremenilo, ko se premaknemo še eno stopničko navzgor po lestvici.

Da bi to naredili, se moramo premakniti na zapis, ki ga je uvedel Donald Knuth, znan kot zapis s puščico. Ta zapis lahko zapišemo kot. Ko gremo nato na , bo številka, ki jo dobimo, . To je enako seštevku trojk. Vse druge številke, o katerih smo že govorili, smo zdaj daleč in resnično presegli. Navsezadnje so imeli tudi največji med njimi le tri ali štiri izraze v seriji indikatorjev. Na primer, tudi super-Skusejevo število je »samo« - tudi ob upoštevanju dejstva, da sta osnova in eksponenta veliko večja od , še vedno ni absolutno nič v primerjavi z velikostjo številskega stolpa z milijardo članov .

Očitno je, da ni mogoče razumeti tako ogromnih števil ... pa vendar je še vedno mogoče razumeti proces, v katerem nastanejo. Nismo mogli razumeti resnične količine, ki jo daje stolp moči z milijardo trojčkov, vendar si v bistvu lahko predstavljamo takšen stolp z veliko členi in res spodoben superračunalnik bi lahko shranil takšne stolpe v pomnilnik, tudi če bi ni mogel izračunati njihove dejanske vrednosti.

To postaja vedno bolj abstraktno, a bo le še slabše. Morda mislite, da je stolp stopinj, katerega eksponentna dolžina je enaka (pravzaprav sem v prejšnji različici te objave naredil točno to napako), vendar je preprosto. Z drugimi besedami, predstavljajte si, da lahko izračunate natančno vrednost močnostnega stolpa trojčkov, ki je sestavljen iz elementov, nato pa ste vzeli to vrednost in ustvarili nov stolp s toliko v njem kot ... to daje .

Ta postopek ponovite z vsako naslednjo številko ( opomba začenši z desne), dokler tega ne storite večkrat, nato pa končno dobite . To je številka, ki je preprosto neverjetno velika, vendar se zdijo vsaj koraki do nje razumljivi, če vse počnete zelo počasi. Števil ne moremo več razumeti ali si predstavljati postopka, po katerem so pridobljene, razumemo pa vsaj osnovni algoritem, le v dovolj dolgem času.

Zdaj pa pripravimo um, da ga bo res razstrelil.

Grahamovo število (Graham)

Ronald Graham

Tako dobite Grahamovo število, ki ima mesto v Guinnessovi knjigi rekordov kot največje število, ki je bilo kdaj uporabljeno v matematičnem dokazu. Popolnoma nemogoče si je predstavljati, kako velik je, in prav tako težko je natančno razložiti, kaj je. V bistvu se Grahamovo število pojavi pri obravnavanju hiperkock, ki so teoretične geometrijske oblike z več kot tremi dimenzijami. Matematik Ronald Graham (glej fotografijo) je želel ugotoviti, pri katerem najmanjšem številu dimenzij bi nekatere lastnosti hiperkocke ostale stabilne. (Oprostite za tako nejasno razlago, vendar sem prepričan, da moramo vsi pridobiti vsaj dve diplomi iz matematike, da bo bolj natančna.)

V vsakem primeru je Grahamovo število zgornja ocena tega najmanjšega števila dimenzij. Torej, kako velika je ta zgornja meja? Vrnimo se k številu, ki je tako veliko, da lahko le nejasno razumemo algoritem za njegovo pridobitev. Zdaj, namesto da samo skočimo še eno stopnjo navzgor na , bomo šteli število, ki ima puščice med prvimi in zadnjimi tremi. Zdaj smo daleč onstran niti najmanjšega razumevanja tega števila ali celo tega, kaj moramo narediti, da ga izračunamo.

Zdaj ponovimo ta postopek enkrat ( opomba pri vsakem naslednjem koraku zapišemo število puščic, ki je enako številu, pridobljenemu v prejšnjem koraku).

To, gospe in gospodje, je Grahamovo število, ki je približno za red velikosti višje od točke človeškega razumevanja. To je število, ki je toliko večje od katerega koli števila, ki si ga lahko predstavljate - je toliko večje od katere koli neskončnosti, ki bi si jo lahko kdaj zamislili - preprosto kljubuje tudi najbolj abstraktnemu opisu.

