“Veo cúmulos de números vagos que se esconden allí en la oscuridad, detrás del pequeño punto de luz que da la vela de la razón. Se susurran entre sí; conspirando sobre quién sabe qué. Quizás no les agrademos mucho por capturar en nuestra mente a sus hermanitos. O tal vez simplemente llevan una vida de un solo dígito, ahí fuera, más allá de nuestra comprensión.
Douglas Ray

Tarde o temprano, todo el mundo se ve atormentado por la pregunta de cuál es el número más grande. Hay un millón de respuestas a la pregunta de un niño. ¿Qué sigue? Billón. ¿Y aún más? De hecho, la respuesta a la pregunta de cuáles son los números más grandes es sencilla. Todo lo que tienes que hacer es sumar uno al número más grande y ya no será el más grande. Este procedimiento puede continuarse indefinidamente.

Pero si te preguntas: ¿cuál es el número más grande que existe y cuál es su nombre propio?

Ahora lo descubriremos todo...

Hay dos sistemas para nombrar números: americano e inglés.

El sistema americano está construido de forma bastante sencilla. Todos los nombres de números grandes se construyen así: al principio hay un número ordinal latino y al final se le agrega el sufijo -millón. Una excepción es el nombre "millón", que es el nombre del número mil (lat. mil millones) y el sufijo de aumento -illion (ver tabla). Así es como obtenemos los números billones, cuatrillones, quintillones, sextillones, septillones, octillones, nomillones y decillones. El sistema americano se utiliza en EE.UU., Canadá, Francia y Rusia. Puede averiguar la cantidad de ceros en un número escrito en el sistema americano usando la fórmula simple 3 x + 3 (donde x es un número latino).

El sistema de nombres inglés es el más común del mundo. Se utiliza, por ejemplo, en Gran Bretaña y España, así como en la mayoría de las antiguas colonias inglesas y españolas. Los nombres de los números en este sistema se construyen así: así: se agrega el sufijo -millón al número latino, el siguiente número (1000 veces mayor) se construye según el principio: el mismo número latino, pero el sufijo - mil millones. Es decir, después de un billón en el sistema inglés hay un billón, y sólo después un cuatrillón, seguido de un cuatrillón, etc. Por lo tanto, ¡un cuatrillón según los sistemas inglés y americano son números completamente diferentes! Puedes averiguar el número de ceros en un número escrito según el sistema inglés y que termina con el sufijo -millón, usando la fórmula 6 x + 3 (donde x es un número latino) y usando la fórmula 6 x + 6 para números terminando en - mil millones.

Sólo el número mil millones (10 9) pasó del sistema inglés al idioma ruso, que aún sería más correcto llamarlo como lo llaman los estadounidenses: mil millones, ya que hemos adoptado el sistema estadounidense. ¡Pero quién en nuestro país hace algo según las reglas! ;-) Por cierto, a veces la palabra billón se usa en ruso (puedes verlo por ti mismo haciendo una búsqueda en Google o Yandex) y, aparentemente, significa 1000 billones, es decir. cuatrillón.

Además de los números escritos con prefijos latinos según el sistema americano o inglés, también se conocen los llamados números que no pertenecen al sistema, es decir, números que tienen nombres propios sin prefijos latinos. Hay varios números de este tipo, pero les contaré más sobre ellos un poco más adelante.

Volvamos a escribir con números latinos. Parecería que pueden escribir números hasta el infinito, pero esto no es del todo cierto. Ahora explicaré por qué. Veamos primero cómo se llaman los números del 1 al 10 33:

Y ahora surge la pregunta: ¿qué sigue? ¿Qué hay detrás del decillón? En principio, es posible, por supuesto, combinar prefijos para generar monstruos como: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion y novemdecillion, pero estos ya serán nombres compuestos, y estábamos interesados ​​en nuestros propios nombres números. Por lo tanto, según este sistema, además de los indicados anteriormente, solo se pueden obtener tres nombres propios: vigintillion (del lat.viginti- veinte), centillón (del lat.centum- cien) y millones (de lat.mil millones- mil). Los romanos no tenían más de mil nombres propios para los números (todos los números superiores a mil eran compuestos). Por ejemplo, los romanos llamaban a un millón (1.000.000)decies centena milia, es decir, "diezcientos mil". Y ahora, en realidad, la tabla:

Por tanto, según dicho sistema, los números son mayores que 10 3003 , que tendría su propio nombre no compuesto, ¡es imposible de obtener! Sin embargo, se conocen cifras superiores a un millón: son las mismas cifras no sistémicas. Finalmente hablemos de ellos.


El número más pequeño es una miríada (incluso está en el diccionario de Dahl), que significa cien centenas, es decir, 10.000. Esta palabra, sin embargo, está desactualizada y prácticamente no se usa, pero es curioso que la palabra "miríadas" también exista. ampliamente utilizado, no significa en absoluto un número definido, sino una multitud incontable, incontable de algo. Se cree que la palabra miríada llegó a las lenguas europeas desde el antiguo Egipto.