Ampak tukaj je čudna stvar. Ker je Grahamovo število v bistvu samo trojček, pomnožen skupaj, poznamo nekatere njegove lastnosti, ne da bi jih dejansko izračunali. Grahamovega števila ne moremo predstaviti z znanim zapisom, tudi če bi za zapis uporabili celotno vesolje, vendar vam lahko zdaj povem zadnjih dvanajst števk Grahamovega števila: . In to še ni vse: poznamo vsaj zadnje števke Grahamovega števila.

Seveda si je vredno zapomniti, da je to število le zgornja meja v Grahamovem izvirnem problemu. Povsem mogoče je, da je dejansko število meritev, potrebnih za doseganje želene lastnosti, veliko, veliko manjše. Pravzaprav se že od osemdesetih let prejšnjega stoletja, po mnenju večine strokovnjakov s tega področja, verjame, da dejansko obstaja le šest dimenzij – številka je tako majhna, da jo lahko razumemo intuitivno. Spodnja meja je bila od takrat dvignjena na , vendar še vedno obstaja velika verjetnost, da rešitev Grahamovega problema ne leži niti blizu tako velikega števila, kot je Grahamovo število.

Proti neskončnosti

Ali torej obstajajo števila, ki so večja od Grahamovega? Za začetek je seveda Grahamova številka. Kar zadeva pomembno število ... no, obstaja nekaj hudičevo zapletenih področij matematike (zlasti področja, znanega kot kombinatorika) in računalništva, kjer se pojavljajo števila, ki so celo večja od Grahamovega. Vendar smo skoraj dosegli mejo tega, kar lahko upam, da bo kdaj racionalno razloženo. Tistim, ki so dovolj nespametni, da gredo še dlje, priporočamo nadaljnje branje na lastno odgovornost.

No, zdaj pa neverjeten citat, ki ga pripisujejo Douglasu Rayu ( opomba Iskreno povedano, zveni precej smešno:

»Vidim skupine nejasnih števil, ki so skrite tam v temi, za majhno svetlobo, ki jo daje sveča razuma. Šepetata si; zaroto kdo ve kaj. Morda nas ne marajo preveč, ker smo v svoje misli ujeli njihove mlajše brate. Ali pa morda preprosto živijo enomestno življenje, zunaj našega razumevanja.

Svet znanosti je preprosto neverjeten s svojim znanjem. Vendar pa tudi najbolj briljantna oseba na svetu ne bo mogla dojeti vseh. Toda za to si morate prizadevati. Zato bi v tem članku rad ugotovil, kaj je največje število.

O sistemih

Najprej je treba povedati, da na svetu obstajata dva sistema za poimenovanje števil: ameriški in angleški. Odvisno od tega se lahko isto število imenuje drugače, čeprav ima enak pomen. In na samem začetku se morate ukvarjati s temi niansami, da se izognete negotovosti in zmedi.

ameriški sistem

Zanimivo bo, da se ta sistem uporablja ne samo v Ameriki in Kanadi, ampak tudi v Rusiji. Poleg tega ima tudi svoje znanstveno ime: sistem za poimenovanje števil s kratko lestvico. Kako se imenujejo velika števila v tem sistemu? Torej, skrivnost je precej preprosta. Na samem začetku bo latinska redna številka, za katero bo preprosto dodana znana pripona "-milijon". Zanimivo bo naslednje dejstvo: v prevodu iz latinščine lahko številko "milijon" prevedemo kot "tisoč". V ameriški sistem sodijo naslednja števila: trilijon je 10 12, kvintiljon je 10 18, oktilion je 10 27 itd. Prav tako boste zlahka ugotovili, koliko ničel je zapisanih v številu. Če želite to narediti, morate poznati preprosto formulo: 3*x + 3 (kjer je "x" v formuli latinska številka).

angleški sistem

Kljub preprostosti ameriškega sistema pa je v svetu še vedno bolj razširjen angleški sistem, ki je sistem poimenovanja števil z dolgo skalo. Od leta 1948 se uporablja v državah, kot so Francija, Velika Britanija, Španija, pa tudi v državah, ki so bile nekdanje kolonije Anglije in Španije. Tudi konstrukcija številk je tukaj precej preprosta: latinski oznaki je dodana pripona "-milijon". Nadalje, če je število 1000-krat večje, se doda pripona "-milijarda". Kako lahko ugotovite število skritih ničel v številu?

  1. Če se število konča na "-milijon", boste potrebovali formulo 6 * x + 3 ("x" je latinska številka).
  2. Če se številka konča z "-billion", boste potrebovali formulo 6 * x + 6 (kjer je "x" spet latinska številka).

Primeri

Na tej stopnji lahko kot primer razmislimo o tem, kako se bodo imenovale iste številke, vendar v drugačni lestvici.

Preprosto lahko vidite, da isto ime v različnih sistemih pomeni različne številke. Na primer trilijon. Zato morate pri obravnavi številke še vedno najprej ugotoviti, po katerem sistemu je napisana.

Izvensistemske številke

Vredno je povedati, da poleg sistemskih obstajajo tudi nesistemske številke. Morda se jih je največ izgubilo med njimi? To je vredno pogledati.

  1. Googol. To je število deset na stoto potenco, torej ena, ki ji sledi sto ničel (10.100). To številko je leta 1938 prvič omenil znanstvenik Edward Kasner. Zelo zanimiv podatek: svetovni iskalnik Google se imenuje po takrat precej velikem številu - googol. In ime si je izmislil Kasnerjev mladi nečak.
  2. Asankheya. To je zelo zanimivo ime, ki je iz sanskrta prevedeno kot "nešteto". Njegova številska vrednost je ena s 140 ničlami ​​- 10 140. Zanimivo bo naslednje dejstvo: to so ljudje vedeli že leta 100 pr. e., kar dokazuje zapis v Jaina Sutri, znameniti budistični razpravi. To število je veljalo za posebno, saj se je verjelo, da je za dosego nirvane potrebno enako število kozmičnih ciklov. Tudi takrat je ta številka veljala za največjo.
  3. Googolplex. To številko sta izumila isti Edward Kasner in njegov prej omenjeni nečak. Njegova številčna oznaka je deset na deseto potenco, ta pa je sestavljena iz stotinke (tj. deset na googolplex potenco). Znanstvenik je še povedal, da na ta način lahko dobite poljubno veliko število: googoltetraplex, googolhexaplex, googoloctaplex, googoldecaplex itd.
  4. Grahamovo število je G. To je največje število, ki ga je Guinnessova knjiga rekordov priznala kot tako v zadnjih 1980 letih. Je bistveno večji od googolplexa in njegovih derivatov. In znanstveniki so celo rekli, da celotno vesolje ne more vsebovati celotnega decimalnega zapisa Grahamovega števila.
  5. Moserjeva številka, Skewesova številka. Te številke veljajo tudi za ene največjih in se najpogosteje uporabljajo pri reševanju različnih hipotez in izrekov. In ker teh številk ni mogoče zapisati s splošno sprejetimi zakoni, vsak znanstvenik to počne na svoj način.

Najnovejša dogajanja

Vendar je še vedno vredno povedati, da popolnosti ni omejitev. In mnogi znanstveniki so verjeli in še vedno verjamejo, da največje število še ni bilo najdeno. In seveda jim bo pripadla čast, da to storijo. Ameriški znanstvenik iz Missourija je dolgo delal na tem projektu in njegovo delo je bilo okronano z uspehom. 25. januarja 2012 je našel novo največje število na svetu, ki je sestavljeno iz sedemnajst milijonov števk (kar je 49. Mersennovo število). Opomba: za največje število je veljalo tisto, ki ga je računalnik našel leta 2008, imelo je 12 tisoč števk in je izgledalo takole: 2 43112609 - 1.

Ne prvič

Treba je povedati, da so to potrdili znanstveni raziskovalci. Ta številka je šla skozi tri stopnje preverjanja treh znanstvenikov na različnih računalnikih, kar je trajalo celih 39 dni. Ni pa to prvi dosežek v tovrstnem iskanju ameriškega znanstvenika. Pred tem je razkril največje številke. To se je zgodilo v letih 2005 in 2006. Leta 2008 je računalnik prekinil zmagoviti niz Curtisa Cooperja, a si je leta 2012 vendarle vrnil primat in zasluženi naziv odkritelja.