Hay diferentes opiniones sobre el origen de este número. Algunos creen que se originó en Egipto, mientras que otros creen que nació sólo en la Antigua Grecia. Sea como fuere, la miríada ganó fama precisamente gracias a los griegos. Myriad era el nombre de 10.000, pero no había nombres para números mayores de diez mil. Sin embargo, en su nota "Psammit" (es decir, cálculo de arena), Arquímedes mostró cómo construir y nombrar sistemáticamente números arbitrariamente grandes. En particular, al colocar 10.000 (innumerables) granos de arena en una semilla de amapola, descubre que en el Universo (una bola con un diámetro de una miríada de diámetros de la Tierra) no cabrían (en nuestra notación) más de 10 63 granos de arena Es curioso que los cálculos modernos sobre el número de átomos en el Universo visible conduzcan al número 10. 67 (en total miles de veces más). Arquímedes sugirió los siguientes nombres para los números:
1 miríada = 10 4 .
1 di-miríada = miríada de miríadas = 10 8 .
1 tri-miríada = di-miríada di-miríada = 10 16 .
1 tetra-miríada = tres-miríada tres-miríada = 10 32 .
etc.


Google(del inglés googol) es el número diez elevado a la centésima potencia, es decir, uno seguido de cien ceros. El "googol" fue escrito por primera vez en 1938 en el artículo "Nuevos nombres en matemáticas" publicado en la edición de enero de la revista Scripta Mathematica por el matemático estadounidense Edward Kasner. Según él, fue su sobrino Milton Sirotta, de nueve años, quien sugirió llamar “googol” al gran número. Este número se hizo conocido gracias al motor de búsqueda que lleva su nombre. Google. Tenga en cuenta que "Google" es una marca y googol es un número.


Eduardo Kasner.

En Internet se puede encontrar a menudo que se menciona esto, pero esto no es cierto...

En el famoso tratado budista Jaina Sutra, que data del año 100 a.C., aparece el número asankheya(de China asenzi- incontable), igual a 10 140. Se cree que este número es igual al número de ciclos cósmicos necesarios para alcanzar el nirvana.


Googolplex(Inglés) googolplex) - un número también inventado por Kasner y su sobrino y que significa uno con un googol de ceros, es decir, 10 10100 . Así describe el propio Kasner este “descubrimiento”:


Los niños pronuncian palabras de sabiduría al menos con tanta frecuencia como los científicos. El nombre "googol" fue inventado por un niño (sobrino de nueve años del Dr. Kasner) a quien se le pidió que pensara un nombre para un número muy grande, es decir, 1 seguido de cien ceros. Estaba muy seguro de ello. este número no era infinito y, por lo tanto, era igualmente seguro que debía tener un nombre. Al mismo tiempo que sugirió "googol", dio un nombre a un número aún mayor: "Un googolplex es mucho más grande que un googol". pero sigue siendo finito, como se apresuró a señalar el inventor del nombre.

Matemáticas y la imaginación.(1940) de Kasner y James R. Newman.

Un número incluso mayor que un googolplex. Número de sesgos (Número de Skewes) fue propuesto por Skewes en 1933 (Skewes. J. Matemáticas de Londres. Soc. 8, 277-283, 1933.) para demostrar la hipótesis de Riemann sobre los números primos. significa mi hasta cierto punto mi hasta cierto punto mi elevado a 79, es decir, ee mi 79 . Posteriormente, te Riele, H. J. J. "Sobre el signo de la diferencia PAG(x)-Li(x)." Matemáticas. Computadora. 48, 323-328, 1987) redujo el número de Skuse a ee 27/4 , que es aproximadamente igual a 8.185·10 370. Está claro que dado que el valor del número de Skuse depende del número mi, entonces no es un número entero, por lo que no lo consideraremos; de lo contrario, tendríamos que recordar otros números no naturales: el número pi, el número e, etc.

Pero cabe señalar que existe un segundo número de Skuse, que en matemáticas se denomina Sk2, que es incluso mayor que el primer número de Skuse (Sk1). Segundo número de Skewes, fue introducido por J. Skuse en el mismo artículo para denotar un número para el cual la hipótesis de Riemann no se cumple. Sk2 es igual a 1010 10103 , eso es 1010 101000 .

Como comprenderás, cuantos más grados haya, más difícil será entender qué número es mayor. Por ejemplo, al observar los números de Skewes, sin cálculos especiales, es casi imposible entender cuál de estos dos números es mayor. Por tanto, para números muy grandes resulta inconveniente utilizar potencias. Además, es posible encontrar esos números (y ya se han inventado) cuando los grados simplemente no caben en la página. ¡Sí, eso está en la página! ¡No caben ni en un libro del tamaño de todo el Universo! En este caso, surge la pregunta de cómo anotarlos. El problema, como comprenderá, tiene solución y los matemáticos han desarrollado varios principios para escribir tales números. Es cierto que cada matemático que se preguntó sobre este problema ideó su propia forma de escribir, lo que llevó a la existencia de varios métodos, no relacionados entre sí, para escribir números: estas son las notaciones de Knuth, Conway, Steinhouse, etc.

Consideremos la notación de Hugo Stenhouse (H. Steinhaus. Instantáneas matemáticas, 3ª ed. 1983), lo cual es bastante simple. Stein House sugirió escribir números grandes dentro de formas geométricas: triángulo, cuadrado y círculo:

A Steinhouse se le ocurrieron dos nuevos números supergrandes. Nombró el número Mega, y el número es Megistón.

El matemático Leo Moser perfeccionó la notación de Stenhouse, que estaba limitada por el hecho de que si era necesario escribir números mucho más grandes que un megastón, surgían dificultades e inconvenientes, ya que había que dibujar muchos círculos uno dentro del otro. Moser sugirió que después de los cuadrados no se dibujaran círculos, sino pentágonos, luego hexágonos, etc. También propuso una notación formal para estos polígonos para que los números pudieran escribirse sin hacer dibujos complicados. Notación Moser se ve así:

Por lo tanto, según la notación de Moser, el mega de Steinhouse se escribe como 2 y el megistón como 10. Además, Leo Moser propuso llamar a un polígono con un número de lados igual a mega - megagón. Y propuso el número “2 en Megagón”, es decir, 2. Este número pasó a ser conocido como número de Moser o simplemente como Moser

Pero Moser no es el número más grande. El número más grande jamás utilizado en la prueba matemática es el límite conocido como número de graham(Número de Graham), utilizado por primera vez en 1977 en la prueba de una estimación de la teoría de Ramsey. Está asociado con hipercubos bicromáticos y no puede expresarse sin un sistema especial de 64 niveles de símbolos matemáticos especiales introducido por Knuth en 1976.

Desafortunadamente, un número escrito en notación de Knuth no se puede convertir a notación utilizando el sistema Moser. Por tanto, tendremos que explicar también este sistema. En principio, tampoco tiene nada de complicado. A Donald Knuth (sí, sí, este es el mismo Knuth que escribió "El arte de programar" y creó el editor TeX) se le ocurrió el concepto de superpotencia, que propuso escribir con flechas apuntando hacia arriba:

En general se ve así:

Creo que todo está claro, así que volvamos al número de Graham. Graham propuso los llamados números G:

El número G63 comenzó a llamarse número de graham(a menudo se designa simplemente como G). Este número es el mayor número conocido en el mundo e incluso figura en el Libro Guinness de los Récords. Bueno, el número de Graham es mayor que el número de Moser.

PD Para aportar un gran beneficio a toda la humanidad y hacerme famoso a lo largo de los siglos, decidí inventar y nombrar yo mismo el número mayor. Este número será llamado estaplex y es igual al número G100. Recuérdalo, y cuando tus hijos te pregunten cuál es el número más grande del mundo, diles que ese número se llama estaplex

Entonces, ¿hay números mayores que el número de Graham? Por supuesto, para empezar está el número de Graham.. En cuanto al número significativo... bueno, hay algunas áreas diabólicamente complejas de las matemáticas (particularmente el área conocida como combinatoria) y la informática en las que aparecen números incluso mayores que el número de Graham. Pero casi hemos llegado al límite de lo que se puede explicar de forma racional y clara.

Érase una vez, en la infancia, aprendimos a contar hasta diez, luego hasta cien y luego hasta mil. Entonces, ¿cuál es el número más grande que conoces? Mil, un millón, un billón, un billón... ¿Y luego? Pétalo, dirá alguien, y se equivocará, porque confunde el prefijo SI con un concepto completamente diferente.

De hecho, la cuestión no es tan sencilla como parece a primera vista. En primer lugar, estamos hablando de nombrar potencias de mil. Y aquí, el primer matiz que muchos conocen de las películas estadounidenses es que llaman a nuestros mil millones mil millones.

Además, hay dos tipos de escalas: largas y cortas. En nuestro país se utiliza una escala corta. En esta escala, en cada paso la mantisa aumenta en tres órdenes de magnitud, es decir multiplicar por mil - mil 10 3, millón 10 6, mil millones/millón 10 9, billón (10 12). En la escala larga, después de mil millones 10 9 hay mil millones 10 12, y posteriormente la mantisa aumenta en seis órdenes de magnitud, y el siguiente número, que se llama billón, ya significa 10 18.

Pero volvamos a nuestra escala nativa. ¿Quieres saber qué viene después de un billón? Por favor:

10 3 mil
10 6 millones
10 9 mil millones
10 12 billones
10 15 cuatrillones
10 18 quintillones
10 21 sextillones
10 24 septillones
10 27 octillón
10 30 nomillones
10 33 decillones
10 36 undecillones
10 39 dodecillones
10 42 tredecillones
10 45 cuatioordecillones
10 48 quindecillones
10 51 cedecillón
10 54 septdecillones
10 57 duodevigintillón
10 60 undevigintillón
10 63 vigintillones
10 66 anvigintillón
10 69 duovigintillón
10 72 trevigintillón
10 75 quattorvigintillón
10 78 quinvigintillones
10 81 sexvigintillón
10 84 septemvigintillón
10 87 octovigintillón
10 90 noviembrevigintillón
10 93 trigintillón
10 96 antigintillón

A este número, nuestra pequeña escala no puede soportarlo, y posteriormente la mantis aumenta progresivamente.

10 100 gogol
10,123 cuadragintillion
10,153 quincuagintillones
10,183 sexagintillón
10,213 septuagintillones
10,243 octogintillones
10,273 nonagintillón
10,303 centillones
10.306 centunmillones
10,309 centulones
10,312 centbillones
10,315 centcuatrillones
10,402 trigintillón centro
10.603 decentillones
10,903 tricentilones
10 1203 cuadringentillón
10 1503 quingentillón
10 1803 sescentilones
10 2103 septingentillón
10 2403 oxtingentillón
10 2703 no gentillón
10 3003 millones
10 6003 duomillones
10 9003 tres millones
10 3000003 millones
10 6000003 duomimillones
10 10 100 googolplex
10 3×n+3 millones

Google(del inglés googol): un número en el sistema numérico decimal representado por una unidad seguida de 100 ceros:
10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
En 1938, el matemático estadounidense Edward Kasner (1878-1955) paseaba por el parque con sus dos sobrinos y discutía con ellos sobre grandes números. Durante la conversación hablamos de un número con cien ceros, que no tenía nombre propio. Uno de los sobrinos, Milton Sirotta, de nueve años, sugirió llamar a este número "googol". En 1940, Edward Kasner, junto con James Newman, escribió el libro de divulgación científica "Matemáticas e imaginación" ("Nuevos nombres en matemáticas"), donde hablaba a los amantes de las matemáticas sobre el número googol.
El término "googol" no tiene ningún significado teórico o práctico serio. Kasner lo propuso para ilustrar la diferencia entre un número inimaginablemente grande y el infinito, y el término se utiliza a veces en la enseñanza de las matemáticas con este propósito.