O sistemu

Kako se vse to zgodi, kako znanstveniki najdejo največje številke? Tako danes namesto njih večino dela opravi računalnik. V tem primeru je Cooper uporabil porazdeljeno računalništvo. Kaj to pomeni? Te izračune izvajajo programi, nameščeni na računalnikih uporabnikov interneta, ki so se prostovoljno odločili sodelovati v raziskavi. V okviru tega projekta je bilo definiranih 14 Mersennovih števil, poimenovanih po francoskem matematiku (gre za praštevila, ki so deljiva samo s seboj in z enico). V obliki formule je videti takole: M n = 2 n - 1 ("n" v tej formuli je naravno število).

O bonusih

Lahko se pojavi logično vprašanje: kaj žene znanstvenike k delu v tej smeri? Torej, to je seveda strast in želja biti pionir. Vendar pa obstajajo tudi bonusi: Curtis Cooper je za svojo idejo prejel denarno nagrado v višini 3000 dolarjev. A to še ni vse. Fundacija Electronic Frontier Foundation (EFF) spodbuja takšna iskanja in obljublja, da bo takoj podelila denarne nagrade v višini 150.000 in 250.000 dolarjev tistim, ki bodo poslali praštevila, sestavljena iz 100 milijonov in milijarde števil. Torej ni dvoma, da danes ogromno znanstvenikov po vsem svetu dela v tej smeri.

Preprosti sklepi

Kakšna je torej največja številka danes? Trenutno jo je našel ameriški znanstvenik z Univerze v Missouriju, Curtis Cooper, kar lahko zapišemo takole: 2 57885161 - 1. Poleg tega je to tudi 48. število francoskega matematika Mersenna. Vendar velja povedati, da temu iskanju ne more biti konca. In ne bo presenetljivo, če nam znanstveniki po določenem času v obravnavo posredujejo naslednje na novo odkrito največje število na svetu. Nobenega dvoma ni, da se bo to zgodilo v zelo bližnji prihodnosti.



Ta članek je na voljo tudi v naslednjih jezikih: tajska

  • Naprej

    Najlepša HVALA za zelo koristne informacije v članku. Vse je predstavljeno zelo jasno. Zdi se, da je bilo z analizo delovanja trgovine eBay vloženega veliko dela

    • Hvala vam in ostalim rednim bralcem mojega bloga. Brez vas ne bi bil dovolj motiviran, da bi posvetil veliko časa vzdrževanju te strani. Moji možgani so tako zgrajeni: rad se poglabljam, sistematiziram razpršene podatke, preizkušam stvari, ki jih še nihče ni naredil ali pogledal s tega zornega kota. Škoda, da naši rojaki zaradi krize v Rusiji nimajo časa za nakupovanje na eBayu. Kupujejo pri Aliexpressu iz Kitajske, saj je tam blago veliko cenejše (pogosto na račun kakovosti). Toda spletne dražbe eBay, Amazon, ETSY bodo Kitajcem zlahka dale prednost pri ponudbi blagovnih znamk, vintage predmetov, ročno izdelanih predmetov in različnih etničnih izdelkov.

      • Naprej

        V vaših člankih je dragocen vaš osebni odnos in analiza teme. Ne opustite tega bloga, sem pogosto. Takšnih bi nas moralo biti veliko. Pošlji mi e-pošto Pred kratkim sem prejel e-pošto s ponudbo, da me bodo naučili trgovati na Amazonu in eBayu.

  • Lepo je tudi, da so poskusi eBaya, da rusificira vmesnik za uporabnike iz Rusije in držav CIS, začeli obroditi sadove. Navsezadnje velika večina državljanov držav nekdanje ZSSR nima dobrega znanja tujih jezikov. Angleško ne govori več kot 5% prebivalstva. Več jih je med mladimi. Zato je vsaj vmesnik v ruščini - to je velika pomoč pri spletnem nakupovanju na tej trgovalni platformi. eBay ni šel po poti svojega kitajskega kolega Aliexpressa, kjer se izvaja strojno (zelo okorno in nerazumljivo, mestoma vzbujajoč smeh) prevajanje opisov izdelkov. Upam, da bo na naprednejši stopnji razvoja umetne inteligence visokokakovostno strojno prevajanje iz katerega koli jezika v katerega koli v nekaj sekundah postalo resničnost. Zaenkrat imamo tole (profil enega od prodajalcev na eBayu z ruskim vmesnikom, a angleškim opisom):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png