Googolplex(del inglés googolplex): un número representado por una unidad con un googol de ceros. Al igual que googol, el término "googolplex" fue acuñado por el matemático estadounidense Edward Kasner y su sobrino Milton Sirotta.
El número de googols es mayor que el número de todas las partículas en la parte del universo que conocemos, que oscila entre 1079 y 1081. Por lo tanto, el número googolplex, que consta de (googol + 1) dígitos, no se puede escribir en el forma clásica “decimal”, incluso si toda la materia en las partes conocidas del universo se convirtiera en papel y tinta o espacio en el disco de una computadora.

millones(En inglés, tropecientos millones): un nombre general para números muy grandes.

Este término no tiene una definición matemática estricta. En 1996, Conway (ing. J. H. Conway) y Guy (ing. R. K. Guy) en su libro English. El Libro de los Números definió la enésima potencia de tropecientos como 10 3×n+3 para el sistema de denominación de números de escala corta.

Hay números que son tan increíblemente grandes que se necesitaría todo el universo para siquiera escribirlos. Pero esto es lo realmente loco... algunas de estas cifras insondablemente grandes son cruciales para comprender el mundo.

Cuando digo "el número más grande del universo", en realidad me refiero al número más grande significativo número, el número máximo posible que es útil de alguna manera. Hay muchos contendientes para este título, pero te lo advierto de inmediato: realmente existe el riesgo de que intentar resolverlo todo te deje boquiabierto. Y además, con demasiadas matemáticas no te divertirás mucho.

Googol y googolplex

Edward Kasner

Podríamos comenzar con los que posiblemente sean los dos números más grandes de los que jamás haya oído hablar, y estos son, de hecho, los dos números más grandes que tienen definiciones generalmente aceptadas en el idioma inglés. (Existe una nomenclatura bastante precisa que se utiliza para denotar números tan grandes como desee, pero estos dos números no los encontrará en los diccionarios de hoy). Googol, desde que se hizo mundialmente famoso (aunque con errores, tenga en cuenta. De hecho, es googol ) en forma de Google, nacido en 1920 como una forma de interesar a los niños por los grandes números.

Para ello, Edward Kasner (en la foto) llevó a sus dos sobrinos, Milton y Edwin Sirott, a dar un paseo por New Jersey Palisades. Los invitó a proponer ideas y luego Milton, de nueve años, sugirió "googol". Se desconoce de dónde sacó esta palabra, pero Kasner decidió que o un número en el que cien ceros siguen a la unidad se llamará en adelante googol.

Pero el joven Milton no se detuvo ahí; propuso un número aún mayor, el googolplex. Este es un número, según Milton, en el que el primer lugar es 1, y luego tantos ceros como puedas escribir antes de cansarte. Si bien la idea es fascinante, Kasner decidió que se necesitaba una definición más formal. Como explicó en su libro Mathematics and the Imagination de 1940, la definición de Milton deja abierta la arriesgada posibilidad de que un bufón al azar pueda convertirse en un matemático superior a Albert Einstein simplemente porque tiene más resistencia.

Entonces Kasner decidió que un googolplex sería , o 1, y luego un googol de ceros. En caso contrario, y en notación similar a la que trataremos para otros números, diremos que un googolplex es . Para mostrar lo fascinante que es esto, Carl Sagan señaló una vez que es físicamente imposible escribir todos los ceros de un googolplex porque simplemente no hay suficiente espacio en el universo. Si llenamos todo el volumen del Universo observable con pequeñas partículas de polvo de aproximadamente 1,5 micrones de tamaño, entonces el número de formas diferentes en que se pueden organizar estas partículas será aproximadamente igual a un googolplex.

Lingüísticamente hablando, googol y googolplex son probablemente los dos números significativos más grandes (al menos en el idioma inglés), pero, como estableceremos ahora, hay infinitas maneras de definir "significado".

mundo real

Si hablamos del número significativo más grande, hay un argumento razonable de que esto realmente significa que necesitamos encontrar el número más grande con un valor que realmente existe en el mundo. Podemos comenzar con la población humana actual, que actualmente ronda los 6920 millones. Se estimó que el PIB mundial en 2010 fue de alrededor de 61.960 millones de dólares, pero ambas cifras son insignificantes en comparación con los aproximadamente 100 billones de células que componen el cuerpo humano. Por supuesto, ninguno de estos números se puede comparar con el número total de partículas en el Universo, que generalmente se considera aproximadamente , y este número es tan grande que nuestro idioma no tiene una palabra para describirlo.

Podemos jugar un poco con los sistemas de medidas, haciendo que los números sean cada vez mayores. Por tanto, la masa del Sol en toneladas será menor que en libras. Una excelente manera de hacerlo es utilizar el sistema de unidades de Planck, que son las medidas más pequeñas posibles para las cuales aún se aplican las leyes de la física. Por ejemplo, la edad del Universo en la época de Planck es aproximadamente . Si nos remontamos a la primera unidad de tiempo de Planck después del Big Bang, veremos que la densidad del Universo era entonces. Cada vez somos más, pero ni siquiera hemos llegado al googol todavía.

El número más grande con cualquier aplicación en el mundo real (o en este caso, aplicación en el mundo real) es probablemente una de las últimas estimaciones del número de universos en el multiverso. Este número es tan grande que el cerebro humano literalmente no podrá percibir todos estos universos diferentes, ya que el cerebro sólo es capaz de realizar configuraciones aproximadas. De hecho, este número es probablemente el número más grande que tiene sentido práctico a menos que se tenga en cuenta la idea del multiverso como un todo. Sin embargo, todavía hay números mucho mayores acechando allí. Pero para encontrarlos debemos adentrarnos en el ámbito de las matemáticas puras, y no hay mejor lugar para empezar que los números primos.

primos de mersenne

Parte del desafío es encontrar una buena definición de qué es un número "significativo". Una forma es pensar en términos de números primos y compuestos. Un número primo, como probablemente recordarás de las matemáticas escolares, es cualquier número natural (nota que no es igual a uno) que es divisible sólo por y por sí mismo. Entonces, y son números primos, y y son números compuestos. Esto significa que, en última instancia, cualquier número compuesto puede representarse por sus factores primos. En cierto modo, el número es más importante que, digamos, porque no hay forma de expresarlo en términos del producto de números más pequeños.

Evidentemente podemos ir un poco más allá. , por ejemplo, es en realidad justo, lo que significa que en un mundo hipotético donde nuestro conocimiento de los números se limita a , un matemático aún puede expresar el número. Pero el siguiente número es primo, lo que significa que la única forma de expresarlo es conocer directamente su existencia. Esto significa que los números primos más grandes conocidos juegan un papel importante, pero, digamos, un googol, que en última instancia es solo una colección de números y multiplicados entre sí, en realidad no lo hace. Y dado que los números primos son básicamente aleatorios, no existe ninguna forma conocida de predecir si un número increíblemente grande será realmente primo. A día de hoy, descubrir nuevos números primos sigue siendo una tarea difícil.

Los matemáticos de la antigua Grecia tenían un concepto de números primos al menos ya en el año 500 a. C., y 2000 años después la gente todavía sabía qué números eran primos sólo hasta aproximadamente 750. Los pensadores de la época de Euclides vieron la posibilidad de simplificación, pero no fue así. Hasta que los matemáticos del Renacimiento no pudieron utilizarlo realmente en la práctica. Estos números se conocen como números de Mersenne, en honor al científico francés del siglo XVII Marin Mersenne. La idea es bastante simple: un número de Mersenne es cualquier número de la forma . Entonces, por ejemplo, y este número es primo, lo mismo ocurre con .

Es mucho más rápido y más fácil determinar los números primos de Mersenne que cualquier otro tipo de primo, y las computadoras han estado trabajando arduamente en su búsqueda durante las últimas seis décadas. Hasta 1952, el número primo más grande conocido era un número, un número con dígitos. Ese mismo año, la computadora calculó que el número es primo y que este número consta de dígitos, lo que lo hace mucho más grande que un googol.

Las computadoras han estado a la caza desde entonces y actualmente el número de Mersenne es el número primo más grande conocido por la humanidad. Descubierto en 2008, equivale a un número con casi millones de dígitos. Es el número más grande conocido que no se puede expresar en términos de números más pequeños, y si desea ayuda para encontrar un número de Mersenne aún mayor, usted (y su computadora) siempre pueden unirse a la búsqueda en http://www.mersenne org. /.

Número de sesgos

Stanley Skewes

Miremos nuevamente los números primos. Como dije, se comportan fundamentalmente mal, lo que significa que no hay forma de predecir cuál será el próximo número primo. Los matemáticos se han visto obligados a recurrir a algunas mediciones bastante fantásticas para encontrar alguna manera de predecir los futuros números primos, incluso de alguna manera nebulosa. El más exitoso de estos intentos es probablemente la función de contar números primos, inventada a finales del siglo XVIII por el legendario matemático Carl Friedrich Gauss.

Te ahorraré las matemáticas más complicadas (de todos modos tenemos mucho más por venir), pero la esencia de la función es la siguiente: para cualquier número entero, puedes estimar cuántos números primos hay que son menores que . Por ejemplo, si , la función predice que debería haber números primos, si debería haber números primos menores que , y si , entonces debería haber números más pequeños que sean primos.

La disposición de los números primos es realmente irregular y es sólo una aproximación del número real de números primos. De hecho, sabemos que hay números primos menores que, números primos menores que y números primos menores que. Esta es una estimación excelente, sin duda, pero siempre es sólo una estimación... y, más específicamente, una estimación desde arriba.

En todos los casos conocidos hasta , la función que encuentra el número de números primos sobreestima ligeramente el número real de números primos menores que . Los matemáticos alguna vez pensaron que esto siempre sería así, ad infinitum, y que esto ciertamente se aplicaría a algunos números inimaginablemente enormes, pero en 1914 John Edensor Littlewood demostró que para algún número desconocido e inimaginablemente enorme, esta función comenzaría a producir menos números primos. , y luego cambiará entre la estimación superior y la estimación inferior un número infinito de veces.

La búsqueda era por el punto de partida de las carreras, y entonces apareció Stanley Skewes (ver foto). En 1933, demostró que el límite superior cuando una función que se aproxima al número de números primos produce primero un valor más pequeño es el número. Es difícil entender realmente, incluso en el sentido más abstracto, qué representa realmente este número y, desde este punto de vista, fue el número más grande jamás utilizado en una demostración matemática seria. Desde entonces, los matemáticos han podido reducir el límite superior a un número relativamente pequeño, pero el número original sigue siendo conocido como número de Skewes.

Entonces, ¿qué tan grande es el número que eclipsa incluso al poderoso googolplex? En The Penguin Dictionary of Curious and Interesting Numbers, David Wells relata una forma en la que el matemático Hardy pudo conceptualizar el tamaño del número de Skuse:

“Hardy pensó que era “el número más grande jamás servido para un propósito particular en matemáticas”, y sugirió que si se jugara una partida de ajedrez con todas las partículas del universo como piezas, un movimiento consistiría en intercambiar dos partículas, y la otra El juego se detendría cuando la misma posición se repitiera por tercera vez, entonces el número de todos los juegos posibles sería aproximadamente igual al número de Skuse.'

Una última cosa antes de continuar: hablamos del menor de los dos números de Skewes. Existe otro número de Skuse, que el matemático descubrió en 1955. El primer número se deriva del hecho de que la llamada hipótesis de Riemann es verdadera; se trata de una hipótesis particularmente difícil en matemáticas que aún no ha sido probada y es muy útil cuando se trata de números primos. Sin embargo, si la hipótesis de Riemann es falsa, Skuse encontró que el punto de partida de los saltos aumenta a .

Problema de magnitud

Antes de llegar al número que hace que incluso el número de Skewes parezca pequeño, necesitamos hablar un poco sobre la escala, porque de lo contrario no tenemos forma de evaluar hacia dónde vamos a ir. Primero tomemos un número: es un número pequeño, tan pequeño que la gente puede tener una comprensión intuitiva de lo que significa. Son muy pocos los números que se ajustan a esta descripción, ya que los números mayores a seis dejan de ser números separados y pasan a ser “varios”, “muchos”, etc.

Ahora tomemos, es decir . Aunque en realidad no podemos intuitivamente, como lo hicimos con el número, entender qué es, es muy fácil imaginar qué es. Hasta ahora, todo bien. ¿Pero qué pasa si nos mudamos a ? Esto es igual a, o. Estamos muy lejos de poder imaginar esta cantidad, como cualquier otra muy grande: perdemos la capacidad de comprender partes individuales en torno a un millón. (Es cierto que llevaría muchísimo tiempo contar hasta un millón de cualquier cosa, pero la cuestión es que todavía somos capaces de percibir ese número).

Sin embargo, aunque no podemos imaginarlo, al menos podemos entender en términos generales qué son 7.600 mil millones, quizás comparándolos con algo como el PIB de Estados Unidos. Hemos pasado de la intuición a la representación y a la simple comprensión, pero al menos todavía tenemos cierta brecha en nuestra comprensión de qué es un número. Eso está a punto de cambiar a medida que subimos otro peldaño en la escalera.

Para hacer esto, necesitamos pasar a una notación introducida por Donald Knuth, conocida como notación de flechas. Esta notación se puede escribir como . Cuando vayamos a , el número que obtendremos será . Esto es igual a donde está el total de tres. Ahora hemos superado con creces todas las demás cifras de las que ya hemos hablado. Después de todo, incluso los más grandes tenían sólo tres o cuatro términos en la serie de indicadores. Por ejemplo, incluso el número super-Skuse es “sólo”; incluso teniendo en cuenta el hecho de que tanto la base como los exponentes son mucho mayores que , sigue siendo absolutamente nada comparado con el tamaño de una torre numérica con mil millones de miembros. .

Obviamente, no hay manera de comprender números tan enormes... y, sin embargo, aún se puede entender el proceso mediante el cual se crean. No pudimos entender la cantidad real que da una torre de potencias con mil millones de tripletes, pero básicamente podemos imaginar una torre así con muchos términos, y una supercomputadora realmente decente sería capaz de almacenar tales torres en la memoria incluso si No se pudieron calcular sus valores reales.

Esto se está volviendo cada vez más abstracto, pero sólo empeorará. Se podría pensar que se trata de una torre de grados cuya longitud de exponente es igual (de hecho, en la versión anterior de este post cometí exactamente este error), pero es sencillo. En otras palabras, imagina poder calcular el valor exacto de una torre de energía de tripletes que está formada por elementos, y luego tomas ese valor y creas una nueva torre con tantos como... eso da.

Repita este proceso con cada número subsiguiente ( nota comenzando desde la derecha) hasta que lo hagas varias veces, y finalmente obtendrás. Este es un número que es simplemente increíblemente grande, pero al menos los pasos para conseguirlo parecen comprensibles si lo haces todo muy lentamente. Ya no podemos entender los números ni imaginar el procedimiento mediante el cual se obtienen, pero al menos podemos entender el algoritmo básico, sólo que con el tiempo suficiente.

Ahora preparemos la mente para realmente volarlo.

Número de Graham (Graham)

Ronald Graham

Así es como se obtiene el número de Graham, que ocupa un lugar en el Libro Guinness de los Récords Mundiales como el número más grande jamás utilizado en una prueba matemática. Es absolutamente imposible imaginar qué tan grande es, e igualmente difícil explicar exactamente qué es. Básicamente, el número de Graham aparece cuando se trata de hipercubos, que son formas geométricas teóricas con más de tres dimensiones. El matemático Ronald Graham (ver foto) quería descubrir en qué número más pequeño de dimensiones permanecerían estables ciertas propiedades de un hipercubo. (Perdón por una explicación tan vaga, pero estoy seguro de que todos necesitamos obtener al menos dos títulos en matemáticas para que sea más preciso).

En cualquier caso, el número de Graham es una estimación superior de este número mínimo de dimensiones. Entonces, ¿qué tan grande es este límite superior? Volvamos al número, tan grande que sólo podemos entender vagamente el algoritmo para obtenerlo. Ahora, en lugar de simplemente saltar un nivel más a , contaremos el número que tiene flechas entre los tres primeros y los últimos. Ahora estamos mucho más allá de la más mínima comprensión de qué es este número o incluso de qué debemos hacer para calcularlo.

Ahora repitamos este proceso una vez ( nota en cada siguiente paso escribimos el número de flechas igual al número obtenido en el paso anterior).

Éste, damas y caballeros, es el número de Graham, que es aproximadamente un orden de magnitud superior al punto de comprensión humana. Es un número mucho mayor que cualquier número que puedas imaginar; es mucho mayor que cualquier infinito que puedas imaginar; simplemente desafía incluso la descripción más abstracta.

Pero aquí hay algo extraño. Dado que el número de Graham es básicamente tripletes multiplicados, conocemos algunas de sus propiedades sin tener que calcularlas. No podemos representar el número de Graham usando ninguna notación familiar, incluso si usáramos el universo entero para escribirlo, pero puedo decirles los últimos doce dígitos del número de Graham ahora mismo: . Y eso no es todo: conocemos al menos los últimos dígitos del número de Graham.

Por supuesto, vale la pena recordar que este número es sólo un límite superior en el problema original de Graham. Es muy posible que el número real de mediciones necesarias para satisfacer la propiedad deseada sea mucho, mucho menor. De hecho, desde la década de 1980, según la mayoría de los expertos en la materia, se cree que en realidad sólo hay seis dimensiones, un número tan pequeño que podemos entenderlo intuitivamente. Desde entonces, el límite inferior se ha elevado a , pero todavía hay muchas posibilidades de que la solución al problema de Graham no se encuentre cerca de un número tan grande como el número de Graham.

Hacia el infinito

Entonces, ¿hay números mayores que el número de Graham? Por supuesto, para empezar está el número de Graham. En cuanto al número significativo... bueno, hay algunas áreas diabólicamente complejas de las matemáticas (particularmente el área conocida como combinatoria) y la informática en las que aparecen números incluso mayores que el número de Graham. Pero casi hemos llegado al límite de lo que espero que algún día se explique racionalmente. Para aquellos lo suficientemente temerarios como para ir aún más lejos, se sugiere leer más bajo su propio riesgo.

Bueno, ahora una cita sorprendente que se atribuye a Douglas Ray ( nota Sinceramente, suena bastante gracioso:

“Veo cúmulos de números vagos que se esconden allí en la oscuridad, detrás del pequeño punto de luz que da la vela de la razón. Se susurran entre sí; conspirando sobre quién sabe qué. Quizás no les agrademos mucho por capturar en nuestra mente a sus hermanitos. O tal vez simplemente llevan una vida de un solo dígito, ahí fuera, más allá de nuestra comprensión.

La pregunta "¿Cuál es el número más grande del mundo?" es, por decir lo menos, incorrecta. Existen varios sistemas numéricos: decimal, binario y hexadecimal, así como varias categorías de números: semiprimos y simples, este último se divide en legales e ilegales. Además, están los números de Skewes, Steinhouse y otros matemáticos que, en broma o en serio, inventan y presentan al público objetos exóticos como "Megiston" o "Moser".

¿Cuál es el número más grande del mundo en sistema decimal?

Del sistema decimal, la mayoría de los “no matemáticos” están familiarizados con millones, mil millones y billones. Además, si los rusos generalmente asocian un millón con un soborno en dólares que se puede llevar en una maleta, entonces dónde meter mil millones (sin mencionar un billón) de billetes norteamericanos: la mayoría de la gente carece de imaginación. Sin embargo, en la teoría de grandes números existen conceptos como cuatrillón (diez elevado a la decimoquinta potencia - 1015), sextillón (1021) y octillón (1027).

En el sistema decimal inglés, el sistema decimal más utilizado en el mundo, se considera que el número máximo es un decillón: 1033.

En 1938, en relación con el desarrollo de las matemáticas aplicadas y la expansión del micro y macrocosmos, el profesor de la Universidad de Columbia (EE. UU.) Edward Kasner publicó en las páginas de la revista Scripta Mathematica la propuesta de su sobrino de nueve años de utilizar el sistema decimal como el número más grande "googol", que representa diez elevado a la centésima potencia (10100), que en el papel se expresa como uno seguido de cien ceros. Sin embargo, no se detuvieron ahí y unos años más tarde propusieron introducir un nuevo número más grande en el mundo: el "googolplex", que representa diez elevado a la décima potencia y nuevamente elevado a la centésima potencia - (1010)100, expresado por una unidad, a la que se le asigna un googol de ceros a la derecha. Sin embargo, para la mayoría de los matemáticos profesionales, tanto “googol” como “googolplex” son de interés puramente especulativo y es poco probable que puedan aplicarse a algo en la práctica cotidiana.

Números exóticos

¿Cuál es el número más grande del mundo entre los números primos? Aquellos que solo se pueden dividir entre ellos y uno. Uno de los primeros en registrar el número primo más grande, igual a 2.147.483.647, fue el gran matemático Leonhard Euler. A partir de enero de 2016, este número se reconoce como la expresión calculada como 274.207.281 – 1.

Innumerables números diferentes nos rodean cada día. Seguramente mucha gente se ha preguntado al menos una vez qué número se considera el más grande. Simplemente puedes decirle a un niño que esto es un millón, pero los adultos entienden perfectamente que otros números siguen al millón. Por ejemplo, todo lo que tienes que hacer es sumar uno a un número cada vez, y se hará cada vez más grande; esto sucede hasta el infinito. Pero si miras los números que tienen nombre, podrás descubrir cómo se llama el número más grande del mundo.

La aparición de los nombres de los números: ¿qué métodos se utilizan?

Hoy en día existen 2 sistemas según los cuales se dan nombres a los números: americano e inglés. El primero es bastante sencillo y el segundo es el más común en todo el mundo. El americano permite dar nombres a números grandes de la siguiente manera: primero se indica el número ordinal en latín y luego se agrega el sufijo "millón" (la excepción aquí es millón, que significa mil). Este sistema es utilizado por estadounidenses, franceses, canadienses y también se utiliza en nuestro país.


El inglés se utiliza mucho en Inglaterra y España. Según él, los números se nombran de la siguiente manera: el número en latín es "más" con el sufijo "illón", y el siguiente número (mil veces mayor) es "más" "mil millones". Por ejemplo, el billón viene primero, el billón después, el cuatrillón después del cuatrillón, etc.

Así, el mismo número en diferentes sistemas puede significar cosas diferentes, por ejemplo, un billón americano en el sistema inglés se llama billón;

Números extrasistema

Además de los números que se escriben según los sistemas conocidos (mencionados anteriormente), también los hay no sistémicos. Tienen nombres propios, que no incluyen prefijos latinos.

Puedes empezar a considerarlos con un número llamado miríada. Se define como cien centenas (10000). Pero de acuerdo con el propósito previsto, esta palabra no se usa, sino que se usa como indicación de una multitud innumerable. Incluso el diccionario de Dahl tendrá la amabilidad de proporcionar una definición de tal número.

Después de la miríada está el googol, que denota 10 elevado a 100. Este nombre fue utilizado por primera vez en 1938 por el matemático estadounidense E. Kasner, quien señaló que este nombre fue inventado por su sobrino.


Google (motor de búsqueda) recibió su nombre en honor a googol. Entonces 1 con un googol de ceros (1010100) representa un googolplex; a Kasner también se le ocurrió este nombre.

Incluso mayor que el googolplex es el número de Skuse (e elevado a e elevado a e79), propuesto por Skuse en su prueba de la conjetura de Rimmann sobre los números primos (1933). Existe otro número de Skuse, pero se utiliza cuando la hipótesis de Rimmann no es cierta. Es bastante difícil decir cuál es mayor, especialmente cuando se trata de grados grandes. Sin embargo, este número, a pesar de su “enorme”, no puede considerarse el mejor de todos los que tienen nombre propio.

Y el líder entre los números más grandes del mundo es el número de Graham (G64). Se utilizó por primera vez para realizar demostraciones en el campo de las ciencias matemáticas (1977).


Cuando se trata de tal número, debe saber que no puede prescindir de un sistema especial de 64 niveles creado por Knuth; la razón de esto es la conexión del número G con hipercubos bicromáticos. Knuth inventó el supergrado y, para que fuera conveniente registrarlo, propuso el uso de flechas hacia arriba. Entonces descubrimos cómo se llama el número más grande del mundo. Vale la pena señalar que este número G se incluyó en las páginas del famoso Libro de los Récords.



Este artículo también está disponible en los siguientes idiomas: tailandés

  • Próximo

    MUCHAS GRACIAS por la información tan útil del artículo. Todo se presenta muy claramente. Parece que se ha trabajado mucho para analizar el funcionamiento de la tienda eBay.

    • Gracias a ti y a otros lectores habituales de mi blog. Sin ustedes, no habría estado lo suficientemente motivado como para dedicar mucho tiempo al mantenimiento de este sitio. Mi cerebro está estructurado de esta manera: me gusta profundizar, sistematizar datos dispersos, probar cosas que nadie ha hecho antes ni visto desde este ángulo. Es una lástima que nuestros compatriotas no tengan tiempo para comprar en eBay debido a la crisis en Rusia. Compran en Aliexpress desde China, ya que los productos allí son mucho más baratos (a menudo a expensas de la calidad). Pero las subastas en línea de eBay, Amazon y ETSY fácilmente darán a los chinos una ventaja en la gama de artículos de marca, artículos antiguos, artículos hechos a mano y diversos productos étnicos.

      • Próximo

        Lo valioso de sus artículos es su actitud personal y su análisis del tema. No abandonéis este blog, vengo aquí a menudo. Deberíamos ser muchos así. Envíame un correo electrónico Recientemente recibí un correo electrónico con una oferta de que me enseñarían cómo operar en Amazon y eBay.

  • También es bueno que los intentos de eBay de rusificar la interfaz para los usuarios de Rusia y los países de la CEI hayan comenzado a dar frutos. Después de todo, la inmensa mayoría de los ciudadanos de los países de la antigua URSS no tienen conocimientos sólidos de idiomas extranjeros. No más del 5% de la población habla inglés. Hay más entre los jóvenes. Por lo tanto, al menos la interfaz está en ruso: esto es de gran ayuda para las compras en línea en esta plataforma comercial. eBay no siguió el camino de su homólogo chino Aliexpress, donde se realiza una traducción automática (muy torpe e incomprensible, que a veces provoca risas) de las descripciones de los productos. Espero que en una etapa más avanzada del desarrollo de la inteligencia artificial, la traducción automática de alta calidad de cualquier idioma a cualquier idioma en cuestión de segundos se convierta en una realidad. Hasta ahora tenemos esto (el perfil de uno de los vendedores en eBay con una interfaz en ruso, pero una descripción en inglés):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png